
Randomized Sketching for Large-Scale Sparse
Ridge Regression Problems
Chander Iyer∗, Christopher Carothers∗, and Petros Drineas†

∗Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
†Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA

Abstract—We present a fast randomized ridge regression
solver for sparse overdetermined matrices in distributed-memory
platforms. Our solver is based on the Blendenpik algorithm,
but employs sparse random projection schemes to construct a
sketch of the input matrix. These sparse random projection
sketching schemes, and in particular the use of the Randomized
Sparsity-Preserving Transform, enable our algorithm to scale
the distributed memory vanilla implementation of Blendenpik
and provide up to ×13 speedup over a state-of-the-art parallel
Cholesky-like sparse-direct solver.

Index Terms—Linear algebra, high performance computing,
least-squares approximation, sparse matrices

I. INTRODUCTION

Least-squares regression is one of the most widely used
routines in statistical data analysis for a variety of application
domains. The least-squares regression problem is defined as
follows: given a matrix A ∈ Rm×n and a vector b ∈ Rm, we
seek to compute

x∗ = arg min
x∈Rn

‖Ax− b‖22 . (1)

We are particularly interested in regularized least-squares
regression or ridge regression problems, where a loss function,
commonly referred to as regularization, is imposed in order to
deal with highly ill-conditioned input matrices A. This stan-
dard setting is defined as follows: given a matrix A ∈ Rm×n,
a vector b ∈ Rm and a regularization parameter λ, we seek
to compute the minimum length solution

x∗ = arg min
x∈Rn

‖Ax− b‖22 + λ ‖x‖22 . (2)

Equivalently for matrices A ∈ Rm×n that are overdetermined
(m > n), this can be reduced to the following problem:

x∗ = arg min
x∈Rn

∥∥∥∥∥
(
A
λI

)
x−

(
b
0

)∥∥∥∥∥
2

2

. (3)

Several direct and iterative algorithms have been proposed to
solve ridge regression efficiently for sparse and large overde-
termined systems [1], returning solutions whose accuracy
is close to machine precision. While current state-of-the-art
approaches solve the ridge regression problem in the dual
space [2] or use kernelized ridge regression [3], scalable
implementations still run in O(mn2) time (assuming m > n).
The focus of our work is the design and implementation of a
scalable ridge regression solver for sparse matrices.

This work is partially supported by NSF IIS-1302231.

Recent years have witnessed an explosion of research on so-
called Randomized Numerical Linear Algebra (or RandNLA
for short) algorithms, which leverage the power of randomiza-
tion in order to perform standard matrix computations. One
of the core problems that have been extensively researched
in this emerging field is the least-squares regression problem
of eqn. (1). Sarlos [4] and Drineas et al. [5] introduced the
first randomized algorithms for this problem. These algorithms
are based on the application of the sub-sampled Randomized
Hadamard Transform(SRHT) to columns of the input matrix
in order to create a least-squares problem of smaller size
that can be then solved exactly and whose solution provably
approximates the solution of the original problem with very
high probability. This was followed by the work of Rokhlin
and Tygert [6], who used a subsampled Randomized Fourier
Transform(SRFT) to form a preconditioner and then used a
standard iterative solver to solve the preconditioned problem.
At the same time, Avron et al. [7] introduced Blendenpik, an
algorithm and a software package which was the first practical
implementation of a RandNLA dense least-squares solver
that consistently and comprehensively outperformed state-of-
the-art implementations of the traditional QR-based O(mn2)
algorithms. Since then, there has been extensive research on
RandNLA algorithms for regression problems; see Yang et
al. [8] for a recent survey.

One of the earliest approaches to solve the ridge regression
problem of eqn. (2) was proposed by [9] using SRHT to accel-
erate the computation of the kernel matrix AAT in the dual
space. Their algorithm runs in O(mn log(m)/

√
ε+m3) time

for underdetermined systems(m� n). This was subsequently
improved by [10] to run in O(nnz(A) + m3/ε2) time by
incorporating a combination of a sparse embedding transform
proposed by Clarkson and Woodruff [11] and the SRHT to
compute a sketch of the matrix, which is subsequently used
to solve the primal problem of eqn. 2. However, both of
these approaches focus on the single-processor setting; in fact,
most research on randomized ridge regression algorithms has
focused on the single processor setting, with an important ex-
ception. Meng et al. [12] introduced LSRN, a distributed mem-
ory algorithm for regularized least-squares problems based on
random Gaussian projections. While the algorithm is still an
O(mn2) algorithm, the benefits of randomization are apparent
with respect to both constants in the asymptotic analysis, as
well as its much improved efficiency on parallel environments.

We explore the behavior of Blendenpik-type algorithms in
a distributed memory setting for sparse matrices in this work.



We show that our implementation of the sparse embedding
transform proposed by Clarkson and Woodruff (henceforth
referred to as Randomized Sparsity-Preserving Transform or
RSPT for short) and a combination of RSPT and the Random-
ized Discrete Cosine Transform (RDCT) lead to speedups that
are not only faster than state-of-the-art distributed baseline
solvers but are also able to scale to much larger matrix
dimensions, while providing near-optimal solutions. Our im-
plementation and experiments were run on AMOS1, the high-
performance Blue Gene/Q supercomputer system at Rensse-
laer. AMOS has five racks, 5,120 nodes (81,920 cores), and
81,920 GB of main memory, a peak performance of one
PetaFLOP (1015 floating point operations per second), and a
5-D torus network with 2 GB/sec of bandwidth per link and
512 GB/sec to 1 TB/sec of bisection network bandwidth per
rack (depending on the torus network configuration). Due to
runtime constraints imposed by the scheduling system for each
partition of AMOS, we limited our experiments to partitions
containing 128 nodes (2048 cores). The Blue Gene/Q architec-
ture supports a hybrid communication framework that uses the
MPI (Message Passing Interface) [13] standard for distributed
communication and multithreading using OpenMP [14].

Our main contributions in this paper are2: (i) the imple-
mentation of the sparse embedding RSPT and a combina-
tion of RSPT and a batchwise implementation scheme of
the RDCT in the context of the Blendenpik algorithm on
distributed-memory platforms; and (ii) a detailed evaluation of
the sparse randomized sketching transforms in the context of
the Blendenpik algorithm and their parameters on the BG/Q,
using up to 2,048 cores.

Notation. Let A,B, . . . denote matrices and let x,y, z, . . .
denote column vectors. Given a vector x ∈ Rm, let ‖x‖22 =∑m
i=1 x

2
i be (the square of) its Euclidean norm; given a matrix

A ∈ Rm×n, let ‖A‖2F =
∑m,n
i,j=1 A

2
ij be (the square of) its

Frobenius norm. Let σ1 ≥ σ1 ≥ σ2 · · · ≥ σr > 0 be the
nonzero singular values of A, where r = rank(A) is the
rank of the matrix A. Then, the condition number of A is
equal to κ(A) = σ1/σr.

II. THE BLENDENPIK ALGORITHM FOR DENSE
OVERDETERMINED SYSTEMS

Blendenpik (see Algorithm 1) is a framework for least-squares
solver for overdetermined, full column rank least-squares
problems, which could be sparse or dense, that computes an
approximate solution to the problem of eqn. (3), with a high
degree of precision. Given a tall-and-thin matrix A ∈ Rm×n,
a column vector b ∈ Rm, and a regularizer λ, Blendenpik
returns an approximate solution to eqn. (3) using the aug-

mented input matrix A′ =

(
A
λI

)
and the augmented vector

b′ =

(
b
0

)
by executing the following three steps:

1https://secure.cci.rpi.edu/wiki/index.php/Blue_Gene/Q
2The full source code of our batchwise Blendenpik implementa-

tion is available for download at https://github.com/cjiyer/libskylark/tree/
batchwiseblendenpik.

1) A preconditioner is constructed by applying a randomized
unitary (or approximately unitary) transform F to the
augmented matrix A′ and then sampling a small number
of rows from the transformed matrix FA′ to form the
matrix Ms.

2) A QR factorization of the sampled matrix Ms is com-
puted, returning an orthogonal matrix Qs and an upper
triangular matrix Rs. The latter matrix Rs is then used
as a preconditioner for the augmented matrix A′.

3) LSQR (an iterative method for solving least-squares prob-
lems) is then used to solve a least-squares problem using
the preconditioned matrix to compute an approximate
solution x̂ to the original problem of eqn. (3).

The algorithm uses a simple approach to estimate the con-
dition number of the matrix Rs. This procedure is described
in [7] and amounts to computing the product ‖Rs‖1

∥∥R−1s ∥∥1,
where ‖X‖1 is the 1-norm of the matrix X. If that estimate of
the condition number is too small (and thus its inverse is too
large), the algorithm tries to construct a new preconditioner. If
no good preconditioner is constructed after three repetitions,
the algorithm employs a standard solver to exactly compute
the solution. We will use εmachine to denote the target machine
precision, which in our setting is equal to 2× 10−15.

Algorithm 1 The Blendenpik algorithm [7].

1: Input: A′ ∈ R(m+n)×n matrix, (m� n), rank
(
A′
)
=

n, b′ ∈ Rm+n, random transform matrix F ∈
R(m+n)×(m+n), regularization parameter λ > 0,
oversampling factor γ ≥ 1 (γn� m+ n).

2: Output: approximate solution x̂ to the problem of
eqn. (3).

3: while TRUE do
4: Let S ∈ R(m+n)×(m+n) be a random diagonal matrix:

Sii =

{
1, with probability γn

m+n

0, otherwise

5:
6: Ms = SFA′.
7: Compute the QR factorization of Ms: Ms = QsRs.
8: Let κ̂ be an estimate of the condition number of Rs.
9: if κ̂−1 > 5εmachine then

10: y = minz
∥∥A′R−1s z− b′

∥∥
2
.

11: Solve Rsx̂ = y and return x̂.
12: else if more than three iterations have been performed

then
13: Solve using the baseline least-squares solver and

return.
14: end if
15: end while

The most important stage of the Blendenpik algorithm is the
application of the randomized transform F; we will discuss
various choices for F in Section II-A. It is worth emphasizing
that computing Ms as the product SFA′ in Algorithm 1 is
for illustration purposes only. We will see in Section II-A
that there are more efficient ways for computing Ms than
simple matrix-matrix multiplication. The oversampling factor

https://github.com/cjiyer/libskylark/tree/batchwiseblendenpik
https://github.com/cjiyer/libskylark/tree/batchwiseblendenpik


γ guarantees that as the number of rows of Ms will be
(in expectation and with high probability) close to γn. As
a result, the computation of the QR decomposition of Ms is
computationally efficient, since its running time only depends
on the “small” dimension n and not on the “large” dimension
m. The upper triangular matrix Rs that is returned by the
QR decomposition of Ms is then used as a preconditioner
for the original problem. However, if Rs is ill-conditioned,
then we repeat the generation of the randomized transform F
in the hope of getting a better-conditioned matrix Rs. If this
procedure fails three times, then an exact solver is employed
to solve the regularized least-squares problem. We conclude
this discussion by stating that while setting γ to a smaller
value can improve the running time of the QR decomposition
of Ms, the quality of the preconditioner typically diminishes
as γ decreases.

We now briefly discuss the LSQR method that is employed
by Blendenpik in order to solve the preconditioned least-
squares problem. LSQR [15] is an iterative, Krylov-subspace
solver that works as follows: given the current iterate xj and
the corresponding residual error rj = b′ −A′xj , LSQR uses
the following criterion to test for convergence:∥∥∥(A′R−1s )T rj

∥∥∥
2∥∥A′R−1s ∥∥F ‖rj‖2 ≤ ρ,

where ρ is a tolerance value that determines the backward
error at which the iterative solver terminates. This guarantees
a backward stable solution to y = minz

∥∥A′R−1s z− b′
∥∥
2
.

The residual error at convergence is used to compute the final
backward error estimate. The runtime of LSQR is affected by
how well-conditioned the preconditioned system A′R−1s is,
which in turn is determined by the oversampling factor γ.

A. The Randomized Transform F

Some of the earliest choices for the randomized transform
F have been dense random matrices whose entries are inde-
pendent random variables, chosen from various well-known
distributions. For example, the simplest choice is to set the
entries of F to be independent Gaussian random variables of
zero mean and variance 1/(γn). A second straight-forward
choice is to set the entries of F to be +1/

√
γn or −1/√γn

with probability 1/2, independently for each entry.
One of the most efficient and fastest-known dense random

transform matrix F was proposed in the original Blendenpik
paper [7]. The construction of F is the product of a random
diagonal matrix and a fixed unitary transformation, namely
the Discrete Cosine Transform (DCT). In this case, let D be
a random diagonal matrix whose diagonal entries are set to
+1 or -1 with probability 1/2. Then, let C be the matrix
of the Discrete Cosine Transform (see [7] for details) and
construct F = DC. We will refer to this construction of F
as the Randomized DCT (RDCT). We note that, in this case,
the computation of FA′ is more efficient that matrix-matrix
multiplication. Indeed, one can apply the DCT matrix C on
the columns of A′ in a column-wise manner much faster than
matrix-vector multiplication, by using the properties of the
Discrete Cosine Transform. Then, applying the matrices S and
D on the resulting matrix CA′ is trivial, since they are both

diagonal matrices. Further, the DCT “smoothes out” localized
information of A′ after which applying S on the transformed
matrix guarantees a sampled matrix with high probability.

However, dense randomized unitary transforms when ap-
plied to the sparse augmented matrix A′ are quite inefficient
since they do not take advantage of the matrix sparsity
structure. A much better choice for the randomized transform
F in the case of sparse matrices A′ was proposed in the
ground-breaking work of Clarkson and Woodruff [11]. We
refer the reader to [11] for a detailed description of their
construction; here we simply note that applying the resulting
matrix SF on the augmented matrix A′ takes time proportional
to the sparsity of the augmented matrix A′. We will refer to
this construction of F as a Randomized Sparsity-Preserving
Transform (RSPT).

Finally, we can set the randomized transform F to be
a combination of the RSPT followed by a Randomized
DCT (RDCT). Theoretically, such a combination leverages
the sparsity-preserving properties of RSPT as well as the
“smoothening” properties of the RDCT. However, as we shall
observe in our evaluations, RSPT seems to construct a slightly
better preconditioner as compared to the combination of RSPT
and RDCT in the majority of our experiments.

III. IMPLEMENTING OUR ALGORITHM ON THE BLUE
GENE/Q

[MC ,MR] & [MR,MC ]
Distribution [VR, ?] & [?, VR]
formats for ∼ [VC , ?] & [?, VC ]
a 2-D process grid [?, ?]

MC Matrix column
Distribution MR Matrix row
order VC Vector in column major order
within each VR Vector in row major order
grid dimension ? Stored on every process

[X,Y ] Distribute [columns, rows]
with scheme [X, Y]

[MC ,MR] Distribute [columns, rows]
Description equally among processes

VC/VR Distribute over processes in
column/row major wrapping

TABLE I
ELEMENTAL DATA DISTRIBUTION OVERVIEW.

The Blendenpik algorithm is implemented on top of the
Elemental library [16]. Given a distributed environment over
p processes, any dense matrix A′ ∈ Rm×n is partitioned in
Elemental into rectangular grids of sizes r× c in a 2D cyclic
distribution, such that p = r× c and both r and c are O(

√
p).

Elemental allows a matrix to be distributed in more than one
way. An overview of various data distributions available in
Elemental is given in Table I (not exhaustive). We use the
standard distribution [MC ,MR] listed in Table I for dense
matrices, in order to exploit operations that are communication
intensive. For column-wise and row-wise vector operations
that require local computations to be performed, we use a
[?, VC/VR] or a [VC/VR, ?] distribution that assigns each
column or row vector to a single process. In some cases, we
require a matrix or a column vector to be present across all



processes, which is done using the [?, ?] format. The notations
used henceforth are adapted from Elemental for convenience.
[16] gives a comprehensive insight on these notations, describ-
ing different data distributions and the communication costs
involved in redistribution.

The only construction of F that merits additional discussion
is the Randomized Discrete Cosine Transform. In order to
apply the RDCT on a matrix A′ in a column-wise man-
ner, we used the DCT implementation of FFTW [17], a
highly optimized implementation of the Fast Fourier Trans-
form (FFT), tuned for underlying architectures that work on
multidimensional data. For our purposes, we used the 1-D
versions of DCT that operate on Elemental’s data distributions.
In this case, the [MC ,MR] Elemental distribution is not a
suitable format in order to apply FFTW’s DCT, since the
data distributed across multiple nodes in a column-wise as
well as in a row-wise manner are locally non-contiguous.
However, the implementation in FFTW expects contiguously
distributed data across the relevant dimensions. We resolve
this problem by redistributing the data so that all elements
of a column or row vector are owned locally by a process,
using either the [VR/VC , ∗] or the [∗, VR/VC ] distribution of
Table I. In order to apply the DCT, all elements of a column
must be stored locally, i.e., using the [∗, VR/VC ] distribution.
[18] gives a detailed overview on this redistribution procedure
using a batchwise unitary transformation mechanism that is
particularly suitable for dense matrices of terabyte sizes and
above.

Elemental also supports a 1D distribution for sparse ma-
trices where each process holds a fixed number of rows
distributed roughly equally over p processes. We use this
data distribution format for applying the Randomized Sparsity
Preserving Transform (RSPT) of [11] with one caveat. Similar
to the FFTW’s DCT module, the RSPT is applied to columns
of the sparse augmented matrix A′ and hence all elements of
a column must be present locally. We redistribute the sparse
matrix using an MPI_AlltoAll call and then apply the
RSPT to generate the sampled matrix Ms.

The sampled matrix Ms generates the preconditioner R−1s
obtained using Elemental’s QR solver. Finally, the iterative
solution is obtained using an LSQR implementation. The pa-
rameters for LSQR, the tolerance value ρ and the iteration limit
Niter can be suitably tuned depending upon the magnitude of
accuracy needed and the speedup desired from our Blendenpik
solver. Usually a tolerance value ρ closer to εmachine is chosen
for a better backward stable solution.

IV. EVALUATION

We relied on the UFL Sparse matrix collection [19] to obtain
matrices of different condition numbers for our evaluations.
We chose to work with the following matrices: (i) the ns3Da
matrix3; (ii) the mesh deform matrix4; (iii) the memplus
matrix5; (iv) the sls matrix6; (v) the rma10 matrix7; and (vi) the

3http://www.cise.ufl.edu/research/sparse/matrices/FEMLAB/ns3Da.html
4http://www.cise.ufl.edu/research/sparse/matrices/Yoshiyasu/mesh_deform.html
5http://www.cise.ufl.edu/research/sparse/matrices/Hamm/memplus.html
6http://www.cise.ufl.edu/research/sparse/matrices/Bates/sls.html
7https://www.cise.ufl.edu/research/sparse/matrices/Bova/rma10.html

c-41 matrix8.
We replicated and vertically concatenated each of the sparse

matrices (with different random noise added at each replication
step) in order to create tall-and-thin sparse matrices Arep.
Table II shows the specific matrices that were used in our
evaluations: starting with the aforementioned matrices, we
slightly densified the replicated matrices by adding a random
Gaussian noise matrix E ∼ N (0, 1) to the replicated matrix
Arep. The number of non-zero entries in the slightly densified
replicated matrix Arep + E is equal to the number of non-
zero entries in Arep plus the number of non-zero entries in
E, which is upper bounded by the product of the dimensions
of E divided by 1,000.

Each matrix in Table II is suffixed using the number of
replicates (essentially the number of vertical concatenations
that we applied to the “base” sparse matrix in order to created
a tall-and-thin matrix). For example, to construct the matrix
ns3Da−8, we started with the ns3Da matrix and created eight
copies; then, we vertically concatenated these eight copies to
get a tall-and-thin matrix; finally, we added the random normal
noise matrix E as described above.

Matrix Name # of rows # of columns # of entries
(Millions)

Condition
number

ns3Da−8 163, 312 20, 414 16.77 7.07E + 002
mesh deform−4 936, 092 9, 393 12.2 1.17E + 003

memplus−32 568, 256 17, 758 13.26 1.29E + 005
sls−1 1, 748, 122 62, 729 116.462 8.67E + 007

rma10−8 374, 680 46, 835 36.18 7.98E + 010
c-41−32 312, 608 9, 769 6.3 4.78E + 012

TABLE II
MATRICES USED IN OUR EVALUATIONS.

We now describe our evaluation metrics. Recall that A′ ∈
R(m+n)×n is the augmented matrix and b′ ∈ Rm+n is the
augmented target vector. Let x̂ be the approximate solution
returned by Algorithm 1 and let x∗ be the optimal solution
to the problem of eqn. (3). Let t̂run be the running time of
Algorithm 1 and let t∗run be the running time of the baseline
Elemental sparse least-squares solver. Then, our first accuracy
metric is the relative error of the approximate solution x̂, given
by the following formula:∥∥A′x̂−A′x∗

∥∥
2
/
∥∥A′x∗∥∥

2
. (4)

We also compute the backward error of the approximate
solution as follows: ∥∥∥A′T (b′ −A′x̂

)∥∥∥
2
. (5)

Finally, the speedup of Algorithm 1 is defined as

t∗run/t̂run. (6)

We tune AMOS to evaluate the Blendenpik implementation
against optimum baseline performance. The choice of 1 MPI
process and 32 OpenMP threads per Blue Gene/Q node was
the standard configuration that we selected for our evaluations
that gave maximum performance for the baseline Elemental
sparse solver on AMOS. We used the bgclang/LLVM run-
time environment for our evaluations.

8http://www.cise.ufl.edu/research/sparse/matrices/Schenk_IBMNA/c-
41.html



A. Baseline

The baseline Elemental sparse solver solves the regularized
least squares problem for overdetermined matrices given by
eqn. (3) by applying a priori regularization to symmetric quasi-
semidefinite augmented systems. The augmented systems are
of special interest since they reduce to quasi-definite matrices
which can then be solved by a Cholesky-based factoriza-
tion approach, like the LDL decomposition [20]. For ill-
conditioned matrices, the baseline solver provides two tuning
parameters:

1) The a priori regularizer α. An α value close to σr, where
r = rank(A) is recommended. We typically set α =
εmachine.

2) A temporary regularizer γ0 set to ε1/4machine.
The work of [16] gives comprehensive details on the afore-
mentioned reduction to quasi-definite forms and the distributed
Cholesky-based sparse solvers.

B. The effect of the regularization λ

Our objective in this paper is to provide a thorough eval-
uation of Blendenpik-type solvers for sparse ridge-regression
problems. We specifically seek to analyze the impact of the
regularization parameter λ from three primary viewpoints:
scalability, performance, and accuracy, with respect to the
evaluation metrics given in eqns. (4), (5) and (6). We aim
to understand the performance of the sparse randomized
transforms F described in Section II-A on Blendenpik-type
solvers for the problem of eqn. 3. We also seek to understand
the impact of our choice for F in terms of strong scaling
on Blendenpik for the optimal regularizer. Finally, we will
evaluate the impact of the oversampling factor γ on the
Blendenpik algorithm using the aforementioned metrics. At
this point, we set γ to four for evaluating our randomized
transforms and we will validate this choice for γ later in
Section IV-D. All our evaluations were run on 128 BG/Q nodes
on AMOS.

1) Scalability Evaluation: To demonstrate that the Blenden-
pik algorithm is a scalable solver for sparse overdetermined
least-squares systems, we analyze the speedup of eqn. (6)
for the RSPT, and for a combination of the RSPT followed
by the RDCT (henceforth referred to as RSPT-RDCT), over
the baseline Elemental solver for various choices of the
regularization parameter λ. Figures 1 and 2 show the impact
of regularization on both well-conditioned and ill-conditioned
matrices for both sparse transforms. It is worth noting that the
baseline solver fails to converge for the largest matrix sls-1.

As seen in figure 1, both RSPT and RSPT-RDCT show ex-
cellent speedups for the well-conditioned matrices ns3Da-8,
mesh_deform-4, and memplus-32. Further, as the regu-
larization parameter λ increases, the speedup increases until
it peaks for a certain choice of the regularization parameter.
Then it starts dropping, indicating the existence of a point of
diminishing returns. However, the value of the regularization
parameter where maximum speedups occur is different for
our various input matrices and seems to correlate with their
condition numbers. Indeed, the regularization value where
maximum speedup is achieved increases as the condition
numbers of the input matrices increase. This is because as

the matrix gets more ill-conditioned, the preconditioner con-
structed is much less well-conditioned, and hence the time
spent by the LSQR solver to converge also increases. As
the regularization value increases for the ill-conditioned ma-
trix, the preconditioner constructed is much better-conditioned
leading to a faster convergence of the LSQR stage.

Another key observation is that the speedup achieved by
RSPT is always better than the speedup achieved by the
RSPT-RDCT transform. There are two reasons underlying
the slower speedup of the RSPT-RDCT transform. First, the
Blendenpik algorithm spends a reasonable amount of time
to compute the RDCT transform. Second, the RSPT always
produces a marginally better preconditioner than the RSPT-
RDCT transform, thus leading to faster convergence at the
LSQR stage. We emphasize here that the sketch size of the
RDCT is the same as that of the RSPT.

Regularization
10

-12
10

-11
10

-10
10

-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2

S
p
e
e
d
u
p

0

1

2

3

4

5

6

7

8

9

10

ns3Da-RSPT

ns3Da-RSPT-RDCT

mesh-RSPT

mesh-RSPT-RDCT

memplus-RSPT

memplus-RSPT-RDCT

Fig. 1. Speedup of Blendenpik solver over the parallel baseline sparse solver
for well-conditioned sparse matrices as a function of increasing regularization
values.

Regularization
10

-12
10

-11
10

-10
10

-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2

S
p
e
e
d
u
p

0

2

4

6

8

10

12

14

rma10-RSPT

rma10-RSPT-RDCT

c41-RSPT

c41-RSPT-RDCT

Fig. 2. Speedup of Blendenpik solver over the parallel baseline sparse solver
for ill-conditioned sparse matrices as a function of increasing regularization
values.

Figure 2 shows the speedup of the sparse transforms for the
ill-conditioned matrices rma10-8 and c-41−32. We observe
that the speedup for the rma10-8 matrix is quite poor,
even as the regularization parameter increases. This happens
because the LSQR solver stagnates as the number of iterations
increases. However, for the more highly ill-conditioned matrix
c-41−32, the behavior is quite different as the speedup in-
creases with increasing values of the regularization parameter.
Again, the speedup peaks at a certain point and then drops off



again. The peak speedup obtained for the c-41−32 matrix is
much higher than the rma10 matrix, which indicates that the
residual vectors in the iterations of LSQR eventually become
linearly dependent.

2) Numerical Stability Evaluation: We evaluate the numer-
ical stability of the Blendenpik solver for RSPT and RSPT-
RDCT for increasing values of the regularization parameter λ.
The numerical stability is captured by the relative error (see
eqn. (4)) and the backward error (see eqn. (5)). Figures 3
and 4 show the effect of increasing values of the regular-
ization parameter on the relative error for well-conditioned
and ill-conditioned matrices respectively. In both cases, the

Regularization

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
e
la

ti
v
e
 E

rr
o

r

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

ns3Da-RSPT

ns3Da-RSPT-RDCT

mesh-RSPT

mesh-RSPT-RDCT

memplus-RSPT

memplus-RSPT-RDCT

Fig. 3. Relative Error for well-conditioned sparse matrices as a function of
λ.

Regularization

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
e
la

ti
v
e
 E

rr
o

r

10
-10

10
-5

10
0

rma10-RSPT

rma10-RSPT-RDCT

c41-RSPT

c41-RSPT-RDCT

Fig. 4. Relative Error for ill-conditioned sparse matrices as a function of λ.

relative error for the sparse randomized transforms decreases
as regularization increases. For the well-conditioned matrices
in figure 3, the optimal value of the relative error occurs at
λ = 0.1 for both transforms. For the ill-conditioned matrices,
the optimal regularization value that results in smallest relative
error is greater than that for the well-conditioned ones, which
for rma10-8 is λ = 102 and for c-41−32 is λ = 10. These
are the optimal regularization values that we choose for our
various datasets to measure performance for our strong scaling
and oversampling evaluations henceforth denoted by λ∗.

Finally, we show the effect of regularization on backward
error for well-conditioned and ill-conditioned matrices in
figures 5 and 6. The backward error decreases marginally
as regularization increases for both well-conditioned and ill-
conditioned matrices. The randomized transforms have com-
parable backward error when compared to the baseline sparse

solver for all matrices. Another interesting observation is that
the backward error achieved by the sparse randomized trans-
forms for both well-conditioned and ill-conditioned matrices
differs approximately by condition number order of magnitude
difference.

Regularization

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

B
a
c
k
w

a
rd

 E
rr

o
r

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

ns3Da-Elemental

ns3Da-RSPT

ns3Da-RSPT-RDCT

mesh-Elemental

mesh-RSPT

mesh-RSPT-RDCT

memplus-Elemental

memplus-RSPT

memplus-RSPT-RDCT

sls-RSPT

sls-RSPT-RDCT

Fig. 5. Backward Error for well-conditioned sparse matrices as a function of
λ.

Regularization
10

-12
10

-11
10

-10
10

-9
10

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2

B
a
c
k
w

a
rd

 E
rr

o
r

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

rma10-Elemental

rma10-RSPT

rma10-RSPT-RDCT

c41-Elemental

c41-RSPT

c41-RSPT-RDCT

Fig. 6. Backward Error for ill-conditioned sparse matrices as a function of
λ.

C. Performance evaluation at λ∗

We also evaluate the strong scaling performance of the
Blendenpik algorithm as a function of the (increasing) number
of the Blue Gene/Q nodes. Figure 7 shows the strong scaling
performance of the sparse randomized sketching transforms
for all matrices. We observe that with the exception of rma10
matrix, the sparse randomized solvers show almost linear
strong scaling with increasing BG/Q nodes for the optimal
regularization value λ∗. Further, RSPT outperforms RSPT-
RDCT for all matrices for increasing BG/Q nodes, which again
shows that RSPT constructs a better preconditioner than RSPT-
RDCT for all matrices irrespective of their condition numbers.
The bottleneck for the Blendenpik algorithm at λ∗ is the QR
stage which constructs the preconditioner. As the number of
BG/Q nodes increase, QR scales proportionally for a fixed
problem size, while the reduction to quasi-definite form in the
sparse least-squares solver is quite inefficient and does not
scale with as the number of nodes increases.

D. The effect of the oversampling factor γ at λ∗

An important choice in the construction of an efficient
preconditioner in the context of the Blendenpik algorithm is



Number of Blue Gene/Q nodes
16 32 64 128 256

S
p

e
e
d

u
p

0

2

4

6

8

10

12

14
ns3Da-RSPT

ns3Da-RSPT-RDCT

mesh-RSPT

mesh-RSPT-RDCT

memplus-RSPT

memplus-RSPT-RDCT

rma10-RSPT

rma10-RSPT-RDCT

c41-RSPT

c41-RSPT-RDCT

Fig. 7. Strong Scaling as a function of increasing Blue Gene/Q nodes at
optimal regularization value λ∗.

the value of the oversampling factor γ that decides the number
of rows (equal, in expectation, to γn) of the preconditioner. Of
particular interest is an analysis of the behavior of the sparse
randomized transforms in the Blendenpik solver with respect
to the metrics described in Section IV as a function of γ. We
evaluate the Blendenpik solver on the various well-conditioned
and ill-conditioned matrices on 128 BG/Q nodes as a function
of γ, where γ ranges between 2.0 and 6.0 in increments of 0.5.
We seek to understand the effect of γ on the scalability and the
numerical stability of the Blendenpik algorithm at the optimal
regularization value λ∗ for each matrix. As mentioned earlier,
the baseline sparse Elemental solver fails to converge for the
largest matrix sls-1 and hence we exclude its analysis from
this section.

Figure 8 shows the speedup of the Blendenpik algorithm
for increasing values of the oversampling factor γ for the
sparse sketching transforms. Figure 8 reveals several interest-
ing observations as the oversampling factor γ increases. The
speedup of the RSPT sketching transform marginally increases
for increasing values of γ for all matrices. However, for the
RSPT-RDCT transform, the speedup rapidly increases when γ
increases which suggests that the oversampling factor γ plays
a much more significant role in the speedup of the RDCT stage
and the faster convergence of the RSPT-RDCT preconditioner.
However, for all values of γ, RSPT marginally outperforms
the RSPT-RDCT combination for all matrices, primarily due
to the time spent in the RDCT batchwise transform stage.
The rma10−8 matrix however shows sublinear performance
as compared to the other matrices at the optimal regularization
value λ∗, mainly due to the stagnation of the LSQR algorithm
mentioned earlier for the sparse sketching transforms.

As discussed in Section IV-B2, the numerical stability is
measured in terms of relative and backward error. Figure 9
shows the relative error for both sparse transforms as the
oversampling factor γ increases. The relative error marginally
decreases with increasing values of γ for all matrices. The
Blendenpik solver is fairly stable with respect to the relative
error at λ∗, which is close to 12 to 14 digits of accuracy
for all matrices, with the exception of the rma10−8 matrix
which exhibits around nine digits of accuracy. The RSPT again
exhibits better relative error stability than the RSPT-RDCT
combination for all matrices for increasing values of γ.

Oversampling factor
2 2.5 3 3.5 4 4.5 5 5.5 6

S
p

e
e
d

u
p

0

2

4

6

8

10

12

14

ns3Da-RSPT

ns3Da-RSPT-RDCT

mesh-RSPT

mesh-RSPT-RDCT

memplus-RSPT

memplus-RSPT-RDCT

rma10-RSPT

rma10-RSPT-RDCT

c41-RSPT

c41-RSPT-RDCT

Fig. 8. Speedup of Blendenpik solver over the parallel baseline sparse solver
as a function of increasing oversampling factors at optimal regularization value
λ∗.

Oversampling factor
2 2.5 3 3.5 4 4.5 5 5.5 6

R
e
la

ti
v
e
 E

rr
o

r

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

ns3Da-RSPT

ns3Da-RSPT-RDCT

mesh-RSPT

mesh-RSPT-RDCT

memplus-RSPT

memplus-RSPT-RDCT

rma10-RSPT

rma10-RSPT-RDCT

c41-RSPT

c41-RSPT-RDCT

Fig. 9. Relative Error as a function of increasing oversampling factors at
optimal regularization value λ∗.

Finally figure 10 shows the behavior of backward er-
ror as a function of the oversampling factor γ at λ∗.
The well-conditioned matrices ns3Da-8, mesh_deform-4,
memplus-32 and sls-1 exhibit significantly better back-
ward error stability than the ill-conditioned matrices c-41−32
and especially rma10-8. That being said, the backward error
for the sparse randomized transforms are still comparable
(within an order of magnitude) to the backward error of the
baseline sparse solver for all matrices. Further, the backward
error for both sparse transforms decreases marginally with
increasing γ values for all matrices.

Oversampling factor
2 2.5 3 3.5 4 4.5 5 5.5 6

B
a
c
k
w

a
rd

 E
rr

o
r

10
-10

10
-5

10
0

ns3Da-Elemental

ns3Da-RSPT

ns3Da-RSPT-RDCT

mesh-Elemental

mesh-RSPT

mesh-RSPT-RDCT

memplus-Elemental

memplus-RSPT

memplus-RSPT-RDCT

sls-RSPT

sls-RSPT-RDCT

rma10-Elemental

rma10-RSPT

rma10-RSPT-RDCT

c41-Elemental

c41-RSPT

c41-RSPT-RDCT

Fig. 10. Backward Error as a function of increasing oversampling factors at
optimal regularization value λ∗.



E. Summarizing our empirical evaluations

To help the reader parse our extensive empirical evalua-
tions, we briefly summarize our findings. (i) The speedup
achieved by RSPT is always better than the RSPT-RDCT
transform. There are two reasons for this slower speedup
for the RSPT-RDCT sparse transform. First, the Blendenpik
algorithm spends reasonable time to compute the RDCT
transform. Second, the RSPT always produces a marginally
better preconditioner than the RSPT-RDCT transform that
leads to faster convergence of the LSQR stage. (ii) As the
regularization values increase, the speedup increases until it
peaks for a certain regularization value and then reduces again
for all matrices with the exception of the rma10-8 matrix.
(iii) The relative error decreases with increasing values of the
regularization parameter until it achieves the smallest relative
error at λ = λ∗. We choose this regularization value λ∗ as the
optimal regularizer for our strong scaling and oversampling
evaluations. As the condition numbers of the matrices increase,
λ∗ for each matrix also increases. (iv) The sparse randomized
transforms have comparable backward error compared against
the baseline sparse solver for all matrices. The backward
error achieved by the Blendenpik solver for different matrices
differ approximately by the same order of magnitude as the
difference in the condition numbers of the matrices. (v) The
sparse randomized transforms demonstrate significant strong
scaling for all matrices at λ∗ with the exception of the
rma10-8 matrix. (vi) The Blendenpik solver demonstrates
excellent speedup and numerical stability in terms of the
relative error at λ∗ for increasing oversampling factors. The
backward error is somewhat worse yet comparable to the
backward error achieved by the baseline sparse Elemental
solver at λ∗.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed and demonstrated a highly
scalable distributed memory least squares solver based on
the Blendenpik algorithm using sparse randomized transforms.
Our solver outperforms a state-of-the-art parallel sparse solver
both in runtime and in the dimensions of the matrices that
can be solved. In the future, we plan to develop similar
scalable algorithms using sparse transforms for variants of
ridge regression like dual ridge regression and kernel ridge
regression.

ACKNOWLEDGMENTS

We would like to thank Jack Poulson for numerous helpful
discussions and his constant and timely support with the
Elemental library.

REFERENCES

[1] A. Bjőrck, Numerical Methods for Least Squares Problems. Siam
Philadelphia, 1996.

[2] C. Saunders, A. Gammerman, and V. Vovk, “Ridge regression
learning algorithm in dual variables,” in Proceedings of the Fifteenth
International Conference on Machine Learning, ser. ICML ’98. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998, pp.
515–521. [Online]. Available: http://dl.acm.org/citation.cfm?id=645527.
657464

[3] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.

[4] T. Sarlos, “Improved Approximation Algorithms for Large Matrices
via Random Projections,” in Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science, ser. FOCS ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 143–152.
[Online]. Available: http://dx.doi.org/10.1109/FOCS.2006.37

[5] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, “Faster
least squares approximation,” Numer. Math., vol. 117, no. 2, pp.
219–249, Feb. 2011. [Online]. Available: http://dx.doi.org/10.1007/
s00211-010-0331-6

[6] V. Rokhlin and M. Tygert, “A fast randomized algorithm for overdeter-
mined linear least-squares regression,” Proc. Natl. Acad. Sci. USA, vol.
105, no. 36, pp. 13 212–13 217, 2008.

[7] H. Avron, P. Maymounkov, and S. Toledo, “Blendenpik: Supercharging
LAPACK’s Least-Squares Solver.” SIAM J. Scientific Computing,
vol. 32, no. 3, pp. 1217–1236, 2010. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/siamsc/siamsc32.html#AvronMT10

[8] J. Yang, X. Meng, and M. W. Mahoney, “Implementing Randomized
Matrix Algorithms in Parallel and Distributed Environments,” CoRR,
vol. abs/1502.03032, 2015. [Online]. Available: http://arxiv.org/abs/
1502.03032

[9] Y. Lu, P. Dhillon, D. P. Foster, and L. Ungar, “Faster ridge regression
via the subsampled randomized hadamard transform,” in Advances in
Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2013, pp. 369–377.

[10] S. Chen, Y. Liu, M. R. Lyu, I. King, and S. Zhang, “Fast relative-error
approximation algorithm for ridge regression,” in Proceedings of the
Thirty-First Conference on Uncertainty in Artificial Intelligence, UAI
2015, July 12-16, 2015, Amsterdam, The Netherlands, 2015, pp. 201–
210.

[11] K. L. Clarkson and D. P. Woodruff, “Low Rank Approximation and
Regression in Input Sparsity Time,” in Proceedings of the Forty-fifth
Annual ACM Symposium on Theory of Computing, ser. STOC ’13.
New York, NY, USA: ACM, 2013, pp. 81–90. [Online]. Available:
http://doi.acm.org/10.1145/2488608.2488620

[12] X. Meng, M. A. Saunders, and M. W. Mahoney, “LSRN: A
parallel iterative solver for strongly over- or under-determined
systems,” CoRR, vol. abs/1109.5981, 2011. [Online]. Available:
http://arxiv.org/abs/1109.5981

[13] M. P. Forum, “MPI: A message-passing interface standard,” Knoxville,
TN, USA, Tech. Rep., 1994.

[14] L. Dagum and R. Menon, “OpenMP: An Industry-Standard API for
Shared-Memory Programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1,
pp. 46–55, Jan. 1998. [Online]. Available: http://dx.doi.org/10.1109/99.
660313

[15] C. C. Paige and M. A. Saunders, “LSQR: An algorithm for
sparse linear equations and sparse least squares,” ACM Trans. Math.
Softw., vol. 8, no. 1, pp. 43–71, Mar. 1982. [Online]. Available:
http://doi.acm.org/10.1145/355984.355989

[16] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond,
and N. A. Romero, “Elemental: A New Framework for Distributed
Memory Dense Matrix Computations,” ACM Trans. Math. Softw.,
vol. 39, no. 2, pp. 13:1–13:24, Feb. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2427023.2427030

[17] M. Frigo and S. G. Johnson, “FFTW: An adaptive software architecture
for the FFT,” in Proceedings of the International Conference on Acous-
tics, Speech, and Signal Processing, vol. 3, Seattle, Washington, 1998,
pp. 1381–1384.

[18] C. Iyer, H. Avron, G. Kollias, Y. Ineichen, C. Carothers, and P. Drineas,
“A scalable randomized least squares solver for dense overdetermined
systems,” in Proceedings of the 6th Workshop on Latest Advances
in Scalable Algorithms for Large-Scale Systems, ser. ScalA ’15.
New York, NY, USA: ACM, 2015, pp. 3:1–3:8. [Online]. Available:
http://doi.acm.org/10.1145/2832080.2832083

[19] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, dec
2011. [Online]. Available: http://doi.acm.org/10.1145/2049662.2049663

[20] M. A. Saunders, “Cholesky-based Methods for Sparse Least Squares:
The Benefits of Regularization,” Linear and Nonlinear Conjugate
Gradient-Related Methods, pp. 92–100, Feb. 1996. [Online]. Available:
http://www.stanford.edu/group/SOL/papers/seattleproc.pdf

http://dl.acm.org/citation.cfm?id=645527.657464
http://dl.acm.org/citation.cfm?id=645527.657464
http://dx.doi.org/10.1109/FOCS.2006.37
http://dx.doi.org/10.1007/s00211-010-0331-6
http://dx.doi.org/10.1007/s00211-010-0331-6
http://dblp.uni-trier.de/db/journals/siamsc/siamsc32.html#AvronMT10
http://dblp.uni-trier.de/db/journals/siamsc/siamsc32.html#AvronMT10
http://arxiv.org/abs/1502.03032
http://arxiv.org/abs/1502.03032
http://doi.acm.org/10.1145/2488608.2488620
http://arxiv.org/abs/1109.5981
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1109/99.660313
http://doi.acm.org/10.1145/355984.355989
http://doi.acm.org/10.1145/2427023.2427030
http://doi.acm.org/10.1145/2832080.2832083
http://doi.acm.org/10.1145/2049662.2049663
http://www.stanford.edu/group/SOL/papers/seattleproc.pdf

	Introduction
	Blendenpik
	for the toc

	Implementing our Algorithm on the Blue Gene/Q
	Evaluation
	Baseline
	The effect of the regularization g
	Scalability Evaluation
	Numerical Stability Evaluation

	Performance evaluation at g
	The effect of the oversampling factor g at g
	Summarizing our empirical evaluations

	Conclusions and Future work
	References

