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Abstract—Randomized approaches for low rank matrix ap-
proximations have become popular in recent years and often
offer significant advantages over classical algorithms because
of their scalability and numerical robustness on distributed
memory platforms. We present a distributed implementation
of randomized block iterative methods to compute low rank
matrix approximations for dense tera-scale matrices. We are
particularly interested in the behavior of randomized block
iterative methods on matrices with small spectral gaps. Our
distributed implementation is based on four iterative algorithms:
block subspace iteration, the block Lanczos method, the block
Lanczos method with explicit restarts, and the thick-restarted
block Lanczos method. We analyze the scalability and numerical
stability of the four block iterative methods and demonstrate the
performance of these methods for various choices of the spectral
gap. Performance studies demonstrate superior runtimes of the
block Lanczos algorithms over the subspace power iteration
approach on (up to) 16,384 cores of AMOS, Rensselaer’s IBM
Blue Gene/Q supercomputer.

Index Terms—Block Lanczos methods, high performance com-
puting, low-rank approximations, tera-scale matrices.

I. INTRODUCTION

Low-rank matrix approximations are among the most pop-
ular tools in many machine learning [1], statistical [2] and
scientific computing applications [3]. Given the explosive
growth of data in multiple domains, computing the low
rank approximation efficiently and accurately poses significant
challenges for the analysis of such large scale data sets.
There have been a number of approaches to compute the low
rank approximation in classical numerical analysis, including
the truncated singular value decomposition [4], the (column)
pivoted QR factorization, and the rank-revealing QR factoriza-
tion [5]. However, classical direct approaches are quite inef-
ficient when computing low rank approximations of massive
matrices due to the large number of data accesses between
memory hierarchies; such issues make these algorithms pro-
hibitively slow in distributed environments. Another challenge
of such factorization techniques is due to the computational
inefficiency of computing low rank approximations of matrices
whose singular spectra decay slowly. Golub and Kahan [6]
proposed to alleviate the spectral decay problem by computing
powers of the matrix to iteratively form a Krylov subspace and
then obtain a low rank approximation from this subspace.

Randomized algorithms are able to exploit modern archi-
tectures due to their inherent parallelism and often require

fewer passes over the input matrix compared to traditional
approaches. There has been a spate of work to approximately
compute low rank approximation via randomized algorithms
over the past 20 years. Halko, Martinsson and Tropp [7]
gave a comprehensive overview of the historical context of
randomized algorithms arising from several research disci-
plines and also covered related work in the numerical linear
algebra literature. Their work was among the first to propose
a randomized framework for computing low rank matrix ap-
proximations by projecting the matrix onto a low-dimensional
subspace. Then, a low-rank approximation of the projected
matrix is computed using iterative methods. Subsequently
Halko et. al. [8] proposed a randomized iterative method using
a block Lanczos approach. Another significant development
involving randomized methods in a distributed environment
was the advent of communication avoidance algorithms for
SVD [9]. Recent work in block iterative methods for sparse
matrices [10], [11] from real-world applications combined
block Lanczos algorithms and subspace iteration with com-
munication avoiding approaches.
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Fig. 1. Spectral decay characteristics from two application domains: Images
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Recent analyses of randomized methods for low-rank
approximations resulted in both gap-dependent and gap-
independent error bounds [12] for the spectral norm approxi-
mation error; more recently, a per-vector approximation error
was presented in [13]. These bounds are more useful for low-
rank approximations of matrices with “low-rank plus shift”
distributions of their singular values. Such matrices exhibit
a considerable gap between the top singular values and the
unwanted (shift) singular values as shown in Figures 1a and 1c.
Several large-scale datasets from application domains ranging
from image classification and high-particle physics to text
analysis and astrophysics exhibit such spectral characteristics.
However, other application domains (e.g., finite element anal-
ysis of heat transfer equations, circuit simulations, etc.) tend to
generate matrices which have singular value distributions with
small spectral gaps and extremely slow decay (see Figures 1b
and 1d). Low-rank approximations for such matrices using
randomized subspace iteration or block Lanczos methods tend
to converge very slowly. This phenomenon is compounded by
the presence of large singular value clusters. For such matrices,
restarted block Lanczos methods have been designed and are
the methods of choice in practice. However, no gap-dependent
or gap-independent bounds exist for restarted block Lanczos
methods for matrices with small spectral gaps. In our work,
we experimentally demonstrate the efficiency of these restarted
methods over standard block iterative methods.

a) Our contributions: Our goal in this paper is to ad-
dress the challenges of building a framework for randomized,
restarted, block iterative methods for computing low rank
approximations of tera-scale sized matrices in the Blue Gene/Q
environment. More specifically:
• We experimentally evaluate the impact of spectral gaps

on the performance and the scalability of randomized,
restarted block iterative methods. Our work is inspired
by the recent analyses of Musco & Musco [13], Wang
et. al. [14] and Drineas et. al. [15].

• We also wish to understand the impact of block sizes
on the convergence of the various randomized iterative
methods for varying spectral gaps.

• From a systems perspective, our randomized block it-
erative framework serves as a proxy for a truncated
SVD implementation in Elemental [16], a state-of-the-art
software for large-scale matrix computations.

II. BACKGROUND

A. Notation

Let A,B, . . . denote matrices and a,b, . . . denote col-
umn vectors. Given a matrix A ∈ Rm×n, let ‖A‖2 =

maxx6=0
‖Ax‖2
‖x‖2

be its spectral norm and ‖A‖F =√∑m
i=1

∑n
j=1|a2ij | be its Frobenius norm. Let the SVD of

A be A = UΣVT and let Uk and Vk be the top k left
and right singular vectors respectively. Then the best rank-
k approximation to A is given by Ak = UkΣkV

T
k , where

Σk is a diagonal matrix containing the top k singular values
of A. Similarly, let a rank-k approximation to A computed

by a randomized, approximate SVD algorithm be given by
Âk = ÛkΣ̂kV̂

T
k where Ûk, Σ̂k, and V̂k are approximations

to the top k left singular vectors, the top k singular values,
and the top k right singular vectors respectively. Let δ be a
tolerance parameter indicating the error between successive
iterations of randomized iterative block methods 1; when the
error drops below δ the method has converged. Let γ be the
spectral gap difference between the k-th singular value σk
and the k+ 1-st singular value σk+1, given by γ = σk

σk+1
− 1.

Finally, let q be the total number of iterations for the block
iterative methods and let c be the number of restarts for the
restarted block Lanczos methods. Also, let q′ be the number of
iterations before restarting the restarted methods; this number
is equal to q′ = bq/cc. Table I below summarizes the notations
used in this paper; we note that parameters l (the oversampling
parameter for matrix sketching) and p (the block size) will be
discussed in Sections II-C0a and II-C0b respectively.

Notation Description
m× n Dimensions of the input matrix
k Target rank for the low rank approximation
q Number of iterations of iterative methods
c Number of restarts for the restarted block Lanczos meth-

ods
q′ Number of iterations before restart for restarted methods
l Oversampling parameter for random projection
p Block size for block methods
δ Tolerance value guiding convergence
γ Spectral gap

TABLE I
NOTATIONS USED IN THE PAPER.

B. Spectral gap assumptions in prior work

The past 20 years have seen a flurry of activity on random-
ized algorithms for low-rank approximation (see [8], [17], [18]
for reviews). We focus our discussion here on randomized
block iterative methods only. The earliest randomized block
iterative method [19] computes an approximation to the top
k left singular vectors of the input matrix A ∈ Rm×n. These
approximate left singular vectors Ûk satisfy∥∥∥A− ÛkÛ

T
kA
∥∥∥
2
≤ (1 + ε) ‖A−Ak‖2 .

To achieve the above error bound, q = O

(
log(n/ε)
√
γ

)
iterations are needed, where γ is the spectral gap as defined
in the previous section. However, for a number of application
domains involving learning and data analysis, γ � ε and
typically a much looser bound is preferable. Subsequently,
Woodruff [20] presented similar approximation guarantees for
subspace iteration after q = O (log(n/ε)) iterations; this
was the first gap-independent bound for randomized sub-
space iteration with respect to spectral norm error. Musco
& Musco [13] provided the first approximation error bounds
that were gap-independent in terms of the per-vector error

1We use the maximum residual norm error of the top-k approximate
singular vectors defined subsequently as our error metric to compute δ.



using q = O (log n/ε) iterations for subspace iteration and
O (log n/

√
ε) iterations for block Krylov methods, whose the

block size (denoted by p) is equal to the target rank k.
Typically, in distributed environments, larger block sizes are
preferred: larger block sizes limit the costs of I/O operations.
[13] as well as [14] provided tighter gap-dependent bounds for
block Krylov (and corresponding bounds for subspace itera-

tion) after q = O

(
log(n/ε)
√
γp

)
iterations for block sizes p ≥ k,

where γp = σk

σp+1
−1 (an improved spectral gap between the k-

th and the (p+1)-st singular value). Table II gives an overview
for the various gap-dependent and gap-independent bounds
of different randomized block iterative methods. However, as

Block iterative methods Number of
iterations (gap-
dependent)
(γp � ε)

Number of
iterations (gap-
independent)

Subspace iteration Θ

(
log(n/ε)

γp

)
Θ (logn/ε)

Block Lanczos Θ

(
log(n/ε)
√
γp

)
Θ
(
logn/

√
ε
)

Restarted Block Lanczos ? ?

TABLE II
SPECTRAL GAP CONVERGENCE BOUNDS FOR BLOCK ITERATIVE

METHODS.

mentioned previously, both subspace iteration methods as well
as block Krylov methods converge slowly for singular value
distributions that exhibit slow spectral decay or have singular
values that are clustered together [21]. Another limitation
of block Lanczos methods when computing a large number
of target vectors is that the storage and computational costs
increase as the number of iterations increase. Restarted block
Lanczos methods serve as an alternative approach for matrices
with such spectral characteristics. To the best of our knowl-
edge, no gap-dependent or gap-independent analysis exists for
any restarted block Lanczos method in the current literature.
In our work here, we experimentally evaluate the behavior
of restarted block Lanczos methods for matrices with small
spectral gaps and contrast them with vanilla block Lanczos
and subspace iteration methods.

For matrices with slow spectral decay, block iterative meth-
ods converge much faster (at least in practice) than the theoret-
ical bounds mentioned above suggest. Further, as the number
of iterations increases, the number of computations increases
prohibitively. To avoid this, we introduce an early stopping
criterion to check for convergence based on the residual norm
error between two consecutive iterations given by

δ =
{

maxi|∀i∈[1..k]

∥∥∥rj+1
i

∥∥∥
2

}
−
{

maxi|∀i∈[1..k]

∥∥∥rji∥∥∥
2

}
where

‖ri‖2 =

(
‖Av̂i − σ̂iûi‖22 +

∥∥∥AT ûi − σ̂iv̂i
∥∥∥2
2

)1/2

.

In words, the tolerance value δ is a tunable parameter that
controls the tradeoff between the target accuracy and the
number of iterations required.

C. Randomized Block Iterative Methods

We provide a brief overview of the randomized block
iterative methods that approximate the top singular vectors
and singular values of dense matrices; we focus on methods
that we will evaluate in our work.

a) Randomized Subspace Iteration: This is the most
commonly used approach and generates an orthonormal basis
that approximates the top left/right singular vectors of a target
matrix using power iterations [22]. The subspace iteration is
initialized using a (low dimensional) sketch of A given by AΠ
where Π ∈ Rn×l is a suitable random matrix. The subspace
iteration generates the matrix K = (AAT )qAΠ at the end
of q iterations, but intermediate matrices are orthonormalized
at every iteration to improve numerical stability, especially
for ill-conditioned matrices. Once an orthonormal basis K
is generated, a low rank approximation is constructed by
forming the matrix T = KTA, computing the SVD of T,
T = ṼΣ̃W̃

T
and generating the top-k approximate left

singular vectors Û given by Û = KṼk.
b) Randomized Block Lanczos: The randomized block

Lanczos algorithm is a block Krylov subspace approach to
approximate a low-rank matrix decomposition of large-scale
matrices, especially when the singular spectrum of the matrix
has a heavy tail. For nonsymmetric matrices, the block Krylov
subspace is given by

K = [AΠ (AAT )AΠ (AAT )2AΠ . . . (AAT )qAΠ].

where Π ∈ Rn×p is a random projection matrix that computes
a (low-dimensional) sketch of A. Here p is the block size
of the Krylov subspace. Similar to the randomized subspace
iteration approach, the block Krylov subspace K is orthonor-
malized after every iteration to avoid stability issues for ill-
conditioned Krylov blocks. A low rank approximation is then
constructed from the orthonormal basis K similar to subspace
iteration.

c) Randomized Block Lanczos with explicit restart: One
of the problems associated with the randomized block Lanczos
approach is the computational cost involved in orthonormaliz-
ing K and computing the SVD of T, along with the storage
costs of K and T as the number of iterations q increase. Golub,
Luk and Overton [23] proposed an approach to explicitly
restart the block Lanczos iterations by setting the initial matrix
Π to the left singular vectors computed at the end of q′

iterations.
d) Bidiagonal Block Lanczos with thick-restart: A dis-

advantage of the explicit restart is that it discards the residual
basis vectors after each restart. An effective way of restarting
the bidiagonal block Lanczos method was proposed by Wu and
Simon [24] and is called the thick restarted Lanczos algorithm.
This algorithm keeps multiple approximate singular vectors
(the so-called Ritz vectors) at restart. Subsequently, Baglama
and Reichel [25] augmented the Ritz vectors associated with
the largest Ritz values with the Lanczos block computed by the
bidiagonalization algorithm to generate a low rank approxima-
tion. Typically, the number of augmented Ritz vectors is equal



to the target rank k that we seek to approximate. The residual
vectors r̃j

T in the bidiagonalization matrix at the end of each
restart are given by r̃j

T = uj
TAPq′+1 for j = 1 . . . k. These

residual vectors along with the top-k approximate singular
values σ̃i for all i = 1 . . . k form a basis for the subsequent
restart cycle.

III. IMPLEMENTING OUR ALGORITHMS ON THE BLUE
GENE/Q

[MC ,MR] & [MR,MC ]
Distribution [VR, ?] & [?, VR]
formats for ∼ [VC , ?] & [?, VC ]
a 2-D process grid [?, ?]

MC Matrix column
Distribution MR Matrix row
order VC Vector in column major order
within each VR Vector in row major order
grid dimension ? Stored on every process

[X,Y ] Distribute [columns, rows]
with scheme [X, Y]

[MC ,MR] Distribute [columns, rows]
Description equally among processes

VC/VR Distribute over processes in
column/row major wrapping

TABLE III
ELEMENTAL DATA DISTRIBUTION OVERVIEW.

The randomized block iterative methods were implemented
on top of the Elemental library [16]. Given a distributed
environment over p processes, any dense matrix A ∈ Rm×n is
partitioned in Elemental into rectangular grids whose sizes are
r×c in a 2D cyclic distribution, such that p = r×c and both r
and c are O(

√
p). We use the standard distribution [MC ,MR]

listed in Table III for dense input matrices in order to take
advantage of operations that are communication intensive.
[16] has a comprehensive discussion and provides insights of
Elemental notation, describing different data distributions and
the communication costs involved in redistribution.

A number of design issues arise when implementing
randomized, block iterative algorithms for tera-scale dense
matrices. Several recent approaches [10] that advocate
communication-avoidance(CA) are ineffective for partitioning
and distributing dense matrices, as CA-based approaches are
mostly useful when the sparsity structure can be efficiently
exploited. This is not the case for our dense matrices. We
address such design issues for our implementations below.

A. Orthogonalization

The first step in our block iterative algorithms is the choice
of an initial column-orthogonal matrix Π that acts as a
sketching matrix for the input matrix A. There are several
choices for Π: they are typically chosen to be matrices whose
entries are independent random variables (say normal random
variable, or Rademacher random variables, etc.). We refer the
reader to Iyer et. al. [26] for a discussion of such choices
in the context of large-scale implementations of randomized
numerical linear algebra algorithms. In our work here, we
set Π to be a gaussian random matrix, whose entries are

independent Gaussian random variables of zero mean and
variance 1/(n).

Another significant consideration for our implementation
is the choice of orthogonalization algorithms for our block
iterative methods. At each iteration, to avoid numerical insta-
bility and accuracy loss, we orthogonalize the Krylov subspace
that has been formed thus far. We chose to employ the
Householder QR (HouseQR) algorithm without any column
pivoting for such orthogonalizations instead of a Cholesky
based QR (CholQR) factorization. We observed that HouseQR
was more numerically stable than CholQR, especially for ill-
conditioned matrices.

Finally, we also explored one-sided reorthogonalization
(when multiplying by AT ) vs. full reorthogonalization (mul-
tiplying by both A and AT ). We observed in our evaluations
that HouseQR did a reasonable job of orthogonalizing basis
vectors in each iteration and that one-sided reorthogonalization
sufficed for all our evaluations.

IV. EVALUATION

We evaluate our randomized block iterative methods on
dense synthetic matrices with different spectral distributions
and varying spectral gaps. Each synthetic matrix is generated
in the form of A = UΣVT where U and V are random
orthogonal matrices generated by orthogonalizing the columns
of a random Gaussian matrix. The matrix Σ represents the
spectral characteristics of the matrix and its structure is shown
in Figure 2. Let the initial singular value of synthetic matrix

Spectral indexes

S
in

g
u

la
r 

v
a

lu
e

s

k (target rank)

← γ → k+1 (target rank + 1)

p (block size)

s (saddle point)

Fig. 2. Spectral characteristics of matrices with small spectral gaps

be denoted by σ0. The remaining singular values of the matrix
are then divided in two parts:
• the top singular values which exhibit a (uniform) linear

decay up to a saddle point denoted by s; each of the top
singular values is equal to σi = σ0 − iγ for 0 ≤ i ≤ s.

• the bottom singular values which exhibit a nonlinear
decay starting with the saddle point s all the way to
the rank of the matrix which is equal to min{m,n}. We
focus on matrices with m ≥ n and we chose two forms
of nonlinear decays for our evaluations: a power decay
such that σi = i−1 and an exponential decay such that
σi = 10−10i/n for all s < i ≤ n.

We formed a dense synthetic matrix A ∈ R100,000×30,000 and
varied s ∈ [600, 1800, 2400] and γ ∈ [10−2, 10−3, 10−4] in



Spectral
charac-
teristics

Spectral
gap γ =

10−2

Spectral
gap γ =

10−3

Spectral
gap γ =

10−4

Power Spectral decay
σ0 25.0

σi [0 ≤ i ≤ s] σ0 − iγ
σi [s < i ≤ n] i−1

σk 22.0 24.7 24.97
σk+1 21.99 24.699 24.9699
σp 19.0 24.4 24.94
σs 13.0 23.8 24.88
κ(A) .75 ∗ 106

TABLE IV
SPECTRAL DISTRIBUTION CHARACTERISTICS OF Σ WITH POWER DECAY

FOR THE DENSE SYNTHETIC MATRIX A WHERE p = 600 AND s = 1, 200.

Spectral
charac-
teristics

Spectral
gap γ =

10−2

Spectral
gap γ =

10−3

Spectral
gap γ =

10−4

Exponential Spectral decay
σ0 25.0

σi [0 ≤ i ≤ s] σ0 − iγ
σi [s < i ≤ n] 10−10i/n

σk 22.0 24.7 24.97
σk+1 21.99 24.699 24.9699
σp 19.0 24.4 24.94
σs 13.0 23.8 24.88
κ(A) 2.5 ∗ 1011

TABLE V
SPECTRAL DISTRIBUTION CHARACTERISTICS OF Σ WITH EXPONENTIAL

DECAY FOR THE DENSE SYNTHETIC MATRIX A WHERE p = 600 AND
s = 1200.

our evaluations. Further, we set the target rank k to 300,
the tolerance value δ to 10−8 and the oversampling factor
l to be equal to the block size p in our evaluations. We
set the maximum number of iterations q to 50 for both the
subspace iteration and the block Lanczos methods. For the
restarted block Lanczos methods, we set the maximum number
of iterations q to 5 and the maximum number of restarts c to
10. We outline the spectral characteristics of the matrix A for
specific combinations of p and s in Tables IV and V.

We evaluated our randomized block iterative methods using
the following two metrics. First, the maximum residual norm
error difference:

maxi|∀i∈[1..k]

(
‖Av̂i − σ̂iûi‖22 +

∥∥∥AT ûi − σ̂iv̂i
∥∥∥2
2

)1/2

,

(1)
and, second, the Frobenius norm error,

‖A‖2F −
∥∥∥ÛT

kA
∥∥∥2
F

‖A‖2F
. (2)

A. BG/Q Environment Setup

Our distributed implementation of the randomized block
iterative methods run on AMOS 2, the high-performance Blue
Gene/Q supercomputer system at RPI. AMOS supports a
hybrid communication framework that uses the MPI (Message
Passing Interface) [27] standard for distributed communication

2https://secure.cci.rpi.edu/wiki/index.php/Blue_Gene/Q

and multithreading using OpenMP [28] which our distributed
implementation seeks to exploit. We implemented our dis-
tributed block iterative methods within the libskylark 3 frame-
work that uses a LLVM/bgclang 4 build for our evaluations.
As mentioned earlier, Elemental lacks a truncated SVD im-
plementation. Existing truncated SVD implementations based
on ARPACK++ failed to scale for our chosen experimental
setup using the LLVM/bgclang build. Hence, our evaluations
do not measure the performance of our randomized methods
relative to a baseline truncated SVD implementation, since no
such implementation exists for data of our size.

B. The effect of the spectral gap γ

Our goal in this work is to provide a thorough evaluation
of our implementation of block iterative methods (with or
without restarting) and the impact of the spectral gap γ on
these methods. We seek to analyze the impact of γ from three
primary viewpoints: scalability, performance, and numerical
stability. We focus on dense random matrices generated with
power decay spectral characteristics for our scalability and
performance evaluations.

1) Scalability evaluation: A key goal in evaluating our
distributed implementation of the various randomized block
iterative methods is to analyze the effect of the block size
on their convergence in the presence of decreasing spectral
gaps. Figure 3 highlights the convergence behavior in terms
of speedup for our distributed implementations with increasing
values of s (the location of the saddle point) and decreasing
values of the gap γ. As s increases, the number of singular
values that are clustered increases; a decreasing value of γ also
clusters the singular values together. Figures 3a, 3b and 3c
show the impact of block sizes on the convergence of our
block iterative methods with decreasing spectral gaps when
the saddle point is set at s = 600. We see that in each of these
figures, the subspace iteration approach fails to converge for
increasing block sizes until the block size reaches the value
p = 600. All three variants of block Lanczos converge quickly
for all block sizes when s = 600. However, the speedups
steadily decrease for increasing block sizes up to p = 600.
When p > 600, this results in σk > (1 + ε)σp+1 (a larger
gap), which leads to improved convergence. We also observe
that the bidiagonal block Lanczos approach with thick restart
outperforms the other block Lanczos variants at s = 600
regardless of the spectral gap.

As the location of the saddle point s increases, the speedups
for the block methods decrease continuously. The subspace
iteration fails to converge for all block sizes when the saddle
point s exceeds 600. For smaller block sizes, the block
Lanczos methods fail to converge as σk < (1 + ε)σp+1.
This is especially true for the restart-based methods. However,
as the block sizes increase, they satisfy the gap dependent
convergence criteria of [13] (Theorem 13) achieving signif-
icant speedups. Eventually, the restarted methods dominate

3https://xdata-skylark.github.io/libskylark/
4https://trac.alcf.anl.gov/projects/llvm-bgq
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(c) Spectral gap 10−4 with saddle point at 600
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(d) Spectral gap 10−2 with saddle point at 1800
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(e) Spectral gap 10−3 with saddle point at 1800
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(f) Spectral gap 10−4 with saddle point at 1800
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(g) Spectral gap 10−2 with saddle point at 2400
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(h) Spectral gap 10−3 with saddle point at 2400
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Fig. 3. Analysis of runtime (seconds) as a function of the block size p for varying spectral gaps γ and saddle points s for 128 BG/Q nodes.

the standard block Lanczos implementation at larger block
sizes when the saddle point index increases. This can be
observed by comparing the speedups across the different
block Lanczos methods between Figures 3d, 3e, and 3f. The
standard block Lanczos method fails to converge for small
block sizes when the spectral gap is the set to the smallest
value, namely γ = 10−4. Another significant observation is
that the maximum speedup values keep decreasing as the
spectral gap increases. Finally, at s = 2, 400, the vanilla block
Lanczos method initially dominates the restarted methods for
smaller block sizes. However, as the block size increases, the
restarted methods outperform the block Lanczos method.

To summarize: (i) the number of singular values in a cluster
increases for as the location of the saddle point increasing;
decreasing spectral gaps also cluster the singular values to-
gether; (ii) the subspace iteration method fails to converge for
all block sizes p where the index of the saddle point s exceeds
p; (iii) the block Lanczos methods fail to converge for small
block sizes as s increases since σk < (1 + ε)σp+1. (iv) the
bidiagonal block Lanczos with thick-restart converges faster
than the other block Lanczos methods for small spectral gaps,
especially when the block size increases; and (v) the maximum
speedup achieved for all block Lanczos approaches decreases
continuously for decreasing spectral gaps.

2) Performance evaluation: We evaluated the strong and
weak scaling performance of our distributed block iterative
implementations as a function of the (increasing) number of
Blue Gene/Q (BG/Q) nodes. We chose to fix the block size p
to 600 and we set the index of the saddle point s to 1800 in
the evaluations of this section. We chose A ∈ R100,000×30,000

as our base matrix for the strong scaling experiments across
all BG/Q nodes. For our weak scaling experiments, we chose
A ∈ R100,000×30,000 as the base matrix when 16 nodes were
used and we doubled the number of rows as we increased the
number of BG/Q nodes.

a) Strong scaling: Figures 4a, 4b, and 4c demonstrate
the strong scaling performance for decreasing spectral gap
values. In all scenarios, the subspace iteration method performs
significantly worse than the block Lanczos implementations.
All the block Lanczos variants perform almost equally, with
the bidiagonal block Lanzos with thick-restart demonstrating
the best performance. This is because the restarted Lanczos
variants converge even before the first restart occurs (note that
the restart occurs after every 5 restart blocks i.e. after every
5 iterations). Secondly, the strong scaling performance of the
block Lanczos variants suffers when spectral gaps decrease.

b) Weak scaling: The weak scaling performance in terms
of runtime is shown in Figures 5a, 5b, and 5c for decreasing
spectral gaps.The running time for all randomized block iter-
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Fig. 4. Strong scaling in terms of runtime (seconds) as a function of increasing Blue Gene/Q nodes for different spectral gap values
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Fig. 5. Weak scaling in terms of runtime (seconds) as a function of increasing Blue Gene/Q nodes for different spectral gap values

ative methods, including subspace iteration, is fairly constant
for increasing matrix sizes as the number of BG/Q nodes
increases proportionately. The subspace iteration method does
not converge for all spectral gaps when the saddle point index
s is set to 1, 800 and hence exhibits significantly larger running
times when compared to the block Lanczos variants.

3) Numerical stability evaluation: We evaluated our ran-
domized block iterative methods to demonstrate the impact of
spectral gaps on convergence as captured by the per vector
error (eqn. 1) and the Frobenius norm error (eqn. 2). As men-
tioned earlier in Section IV-B2, we chose block size p = 600
and set the index of the saddle point s to 1800 to generate
the random matrix A for our numerical stability evaluations.
We evaluated numerical stability for A ∈ R100,000×30,000,
generated using power as well as exponential power decays
for singular values below the saddle point. Figures 6a, 6b,
and 6c show that the block Lanczos approaches converge
quickly as compared to the subspace iteration approach when
the spectrum of the matrix decays following a power law.
The subspace iteration method fails to converge for spectral
gap values equal to 10−3 and 10−4. Also, the restarted block
Lanczos methods converge somewhat faster than the vanilla
block Lanczos method for γ = 10−4. This highlights the
efficiency of the restarted block Lanczos methods in the
presence of large clusters of singular values with small spectral
gaps. Similarly, Figures 7a, 7b, and 7c show rapid convergence
of the block Lanczos approaches as compared to the subspace
iteration approaches for the exponential spectral decay.

V. CONCLUSIONS AND FUTURE WORK

In this paper we implemented and evaluated highly scalable
randomized block iterative methods that approximate, in a

scalable manner, low rank approximations in the presence of
clustered spectra with very small gaps. The methods are based
on the block Lanczos algorithm and they outperform the block
subspace iteration implementation in terms of running time
performance while exhibiting high degrees of accuracy.

A topic of interest for future research would be to establish
gap-independent bounds for approximation errors of restarted
block Lanczos methods. Another research topic would be
to explore the performance of our block methods on other
multicore architectures, based on, say, GPUs.

ACKNOWLEDGMENTS

We would like to thank Jack Poulson for numerous helpful
discussions and his constant and timely support with the
Elemental library.

REFERENCES

[1] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” JOURNAL OF
THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, vol. 41,
no. 6, pp. 391–407, 1990.

[2] Y. Saad, Numerical Methods for Large Eigenvalue Problems, ser.
Algorithms and architectures for advanced scientific computing.
Manchester University Press, 1992. [Online]. Available: https://books.
google.com/books?id=FAkNAQAAIAAJ

[3] H. Cheng, Z. Gimbutas, P. G. Martinsson, and V. Rokhlin, “On
the compression of low rank matrices,” SIAM J. Sci. Comput.,
vol. 26, no. 4, pp. 1389–1404, apr 2005. [Online]. Available:
http://dx.doi.org/10.1137/030602678

[4] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.).
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[5] T. F. Chan and P. C. Hansen, “Some applications of the rank
revealing qr factorization,” SIAM Journal on Scientific and Statistical
Computing, vol. 13, no. 3, pp. 727–741, 1992. [Online]. Available:
http://dx.doi.org/10.1137/0913043

[6] G. Golub and W. Kahan, “Calculating the singular values and
pseudo-inverse of a matrix,” Journal of the Society for Industrial and
Applied Mathematics Series B Numerical Analysis, vol. 2, no. 2, pp.
205–224, 1965. [Online]. Available: http://dx.doi.org/10.1137/0702016

https://books.google.com/books?id=FAkNAQAAIAAJ
https://books.google.com/books?id=FAkNAQAAIAAJ
http://dx.doi.org/10.1137/030602678
http://dx.doi.org/10.1137/0913043
http://dx.doi.org/10.1137/0702016


Number of Iterations
0 5 10 15 20 25 30 35 40 45 50

E
p

s
il
o

n
 e

rr
o

r

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Subspace Iteration per-vector error

Subspace Iteration Frobenius error

Block Lanczos per-vector error

Block Lanczos Frobenius error

Restarted Block Lanczos per-vector error

Restarted Block Lanczos Frobenius error

Bidiagonal Block Lanczos with Thick Restart per-vector error

Bidiagonal Block Lanczos with Thick Restart Frobenius error

(a) Spectral gap 10−2

Number of Iterations
0 5 10 15 20 25 30 35 40 45 50

E
p

s
il
o

n
 e

rr
o

r

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Subspace Iteration per-vector error

Subspace Iteration Frobenius error

Block Lanczos per-vector error

Block Lanczos Frobenius error

Restarted Block Lanczos per-vector error

Restarted Block Lanczos Frobenius error

Bidiagonal Block Lanczos with Thick Restart per-vector error

Bidiagonal Block Lanczos with Thick Restart Frobenius error

(b) Spectral gap 10−3

Number of Iterations
0 5 10 15 20 25 30 35 40 45 50

E
p

s
il
o

n
 e

rr
o

r

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Subspace Iteration per-vector error

Subspace Iteration Frobenius error

Block Lanczos per-vector error

Block Lanczos Frobenius error

Restarted Block Lanczos per-vector error

Restarted Block Lanczos Frobenius error

Bidiagonal Block Lanczos with Thick Restart per-vector error

Bidiagonal Block Lanczos with Thick Restart Frobenius error

(c) Spectral gap 10−4
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