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ABSTRACT

This paper initiates the principled study of distance re-
construction for distance-based node localization. We ad-
dress an important issue in node localization by showing
that the highly incomplete set of inter-node distance mea-
surements obtained in ad-hoc node deployments carries suf-
ficient information for the accurate reconstruction of the
missing distances,even in the presence of noise. We provide
an efficient and provably accurate algorithm for this recon-
struction, and we show that the resulting error is bounded,
decreasing at a rate that is inversely proportional to

√
n, the

square root of the number of nodes in the region of deploy-
ment. Although this result is applicable to many localization
schemes, in this paper we illustrate its use in conjunction
with the popular MultiDimensional Scaling algorithm. Our
analysis reveals valuable insights and key factors to con-
sider during the sensor network setup phase, to improve the
quality of the position estimates.

1. INTRODUCTION

In the past few years the sensor network community has
reached a consensus that knowledge of node locations is
unquestionably one of the most desirable attributes of ad-
hoc sensor networks. Knowledge of location can support
many networking and maintenance services, and more im-
portantly map the sensed data to physical space. Since the
manual recording of node positions is a difficult task even
for modest sized networks, the community has invested sig-
nificant effort in creating algorithms that can derive loca-
tions based on inter-node measurements.

The simplest and most common embodiment of such al-
gorithms considers the estimation of a coordinate system
from a set of pairwise distance measurements among sensor
nodes. However, it is well known, that in realistic deploy-
ments obstacles and large node separations render the col-
lection of alln2 distances infeasible. Many of the existing
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algorithms try to resolve this issue by providing heuristic
approximations to the missing distances. The success of
such techniques has invariably been measured experimen-
tally. There is an alarming lack of simple algorithms with
bounded running time complexity – either centralized or de-
centralized – that are able toprovably localize the sensor
nodes up to bounded error.

The work in this paper takes a forward step in this di-
rection, by providing a simple and provable algorithm for
the accurate reconstruction of the missing pairwise distance
measurements. The main contribution of this paper is to
show that highly incomplete distance matrices such as the
ones obtained in ad-hoc deployments, contain sufficient in-
formation to allow the accurate reconstruction of the miss-
ing distances, even in the presence of noise. To this end, we
describe a provable reconstruction algorithm with bounded
error and illustrate its use in conjunction with the popu-
lar Multidimensional Scaling (MDS) algorithm [12, 13, 8].
However, we emphasize that this presentation focuses on
matrix distance reconstruction. We acknowledge the fact
that to obtain more accurate locations an additional iterative
refinement phase similar to the ones described in [13] and
[14] is necessary. This presentation does not delve into the
details of iterative refinement.

Section 3 gives an intuitive overview of the main results,
followed by a detailed description in Sections 4 and 5 and
our evaluation results in Section 7.

2. RELATED WORK

Node localization has been a subject of intense study in the
recent literature. The various approaches may be classified
based on whether they are assisted or ad-hoc, centralized or
distributed, or based on the type of technologies they em-
ploy. Some approaches are based on radio received signal
strength [15, 13, 10], others employ more accurate distance
measurement technologies [11], and others assume a com-
bination of angle and distance measurements [4, 10].

Our work is closely related to studies that use approxi-
mations to distance measurements. These include the MDS
based approaches described in [12, 13, 8]. Novel distance
reconstruction techniques via SemiDefinite Programming for-
mulations (SDP) have been recently proposed in [3, 9, 14].



Our work addresses the same problem. However, to the best
of our knowledge, no explicit connection between the accu-
racy of the reconstruction and the number of sensor nodes
in the network has been provided in existing work.

There has been significant recent theoretical work in
generalmatrix reconstructionproblems, a special case of
which is the Euclidean distance matrix reconstruction prob-
lem. In particular, Achlioptas and McSherry in [1, 2] proved
that given randomly sampled elements of a matrix, it is pos-
sible to accurately approximate the spectral characteristics
– singular values and singular vectors – of a matrix. Drineas
et. al. in [5, 6] proved that it is also possible to approximate
the spectral characteristics of a matrix by sampling a small
constant number of rows and/or columns of a matrix. We
refer the reader to the references for further details.

3. DISTANCE MATRIX RECONSTRUCTION

3.1. Problem Statement

In a sensor network localization problem,n sensor nodes
are placed in the two (or three)1 dimensional Euclidean space.
Every sensor measures its distance (up to noise) to a subset
of the other sensors. Given this (incomplete) distance infor-
mation, the task is to recover the positions of the individual
sensor nodes. More formally, letxi ∈ R2 denote the po-
sition of nodei, i ∈ 1 . . . n. Let dij denote the Euclidean
distance between nodesi andj for i, j ∈ 1 . . . n, i.e.,

d2
ij = ‖xi − xj‖2 = xT

i xi + xT
j xj − 2xT

i xj .

Let X denote then × 2 position matrix whoseith row is
xT

i , and letD denote then × n distance matrix given by
Dij = d2

ij . We assume that the sensors are distributed on

a bounded domain, sodij ∈ [0, dmax]. Estimatesd̃2
ij =

d2
ij + εij are measured for some pairs of nodes, whereεij

models the measurement noise. We assume that the noise
is zero mean and has bounded variance. However, we do
not assume that it is Gaussian. The goal of localization is
to recover estimates̃xi ∈ R2 that are “close”, up to rota-
tion/reflection and translation, to thexi for all i ∈ 1 . . . n.

Existing algorithms for localization (e.g., the MDS-MAP
algorithm of [12, 13]) start by using the incomplete and
noisy distance information contained in thẽdij to first re-
construct all the distancesdij . The goal of this paper is to
give provably accurate algorithms forreconstructingthe en-
tire distance matrix, given a small number of noisy pairwise
distancesd̃2

ij . In particular, we obtain estimates̄d2
ij for all

i, j ∈ 1 . . . n for which, modulo our assumptions,

1
n2

n∑

i=1

n∑

j=1

(d2
ij − d̄2

ij)
2 = O

(
1√
n

)
.

1In the interest of space, we only focus on the 2D case. The 3D case is
a straight forward extension.

In words, the squared error per entry drops inversely propor-
tional to the square root of the number of nodes in the sensor
network. Thus, we lay a theoretical foundation upon which
existing algorithms, such as MDS-MAP, may operate.

Notation. Let 1n be then-dimensional vector of ones, and
In then × n identity matrix. For any matrixA, ‖A‖2F =∑

i,j A2
ij and ‖A‖2 = max‖y‖=1 ‖Ay‖.

3.2. MDSL OCALIZE Using Exact Distances

To motivate the need for accurate reconstruction of the dis-
tance matrix, we can ask whether it is possible to recover
the original positionsxi (up to rotation/reflection and trans-
lation), givenall n2 pairwise Euclidean distances, without
any measurement noise. A SemiDefinite Programing ap-
proach used in [3] shows that the answer to this question is
affirmative. It has been folklore knowledge that under the
same assumptions, MultiDimensional Scaling (MDS) ap-
proaches do the same. We summarize the MDS algorithm
below, and give a proof of Theorem 1 in the Appendix.

Algorithm MDSLOCALIZE

1. Centering. Computeτ (D) = − 1
2LDL, where

L = In − (1/n)1n1T
n .

2. SVD. Computeτ2(D), the best rank 2 approxi-
mation toτ (D) using its Singular Value Decom-
position,τ2(D) = U2Σ2

2U
T
2 .

3. Return X̃ = U2Σ2.

At the second step ofMDSLOCALIZE, U2 is ann × 2
matrix of the top two left singular vectors ofτ (D), andΣ2

is a2 × 2 diagonal matrix. At the third step, theith row of
X̃ is the estimatẽxT

i .

Theorem 1 MDSLOCALIZE, when applied to the complete,
exact distance matrixD returns estimates of the positions
x̃i that are equal (up to rotation/reflection and translation)
to the true positionsxi for all i.

The above theorem immediately suggests an approach
when some of the pairwise distances are missing: replace
the missing entries by estimates and run MDS on this esti-
mate ofD. Indeed, this approach has been suggested and
experimentally evaluated in [12], where a missing distance
between nodesi andj is approximatedby its shortest path
distance in the sensor network connectivity graph. The hope
has always been that if the estimate ofD is accurate enough,
then the result of theMDSLOCALIZE procedure will mimic
the statement of theorem 1. We will show here that the



first step can be accomplished, namely thatD can be re-
constructed from partial information with provable accu-
racy. The analysis of runningMDSLOCALIZE on this prov-
ably accurate reconstruction will be discussed in upcoming
work.

3.3. Inferring Missing Distances

A crucial question naturally arises. Can one accurately ap-
proximate the missing distances, given a small subset of
pairwise distances?

Lemma 1 The rank ofD is at most 4.

Proof: Notice that

D = 1nzT + z1T
n − 2XXT , (1)

wherez is ann × 1 vector whoseith element is equal to
‖xi‖2 = xT

i xi. To conclude, observe thatD is the sum of
three matrices of ranks 1, 1, and at most 2. More generally,
in d dimensions, the rank of the third matrix is at mostd,
giving rank(D) ≤ d + 2.

¦
This simple lemma lies at theheart of our work. The

fact thatD is of rank at most 4 explains, both rigorously and
intuitively, the correctness of our algorithm and the quality
of our bounds. Intuitively, it states thatD has a lot of struc-
ture. Roughly speaking, even thoughD hasn2 entries, there
exist only 4 linearly independent columns (or rows) inD or,
equivalently, there exist only8n degrees of freedom inD.
Thus, a carefully chosen8n entries inD should suffice to
reconstructD exactly.

3.4. SamplingD

As discussed, only8n entries inD should suffice for recon-
struction, and hence localization. As a motivating exam-
ple, consider an idealized setting, in which we could choose
which entries ofD to measure. Suppose we pick 4 linearly
independent rows ofD, say (without loss of generality) the
first 4 rows. This amounts to the unrealistic assumption that
we are given all distances from the first 4 sensor nodes to
all other nodes. Assume also that we are given at least 4
entries from every other row ofD, i.e., every sensor is able
to compute its distance to at least 4 other sensors (a realistic
assumption). The 4 entries in rowj (j > 4) may be used
to determine the linear combination of the first 4 rows that
would give thejth row, and hence determine the entirejth

row. We know that this process is feasible, sinceD has rank
at most 4. Thus, the 4 given entries in each row suffice to
reconstruct the entire row. Assuming that the measurements
are noiseless, the reconstruction ofD is perfect.

The assumption that the first 4 rows are given is clearly
out of reach, since this would imply the existence of 4 ex-
tremely powerful sensor nodes, which can compute their

distance to any other sensor node. In a realistic setting, we
do not get to choose the entries ofD that are measured. In-
stead, we can postulate a reasonable model under which the
entries ofD are “sampled”, and ask whether these “sam-
pled” entries are sufficient to recover the structure ofD,
even in the presence of noise. The above discussion high-
lights two points.(i) D has a lot of structure, and a carefully
chosen small sample of its entries will result in accurate re-
construction. Therefore,(ii) the relevant question is what
realistic assumptions on the sampling ofD give accurate
reconstruction?

We describe a general, realistic model to answer the
above question. Introduce ann × n sampling matrixP
whose(i, j)-th entry pij ∈ [0, 1] denotes the probability
that nodei successfully measured its exact distance to node
j, i.e.,d2

ij is measured with probabilitypij , and is unknown
with probability1 − pij . The measurements are corrupted,
thus we measurẽd2

ij = d2
ij + εij with probabilitypij . Re-

call thatεij are independent zero mean, bounded variance
random variables.

Our model includes the commonly assumed disk model
which setspij ≈ 1 if dij ≤ R, andpij ≈ 0 otherwise. Here
R denotes the sensor radius. Our model implicitly allows
for operation in obstructed environments and varying signal
propagation models, by allowing more general values for
pij .

3.5. Assumptions

We need to make some assumptions on thepij in order to
prove that localization is, in principle, feasible. Notice that
some assumptions on thepij are clearly necessary in order
to give any provable guarantees for localization. For exam-
ple, if all butO(1) of thepij are equal to zero, localization
is impossible. We state our assumptions and defer a detailed
discussion of their plausibility to Section 6, after the presen-
tation of our reconstruction algorithm.

Assumption 1 All thepij ’s are known.

Even though this assumption sounds quite strong, we will
argue that it is essentially implicit in existing literature. More
importantly, it is actually feasible to get realistic, accurate
estimates of thepij in practical settings.

Assumption 2 pij ≥ pε > 0, for all i, j = 1 . . . n, for
some small positive constantpε.

In words, we assume that even far away sensors have a very
small, non-zero probability of detecting their distance. This
assumption might be true as sensor technology improves, or
if the sensors are spread over small, bounded regions.



4. SVD-RECONSTRUCT

We describe the reconstruction algorithm, which we will an-
alyze in Section 5. The algorithm is tantalizingly simple,
and is motivated by recent important results regarding the
reconstruction of low-rank matrices [1, 2].

SVD-RECONSTRUCT takes as input a fraction of the
entries ofD that are available, i.e., entries ofD that cor-
respond to pairs of nodes that were able to measure their
pairwise distances – recall that̃Dij = d̃2

ij = d2
ij + εij is

measured with (known) probabilitypij . Thus, the input to
SVD-RECONSTRUCTis the matrixD̃ given by

D̃ij =
{

d2
ij + εij with probabilitypij ,

? with probability1− pij .

The ? denotes that the entry is unknown. The first step is to
construct a new matrixS with entries

Sij =

{
d2

ij+εij+γij(1−pij)

pij
if dij was detected (prob.pij),

γij otherwise (prob.1− pij).

S is well defined since thepij are known and non-zero. The
γij are values representing our “best guess” for the distance
between nodesi andj, given that the two nodes were not
able to detect their distance. These values naturally model
side information that is available in practice. Our algorithm
works for any choice for theγij , e.g., allγij might be set
to zero. However, better choices for theγij can improve
the accuracy of the reconstruction. We will quantify this
in equation (4), and in Section 7 we will demonstrate the
experimental performance of theSVD-RECONSTRUCTal-
gorithm for various choices for theγij .

The next step is to constructS4, the best rank 4 approx-
imation toS (recall thatD has rank at most 4).

Algorithm SVD-RECONSTRUCT

1. GivenD̃, constructS.

2. ConstructS4, the best rank 4 approximation to
S, using the Singular Value Decomposition ofS.

3. Run MDSLOCALIZE on S4 to obtain x̃i, i =
1 . . . n, which approximate thexi up to rota-
tion/reflection and translation.

The entries ofS satisfy two important properties. Their
expectationE [Sij ] is equal tod2

ij for all i andj (recall that
the expectation ofεij is equal to zero), and their variance
is bounded since thepij are bounded away from zero; see
Section 5 for details. These two properties will allow us to
use the bounds of [1, 2] to prove thatS4, the best rank 4
approximation toS, is “close” toD. More specifically, we
shall obtain bounds for‖D− S4‖2F .

5. ANALYSIS OF SVD-RECONSTRUCT

The main goal of this paper is to lay a formal foundation
for localization by giving provably accurate algorithms for
reconstructingD from highly incomplete distance informa-
tion. We now show thatSVD-RECONSTRUCTis one such
algorithm. Instrumental to this goal will be the fact thatD
has low rank (lemma 1).

The following lemma is crucial to the analysis. Its es-
sential content is thatS is an unbiased estimator forD.

Lemma 2 For all i, j,

E [Sij −Dij ] = 0.

We give the proof in the Appendix. The lemma holds be-
cause of our careful choice of thescaling factorsfor the
entries ofS. We now show thatS4 is close toD, which
implies thatSVD-RECONSTRUCTaccurately recoversD.

Lemma 3 (Theorem 1, [2]) Let S4 be constructed as de-
scribed inSVD-RECONSTRUCT. Then,

‖D− S4‖F ≤ ‖(D− S)4‖F + 2
√
‖(D− S)4‖F ‖D‖F

and also

‖D− S4‖2 ≤ 2 ‖(D− S)4‖2 .

The above lemma is essentially Theorem 1 of [2], using the
fact that‖D−D4‖F = ‖D−D4‖2 = 0. We now present
a bound for‖(D− S)4‖F . To prove this bound we first
need to bound‖(D− S)4‖2 = ‖D− S‖2. Towards that
end we use Theorem 5 of [2].

Lemma 4 (Theorem 5, [2]) Letσ2
S denote an upper bound

for the variance of the entries ofS, or equivalently,Var [Sij ] ≤
σ2

S for all i, j = 1 . . . n. Then, with probability at least
1− 1/(2n), for sufficiently largen,

‖D− S‖2 ≤ 4σS

√
2n, (2)

‖(D− S)4‖F ≤ 12σS

√
2n. (3)

Combining lemmas 3 and 4 we can easily derive a bound on
the quality ofS4 as an approximation toD.

Lemma 5 S4 is a “good” approximation toD, since with
probability at least1− 1/(2n),

‖D− S4‖F ≤ 12σS

√
2n + 8

√
σS

√
2n ‖D‖F

‖D− S4‖2 ≤ 8σS

√
2n.

See the Appendix for a proof of the above lemma. We now
bound theσS term in lemmas 4 and 5. We will use the



fact thatεij is zero mean and its variance is bounded byσ2
ε .

Indeed (for details see Appendix)

Var [Sij ] ≤ 2
pij

(
(d2

ij − γij)2 + σ2
ε

)
.

Notice that the quality of the bound improves ifγij is close
to dij . Overall, usingpij ≥ pε (Assumption 2),

σ2
S ≤

2
pε

max
i,j

(
(d2

ij − γij)2 + σ2
ε

)
. (4)

The following theorem summarizes our results regarding
the accuracy of the reconstruction process, and argues that
the average reconstruction error per entry decreasesinversely
proportionalto the square root of the number of nodes in the
sensor network.

Theorem 2 LetS4 be constructed as described in theSVD-
RECONSTRUCTalgorithm. Then, with probability at least
1− 1/(2n),

‖D− S4‖F ≤ 12σS

√
2n + 8

√
σS

√
2n ‖D‖F ,

whereσ2
S is bounded as in equation (4). Letdmax denote the

maxi,j dij over all i, j ∈ 1 . . . n. Since‖D‖F ≤ ndmax,
assuming thatpε is any small constant,

‖D− S4‖2F ≤ O(nd4
max + n3/2d3

max).

Thus, the average square error per entry inS4 is

O(d4
max/n + d3

max/
√

n).

Assuming thatdmax is independent ofn, the error decreases
inversely proportional to the

√
n.

6. DISCUSSION

We briefly discuss the impact of the assumptions of Section
3.5 in light of theSVD-RECONSTRUCTalgorithm. Con-
sider Assumption 1. Traditionally [12],MDSLOCALIZE

has been run on a reconstructed distance matrix

Sij =
{

d2
ij + εij if dij was detected,
γij otherwise,

whereγij is the shortest path distance betweeni andj on
the sensor network connectivity graph. In the context of
constructingS, this corresponds to settingpij ≈ 1 if the
distance is measured, andpij ≈ 0 otherwise. Thus, the
traditional setting implicitly assumes that thepij are known,
i.e.,pij is closely approximated by a step function ofdij .

Our setting is more general, since it admits the possibil-
ity that the probability for a sensor to detect its distance to
another sensor may smoothly decay. In such a situation, one

needs to be more careful in selectingSij . Specifically, the
pij need to be incorporated intoSij . Note that this automat-
ically happens in the traditional setting because of the as-
sumed form for thepij . The drawback of this more general,
and more realistic setting is that one needs to know thepij .
In practice, this is a reasonable requirement, since prior to
deploying the sensors, one can gather a great deal of techni-
cal information on the sensors. For example, through rigor-
ous repeated experimentation, one can obtain near exact es-
timates on how a signal transmitted by a sensor degrades as
a function of distance. This suffices to derive simple formu-
las for the probabilitypij based on various random models
of the background noise. It turns out that such (unbiased,
bounded variance) estimates of thepij suffice. A detailed
discussion of relaxing the requirement that the exactpij are
known is deferred to a full version of this paper.

We now turn our attention to Assumption 2, which states
that even far away sensors have some arbitrarily small, though
non-zero probability of detecting their distance. As sen-
sor technology improves such an assumption becomes only
a mild restriction. In general,pij is a continuous, non-
linear, decreasing function of the distancedij between the
two nodesi andj. Simple models for the detection proba-
bilities can be derived for RF sensors [16], based on the fact
that the received power decreases inversely proportional to
the square of the distance from the source. Since sensors
are deployed in a bounded region, the detection probability
among a pair of sensors might become very small, however,
it remains bounded away from zero.

One may, however, encounter settings where two sen-
sors have essentially zero probability of detecting their dis-
tance. For example, if the sensors are so far apart that the
signal to noise ratio is too small, then there is no chance
that the sensors will detect their distance. Our results do
not strictly apply to this setting in the global sense, however
they do apply in the local sense. Specifically, in any “lo-
cal” region, it is certainly the case thatpε is bounded away
from zero. Our results imply that in this local region, which
corresponds to a sub-matrix of the full distance matrix, the
distances can be reconstructed accurately. Thus for this par-
ticular local region, the positions of the sensors can be re-
covered in their own local coordinate system. The global
localization problem then becomes equivalent to a problem
of meshing together severalprovably accuratelocal “maps”
into a single global map, where each local map can be in its
own coordinate system.

7. EVALUATION

We evaluate the trends of the reconstruction algorithm on
two main types of deployment, uniform and corridor based.
We assume that each node detects nodes that are within a
radius ofR = 0.165 with probability one; if two nodes are
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Fig. 1. Example corridor shaped scenario

at distance more than0.165 the probability that they detect
each other ispε = 1/100. Thus we satisfy Assumption 2,
while at the same time the connectivity of the sensor net-
work remains essentially the same.
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Fig. 2. Uniform Deployment w/o noise

In the uniform scenarios nodes are randomly scattered
in a 1 × 1 square field following a uniform distribution. In
the corridor shaped scenarios, nodes are scattered on a1×1
square using the same uniform distribution. Corridors are
formed by creating two rectangular gaps inside the square
field as shown in Fig 1. For each scenario, we evaluate the
reconstruction trend for network sizes ranging from 100 to
500 nodes with 10 scenarios for each size. The average con-
nectivity ranges from (roughly) 5 to (roughly) 42. We sub-
sequently plot the average for each size. We evaluate the
quality of our reconstruction forγij = 0, γij = R2 and
γij = shortest path2. The reconstruction trends are shown
in Figs 2, 3, 4, and 5.

Figures 2 and 4 show the trend when measurements are
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Fig. 3. Uniform Deployment with noise

noise free. Figures 3 and 5 display the same results when
distance measurements are corrupted by a noise drawn from
a zero mean uniform distribution that is63% of the actual
measurement. Clearly, the plots verify the main result of
our work: the accuracy of the localization drops inversely
proportional to the square root of the number of nodes in
the sensor network. The similarity between the theoreti-
cal error bound curve and the curves for the casesγij = 0
andγij = R2 is indeed striking. As predicted by equation
(7), noise does not significantly affect the distance matrix
reconstruction error, since the variance of the noise (σ2

ε ) is
dominated by the first term of equation (7).
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8. CONCLUSIONS AND FUTURE WORK

In this paper we described a first step towards provable al-
gorithms for sensor network localization, by demonstrat-
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ing that – under some assumptions – reconstruction of Eu-
clidean distance matrices from partial information is, in prin-
ciple, feasible. Clearly, many important questions remain
open. Our current work focuses on three directions.(i)
We seek to relax the assumptions of Section 3.5.(ii) We
investigate the error bounds of applying theMDSLOCAL-
IZE algorithm on thereconstructeddistance matrixS4. (iii)
We investigate fully distributed, gossip-based protocols for
MDSLOCALIZE andSVD-RECONSTRUCT, with provable
running time and message size guarantees.(iii) We intend to
evaluate these algorithms on a real testbed that is currently
under construction at ENALAB at Yale University.
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Appendix

Proof of Theorem 1: After the first step of the algorithm,
τ (D) is ann × n matrix whose(i, j)-th entry is equal to



the inner product
(
xi − (1/n)1T

nX
)T (

xj − (1/n)1T
nX

)
.

In words, the(i, j)-th entry ofτ (D) is equal to the inner
product of the coordinate vectors corresponding to thei-
th and thej-th sensors, translated in a coordinate system
whose origin is the point(1/n)

∑n
i=1 xi. Notice that

D = 1nzT + z1T
n − 2XXT , (5)

wherez is ann × 1 vector whosei-th element is equal to
‖xi‖2. Then,

τ (D) = −1
2
L(1nzT + z1T

n − 2XXT )L =

=
(
X− (1/n)1n1T

nX
) (

X− (1/n)1n1T
nX

)T

Notice thatτ (D) is a symmetric positive semidefinite ma-
trix of rank at most 2 and its Singular Value Decomposition
(computed at the second step of the algorithm) has the same
left and right singular vectors. Thus,

X̃ = U2Σ2 =
(
X− (1/n)1n1T

nX
)
W, (6)

for some2×2 orthonormal matrixW . Clearly,(1/n)1T
nX =

(1/n)
∑n

i=1 xi is the translation andW is the rotation/reflection.
Thus, up to rotation/reflection and translation, we have re-
covered the original coordinatesX.

Proof of Lemma 2:

E [Sij ] = Pr [εij = ε]

·
(

d2
ij + ε− γij

pij
pij + (1− pij)γij |εij = ε

)

= d2
ij = Dij .

Proof of Lemma 4: The first part of the lemma is an in-
stantiation of Theorem 5 of [2]. For the second part, notice
that

‖(D− S)4‖2F =
4∑

i=1

σ2
i ((D− S)4)

≤ 4σ2
1 ((D− S)4)

= 4 ‖(D− S)4‖22
= 4 ‖D− S‖22
≤ 128σ2

Sn,

and the lemma follows by taking square roots of the two
sides.

Bounding the variance of the entries ofSij (σ2
S):

Var [Sij ] = Var [Dij − Sij ] = E
[
(Dij − Sij)

2
]

= Pr [εij = ε]


pij

(
d2

ij + ε− γij(1− pij)
pij

− d2
ij

)2

+ (1− pij)
(
γij − d2

ij

)2 |εij = ε
)

= Pr [εij = ε]


pij

(
(d2

ij − γij)(1− pij)
pij

+
ε

pij

)2

+ (1− pij)
(
γij − d2

ij

)2 |εij = ε
)

≤ 2(d2
ij − γij)2(1− pij)2

pij
+

2E
[
ε2ij

]

pij

+ (1− pij)
(
γij − d2

ij

)2

=
(d2

ij − γij)2(1− pij)(2− pij)
pij

+
2σ2

ε

pij

≤ 2
pij

(
(d2

ij − γij)2 + σ2
ε

)
.

Notice that the quality of the bound improves ifγij is close
to dij . Overall,

σ2
S ≤ max

i,j

2
pij

(
(d2

ij − γij)2 + σ2
ε

)
. (7)


