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a b s t r a c t

Dynamic networks are characterized by topologies that varywith time and are represented
by time-graphs. The notion of connectivity in time-graphs is fundamentally different
from that in static graphs. End-to-end connectivity is achieved opportunistically by the
store–carry-forward paradigm if the network is so sparse that source–destination pairs are
usually not connected by complete paths. In static graphs, it iswell known that the network
connectivity is tied to the spectral gap of the underlying adjacencymatrix of the topology: if
the gap is large, the network iswell connected. In this paper, a similarmetric is investigated
for time-graphs. To this end, a time-graph is represented by a 3-mode reachability tensor
which indicates whether a node is reachable from another node in t steps. To evaluate
connectivity, we consider the expected hitting time of a randomwalk, and the time it takes
for epidemic routing to infect all vertices. Observations froman extensive set of simulations
show that the correlation between the second singular value of the matrix obtained by
unfolding the reachability tensor and these indicators is very significant.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In wireless mobile networks, end-to-end connectivity is achieved collectively without the need for an established
infrastructure using self-configuring applications and protocols (i.e. routing). Because of node mobility and other forms
of dynamism in the network topology, the information these protocols use changes frequently. Rather than fetching
more recent information at the cost of higher overhead, the protocols may employ opportunistic methods to cope with
dynamism [1]. In addition, the density of the network may be low such that source–destination pairs are not connected by
complete paths most of the time. In such intermittently connected networks, end-to-end connectivity is achieved over time
by utilizing the store–carry-forward paradigm.

It is useful for many applications to characterize how well the network is connected. For example, in well connected
networks, epidemic algorithms quickly spread the messages to the network and the minimum and/or maximum time
needed to spread information to the whole network is small; mechanisms that are used to estimate or optimize a parameter
converge quickly and the information flow is fast. Similarly, a random walk based mechanism, in which a random walker
moves to neighboring nodes with equal probabilities, quickly terminates with success if the network is well connected. In
intermittently connected networks, even though there may be no complete paths between source–destination pairs at any
given time instant, the messages are delivered relatively quickly to the destinations if the network is well mixed.

✩ An earlier version of this paper appeared in MobiOpp’10 (Acer et al. [26]).
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(a) Network topology at t1 . (b) Network topology at t2 . (c) Network topology at t3 . (d) Network topology at t4 .

Fig. 1. Evolution of a network over time. A and F are never connected. Still, end-to-end connectivity can be maintained between these nodes over time.

In dynamic networks, the network topology constantly evolves, typically in a non-deterministic manner, by inserting
or deleting edges and/or nodes over time, and the notion of connectivity is different from static networks. Consider the
snapshots taken from a mobile network, that are depicted in Fig. 1. In this example, nodes A and F are never connected at
any time instant. However, node A can send a packet to C at t1. At this time, C has no neighbor that it can forward this packet
for delivery to F . C keeps the packet until t2 in its buffer and sends it to E at this time. At t3, E transmits the packet to node F .
This delivery method exploits the dynamism in the network for end-to-end connectivity. This is called store–carry-forward
paradigm and is widely used in routing protocols for networks with intermittent connectivity [2]. Even though complete
paths between a majority of node pairs at any given instant do not exist in this case, the links between the nodes might be
formed so that a message originating at one node is delivered to another node over time.

A dynamic, variable topology network is represented by a time-graph, which indicates the creation and deletion of the
vertices and/or edges over time. In particular, we use 3-mode adjacency tensors or three-dimensional arrays to model time-
graphs and relate their structure to the network connectivity. The tensor indicates whether two nodes are connected by a
common link at a given time, similar to the adjacency matrix of a static graph, i.e. the entry Aijk = 1 in the adjacency tensor
if vertex i is connected to vertex j at time k.

To provide some intuition behind our work, we start with the motivating scenario of d-regular, undirected graphs with
n vertices and nd edges (recall that a d-regular graph has d edges associated with each vertex). It is well known that the
associated graph adjacency matrix has the first eigenvalue exactly equal to d. If the difference between this first eigenvalue
and the second largest one is sufficiently large, then the graph is an expander. Intuitively, this implies that the number
of edges that must be removed from the graph in order to make some large subset of its vertices disconnected from the
remainder of the graph is also large. Thus, expanders can represent robust networks with good connectivity properties,
while at the same time having only a small number of edges (e.g., linear in n). Our work explores whether a similar property
holds for evolving graphs, by studying properties of such graphs and their connections to tensor (as opposed to matrix)
eigenvalues.

As a general rule, if the network is well connected, an opportunistic method such as random walk performs better. This
quality stems from the fact that a random walk is able to sample nodes in a network with respect to a (typically uniform)
probability distribution in a small number of steps in well connected networks. Hence, the performance of the randomwalk
indicates how well the network is connected. In well connected graphs, the hitting time, i.e. the number of steps a random
walk takes before visiting a particular subset of the graph vertices for the first time. In dynamic networks, the forwarding
probabilities are derived from the adjacency tensor and continuously change over time. Therefore, a random walk follows
a non-homogeneous Markov Chain. A similar opportunistic method is epidemic routing [3], where nodes hold on to the
messages they receive and replicate them in the nodes they subsequently meet. In a well connected network, all nodes
quickly obtain a replica of the original message. On the other hand, the structural elements of the network are deduced
through a series of operations on the adjacency tensor. Using the information given by the adjacency tensor, we can obtain
the reachability tensor, which indicates whether a randomwalk starting from one node can reach another node after t time
steps. We normalize the rows of the matrices of this tensor, and unfold the tensor around the ‘‘distinguished’’ mode or
dimension [4], which in this case is the dimension that depicts time. This operation yields a two-dimensional matrix. We
use the singular values of this matrix as the structural metrics of the time-graphs.

Our observations, based on data from extensive simulations, show that the correlation between the second singular
value of this matrix and the expected hitting time is very high, above 0.9, which is a very large correlation. Similarly, the
average time until the epidemic routing delivers a message that originates at an arbitrary node to the entire network is
highly correlated with this structural metric, with a correlation coefficient more than 87%. Hence, the second singular value
of the unfolded reachability tensor is a good indicator of network connectivity. Performing these experiments, we used a
variety of node densities and speeds. This way, we are able to evaluate this structural metric in scenarios where the nodes
are always instantaneously connected via complete paths or they are intermittently connected over time. Our experiments
show that the proposed singular value can be used to evaluate the connectivity of dynamic networks. Even though tensors
have been drawing a lot of interest recently, researchers still have a long way to go towards understanding the algebraic
properties of the tensors. Therefore, it is not possible to support these observations with theoretical proof yet.

The rest of this paper is organized as follows. In the next sectionwe review the relatedwork. In Section 3we introduce our
time-graph model, explain how the expected hitting time on time-graphs is derived and present the notion of reachability
tensor. In Section 4 we show that the hitting time is highly correlated to the structural properties of the reachability tensor
via data obtained from simulations with various mobility models. Section 5 concludes the paper and discusses the open
problems.
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2. Related work

Random walks and the related Markov Chain Monte Carlo method are predominant in many areas of Computer
Science, Mathematics, Engineering, Physics, Biology and Economics. Random walks have been proposed as key algorithmic
ingredients in protocols for various aspects of network design and maintenance. The existing literature [5–7] reports that
any task for which independent sampling would be a good algorithmic primitive, such as searching, typically benefits from
random walks.

Epidemic methods can be used to quickly distribute some content (e.g. packets) to the entire network. Originally,
epidemic algorithms were proposed to maintain consistency for replicated databases. In this approach, an update in a
database is distributed to all the replicas [8]. In the context of routing in intermittently connected networks, thismethod has
been proposed to deliver packets quickly to the desired destination [3]. In this method, a node always maintains a received
packet in its buffers. When this node creates a link with another node, it copies all the messages in its buffer to its new
neighbor. Thus, packets quickly spread to all the nodes if the network is well connected.

Dynamic networks constantly evolve by inserting or deleting edges and/or vertices over time. The notion of time evolving
graphs was introduced by Kumar et al. in [9] as a novel combinatorial object to represent dynamic networks. In this model,
a time-graph G = (V , E) consists of a set V of nodes where each node vi has an associated interval D(vi) on the time axis,
called the duration of vi, and a set E of edges. A node vi is said to be alive at time t , if t ∈ D(vi). Each edge is a triplet (vi, vj, t)
where vi and vj are nodes in V and t is a point in time. The interpretation is that each edge is created at a point in time when
both of its end-vertices are alive. In [10], the author describes a combinatorial reference model capturing characteristics of
time varying networks. The proposed time-graph model gives rise to several different metrics that may serve as objective
functions in routing strategies, such as ‘‘earliest time to reach one or all the destinations’’. Scherrer et al. propose methods
to describe dynamic graphs in [11] using properties such as the number of links and average degree as a function of time.
Other (relatively few) studies that investigate dynamic graphs include [12–14]. Aforementioned line of research generally
investigates properties such as existence of communities and community size, as well as how these properties change with
time. On the other hand, we are interested in the structure of the entire dynamic graph, which we relate to the end-to-end
connectivity.

There has been significant progress in understanding the linear algebraic properties of multi-mode tensors. Many
researchers have focused on tensor decompositions, which have been successfully applied in data analysis [4,15–17].
However, we are not aware of any attempt to connect tensors with random walks or the notion of network connectivity.

In a wireless network, the dynamism stems from the nodemobility. Mobility of nodes can be exploited to deliver packets
to destination nodes that are not immediately connected to source nodes. In their seminal paper, Grossglauser and Tse show
that if the network topology changes over time, the mobility can increase wireless network capacity, assuming delay can be
traded-off and unlimited storage is available [18]. This result has inspired the design of routing protocols for delay tolerant
networks where the connectivity is intermittent and it is not possible to form immediate paths between source–destination
pairs. Instead, intermediate nodes have to store and carry the packets until they encounter the destination node or another
node that is more likely to deliver the packet. Examples include [3,19,20]. However, the question of how node mobility
affects the evolving connectivity graph of the network remains unanswered.

3. Methodology

In this section,we introduce our time-graph combinatorial object. Then,we derive the expected hitting time for a random
walk in an evolving time-graph. Finally,wepresent the notion of reachability tensorwhichwewill use to reflect the structure
of the time-graph.

3.1. Our time-graph model

Constructing the time-graphs we discretize the continuous time intervals and focus on the edges instead of vertices. Let
t0, t1, . . . , tm denote discrete time instances. In this simple scenario, an edge between two nodes vi and vj is present at t0
and t1 but disappears at t2 and t3, and reappears at t4. We emphasize that the vertices on the graph are fixed. In our setting,
deletion of a node vi corresponds to making the node disconnected from the rest of the network, e.g. all edges adjacent to vi
disappear, and insertion of a node corresponds to adding an edge between vi and other nodes that vi is connected to. Clearly,
at any time instant, any number of nodes might be disconnected or isolated.

We focus on undirected, unweighted time-graphs, which provide information on whether there is a bidirectional
connection between two nodes at a time instant. Let V denote the set of all the nodes of the time-graph, whose cardinality
is n; |V | = n. Let T = {t1, t2, . . . , tm} denote the set of all time instances of interest. At each time, t ∈ T , we take a snapshot
of the dynamic network. Let G represent the time-graph and Gk, k = 1, . . . ,m, denote the snapshots of the dynamic graph
obtained at time tk. Ak denotes the adjacency matrix of Gk. Clearly, Ak is an n × n matrix. This representation implies a
three-dimensional array or a 3-mode n × n × m tensor A, which consists of all m matrices Ak. Aijk is equal to 1 if there is
an edge between nodes vi and vj at time tk, otherwise it is zero. We call A the adjacency tensor of the time-graph G. The
snapshot of the dynamic network at a specific time instance corresponds to a slab of the tensor [4]. Fig. 2 depicts the tensor
representation of time-graphs.



Author's personal copy

U.G. Acer et al. / Pervasive and Mobile Computing 7 (2011) 160–171 163

Fig. 2. A tensor representation of time-graphs. Ai represents the adjacency matrix obtained from the network snapshot obtained at time ti . Ai is the ith
slab of the adjacency tensor A.

3.2. Expected hitting time of random walk on time-graphs

Given the abstraction of time-graphs, we can visualize and formally define randomwalks on dynamic networks. Random
walks in fixed graphs proceed in discrete steps: at time t0 the walk takes a step from vertex v(t0) to a vertex v(t1) that is
adjacent to v(t0). v(t1) is chosen uniformly at random among v(t0)’s neighbors. This node makes a similar decision at time
t1. The transitions of the random walk are modeled by a Markov Chain where the transition probabilities are the same at
all times. In other words, the Markov Chain is homogeneous. Randomwalks in time-graphs are essentially the same, except
for the fact that even though v(t1) is adjacent to v(t0) at time t0, they might not be adjacent to each other at time t1 (when
the next transition actually takes place). The transition probabilities also change over time. As a result, the Markov Chain
becomes non-homogeneous. The state space of the Markov Chain is fixed and each state corresponds to a particular node in
the network.

The connectivity of the time-graph can be evaluated by the expected hitting time of a random walk on that graph. The
hitting time is the number of steps a random walk takes to reach a particular node for the first time. If the network is well
connected, the expected hitting time is small. We now summarize the results given in [21] to derive the expected hitting
time in a non-homogeneous Markov Chain.

For notational convenience, we only use j instead of vj and k instead of tk. Let Xk denote the state of the Markov Chain,
the node at which the random walk resides at time k. Multiple step transition probabilities from time k to time k + a are
defined as

pk,k+a(i, j) = P{Xk+a = j|Xk = i} (1)

where a ≥ 1. For simplicity of presentation, let pk(i, j) = pk,k+1(i, j). Single step transition probabilities are given by

pk(i, j) =


1
ζ i
k

if i and j are neighbors at time k

0 otherwise
(2)

where ζ i
k denotes the number of neighbors for node i at time k. The entries pk(i, j) with 0 ≤ i, j ≤ n − 1 constitute the

probability transition matrix at time k, denoted by Pk. Note that Pk is obtained by normalizing the rows of Ak.
Transition probabilities have the following properties:

• pk(i, j) ≥ 0 for all i, j ∈ V and k ≥ 0.
•
∑

j∈V pk(i, j) = 1 for all i ∈ V and k ≥ 0.
• pk(i, i) = 0 if ζ i

k > 0 and 1 otherwise.
• ph,k(i, j) =

∑
l∈V ph,r(i, l)pr,k(l, j) for all r such that h < r < k.

LetΘd denote the time at which a randomwalk first hits node dwhen the randomwalk starts at another node s ∈ V \{d}.
Without loss of generality, assume that the random walk is initiated at time t = 0. The hitting time is

Θd = inf{k > 0; Xk = d}. (3)

To find the hitting time, a newnon-homogeneousMarkov Chain can be definedwhere d is now an absorbing state. State d
always transitions to itselfwith probability 1 nomatter howmanyneighbors node dhas. All the other transition probabilities
remain the same. In both the Markov Chains, the expected time a randomwalk first hits state d is the same. The probability
transition matrix at time k for this Markov Chain is

Qk =

[
Rk Hk
0 1

]
(4)
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where the (n − 1) × (n − 1) matrix Rk represents the transition probabilities between the states in the subset V \ {d} at
time k (i.e. Rk is Pk with dth row and column removed) and Hk is the n − 1 length vector denoting single step transition
probabilities from V \ {d} to d at time k.

Using the non-homogeneous Markov Chain whose transition probability matrices in time are given in (4), the tail
distribution for the hitting time is

P(Θd > η) = P(∀i, i ≤ η, Xi ∈ V \ {d})

= α


η−1∏
k=0

Rk


1n−1 (5)

where 1n−1 is a length n − 1 column vector whose entries are all 1 and α is the n − 1 entry row vector indicating the initial
distribution of the random walk. Eq. (5) indicates the probability that the random walk still remains in V \ {d} after η time
steps.

Since Θ is a discrete random variable,

E[Θd] =

−
η≥0

ηP(Θd = η) =

−
η≥0

P(Θd > η) (6)

with P(Θd > 0) = 1 since s ∈ V \ {d}. Hence, the expected time for a random walk to hit destination d can be rewritten as

E[Θd] = α


I +

−
η≥1

η−1∏
k=0

Rk


1n−1 (7)

where I is the (n − 1) × (n − 1) identity matrix. We take the average of E[Θd] values over all d in order to obtain expected
hitting time E[Θ].

Consider the matrices Qk and Qk+1 of Eq. (4). Their product is

QkQk+1 =

[
RkRk+1 RkHk+1 + Hk

0 1

]
.

Since all the entries of the matrices are positive,

[Hk](i) ≤ [RkHk+1](i) + [Hk](i) (8)

∀i ≠ d, which indicates that the probability of transition to d increases and the probability of the random walk remaining
at a state other than the destination decreases at every time step. A more detailed discussion can be found in [21].

3.3. Diffusion time for epidemic algorithms

Epidemic routing has been proposed to achieve end-to-end connectivity within the context of intermittently connected
mobile networks. In this method, in each contact opportunity between two nodes, the nodes exchange the messages
they host. The messages are replicated in neighboring nodes when corresponding links are formed. The time it takes to
disseminate the message to the entire network, i.e.the diffusion time, indicates how well mixed or how well connected the
network is.

In epidemic routing, a message initiated by vertex i reaches vertex j when the first path is created between i and j.
Following the notation in the previous section, we define the reachability tensor B whose kth slab is

Bk = min


1,

k∏
η=0

Aη


(9)

where 1 is an all 1 n× nmatrix. The product
∏k

η=0 Ai is a n× nmatrix. The entry that corresponds to the ith row and the jth
column of this product matrix gives the number of k-step paths that start at i and end at j. If this value is above zero, node vj
is reachable from node vi after k steps, and Bijk = 1. In this case, a randomwalk starting from node i at time zero can end up
at node j at time kwith a probability beyond 0 or there exists at least one k-step path connecting i to j. Otherwise Bijk = 0.

Bijk indicates whether there exists a k-step path from i to j. Let us define another tensor C in the following manner:

Cijk = max
η<k

(Bijη). (10)

When Cijk = 1, there exists a least one path from i to j that takes at most k steps. In other words, epidemic routing definitely
delivers a replica of the message that starts from vertex i at time 0 to vertex j by time t = k. The diffusion time for such a
message, τi, is

τi = inf k such that Cijk = 1 ∀j ≠ i. (11)

In our evaluation, we look at the overall diffusion time, τ , that is averaged over each starting node i.
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3.4. Structural properties of time-graphs

We obtain the structural properties of time-graphs using the reachability tensor B, defined in Eq. (9). Remember that
Bijk indicates the existence of at least one k-step path that starts at i and ends at j.

The number of slabs in B is defined by

τ = inf(k; Ck = 1), (12)

where Ck is the kth slab ofC (as defined in (10)), assuming that there exists such k ≤ m. This is to say that every vertex in the
graph is reachable from every other vertex in τ time steps. If there is no such k, then τ = m. τ is the so-called time-diameter
of the time-graph. Note that if this procedure is applied to a fixed graph, the time-diameter becomes the diameter of the
graph, which is the maximum distance between two nodes in terms of hop count. Also note that τ = sup(τi).

B is a n×n× τ tensor, i.e. B ∈ ℜ
n×n×τ . We transform this tensor into a matrix, S, by unfolding it around the third mode.

Note that this mode corresponds to time whereas the other two modes correspond to the vertices. In other words, the third
mode of the tensor is qualitatively different from the other modes, i.e. it is the distinguished dimension [4].

S is a τ × n2 matrix and its kth column corresponds to the kth slab of B, i.e. Bk. Remember that Bijk = 1 indicates the
existence of a k-step path from i to j. We first normalize the rows of Bk so that

∑
j Bijk = 1 for all i and k. So, the number of

non-zeros items in the ith row of Bk yields the number of nodes at which a randomwalk can end up at k after starting at i at
time 0. Then, we reshape the normalized Bk into a one-dimensional column vector of length n2 by appending columns one
at a time. By cascading these vectors, the matrix S ∈ ℜ

τ×n2 is obtained. The singular values of this matrix are used as the
structural indicators for the time-graph.

4. Evaluation

In this section, we use an extensive set of simulations to gather adjacency tensor data. Using this data, we obtain expected
hitting, average diffusion time, the matricized reachability tensor and its singular values by performing the analysis we
described in Section 3. Our results show that there is a very high correlation between the structural properties and the
metrics that indicate the connectivity of the time-graph.

4.1. Simulation setup: gathering data

Our observations are based on data generated by a custom simulator. Each node moves independently according
to a common mobility model. Unless otherwise noted, we used 50 nodes in the simulations. The nodes have 250 m
communication range and two nodes can communicate directly if they are in the communication range of each other. The
nodes move in a X ×X m2 region. In order to capture the different levels of population densities, X varies from 1000 to 3000
m in the simulations. This way we obtain node densities that are very low so that every node has at most one neighbor most
of the time as well as high densities where nodes almost always have multiple neighbors. Regardless, the network topology
continuously changes. We use a large range of speed values to model different levels of dynamism. The snapshots are taken
at every 0.05 s. The simulation time is 1000 s. For each scenario, we have performed 5 runs. The results in the graphs are the
averaged values. The correlation values on the other hand are calculated using the raw data as the correlations between the
averaged values are much higher.

Each run starts with random node displacement and initial warm-up duration to reach the stationary node distribution
of the mobility model. We calculate the expected hitting time for each node when the randomwalk is equally likely to start
at any node other than the destination in order to obtain the expected hitting time for the particular time-graph.

We first present four simple scenarios to illustrate the effectiveness of the singular values of the matricized reachability
in capturing end-to-end connectivity in the network. Then, we present results with a variety of mobility models with a large
set of dynamism and density levels that show that our findings are not resulted from some special cases.

4.2. Illustrative example

The connectivity of time-graphs typically improves as the dynamism in the network increases. With higher dynamism,
the graph mixes faster. However, nodes moving fast does not necessarily guarantee that the network is well connected.
Instead, the structural properties that are derived from the adjacency tensor as depicted in Section 3.4 yield much better
indicators of the end-to-end connectivity. We support this claim using four simple scenarios with ten nodes in a 1500 ×

1500 m2 area.

1. Slow scenario: Each node moves towards a random point at a speed of 1 m/s.
2. Fast scenario: Each node moves towards a random point at a speed of 5 m/s.
3. Repetitive scenario: First four nodes are located on the line y = 250, four other nodes are located on y = 750 and two

nodes are located along y = 1250. In the initial placement, a node can be within the communication range of only one
other node. All nodes move parallel to the x axis at a speed of 100 m/s. They change their direction by 180 degrees every
second.
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Table 1
Summary of results from example scenarios.

Scenario E[Θ] τ ρ1 ρ2

1 12038.24 19550.76 263.91 119.98
2 5785.32 8370.1 132.17 79.28
3 16891.44 20000 400 158.14
4 3294.3 4805.1 111.16 70.38

4. Ferry scenario: Nine nodes are stationary and they are placed far away from each other so that any two nodes cannot
establish a link between themselves. However, there is a mobile ferry node that moves on a cyclic route at a speed of 5
m/s. Along its route, the ferry can communicate with other nine nodes.

The mobility model in the first two scenarios is known as the Random Waypoint Mobility Model (see next section). The
last scenario is motivated by ferry networks [22,23]. The results from these scenarios are summarized in Table 1. Note that
the quantities measuring the expected hitting time and the average diffusion time are in time steps.

In the first scenario, the nodes move very slowly and it takes a long time for a random walk to hit destinations in the
network. In this scenario, it is usually not possible to reach all the nodes when the random walk starts at an arbitrary node.
Hence, the overall diffusion time is also large. In accordance, we see that the first two singular values of the matricized
reachability tensor, ρ1 and ρ2, are large. As the node speed increases in Scenario 2, all of these values decrease.

Even though the nodes move very fast in Scenario 3, the mobility pattern of the nodes prevent the end-to-end
connectivity. Instead, the network is clustered into three groups. Note that the node mobility changes only x coordinates of
the nodes.When there is a difference of 500m in the y axis, twonodes cannot forma link given that the communication range
is 250 m. Even though random walks hit nodes that are in the same clusters as the source nodes, end-to-end connectivity
over the entire network cannot be achieved. Hence, τ = m, wherem is the number of slabs in the adjacency tensor. Similarly,
the ρ1 and ρ2 values are the largest in this scenario.

In the final scenario, there is only onemobile node. Only this ferry node is able to form linkswith other nodes. Even though
this node moves with a speed of 5 m/s (the node speed in Scenario 2), the expected hitting time and average diffusion time
values are much lower, since the trajectory of the ferry nodes enables delivery to all nodes very quickly. The corresponding
singular values are the smallest in comparison to those of the other cases.

4.3. Simulation results and discussion

We perform a large set of simulations to show the correlation between the expected hitting time of a random walk in
a time-graph and the singular values of the matricized reachability tensor. For evaluation, we used the following mobility
models1:
• Random Walk Mobility Model: In this mobility model, mobile nodes have fixed journey durations, t . At the beginning

of each journey, the node randomly selects a speed value and a direction value. The speed is a uniform random variable
within the interval [vmin, vmax]. Similarly, the direction is also uniformly distributed within the interval [0, 2π ]. If a node
reaches a simulation boundary, it bounces off the boundary with an angle that depends on its original direction. In the
simulations, t = 10 s. In each run, the node speed varies within the interval [vmin, vmax]. We used vmax = 2vmin and
varied vmin from 0 to 30 m/s.

• Random Waypoint Mobility Model: In this model, the nodes pick random destination points and speed values at the
beginning of their journeys and move towards their destinations with the selected speed. The duration of a journey is as
long as it takes the node to arrive at the destination point. Once the node arrives at its destination, it can pause for some
duration of time before selecting a new destination point and a new speed value. The speed values in this model are the
same as the ones used in the RandomWalk Mobility Model.

• Boundless Simulation AreaMobility Model: Each node contains a speed value v and a direction θ correlated in time. Each
node updates its speed and direction every ∆t seconds according to

v(t + ∆t) = min (max (v(t) + ∆v, vmin) , vmax)

θ(t + ∆t) = θ(t) + ∆θ

where ∆v is uniformly distributed between [−Amax∆t, Amax∆t] and ∆θ is uniformly distributed in [−α, α], where Amax
is the maximum acceleration and α is the maximum change in the direction of node mobility. In this simulation model,
the simulation area is a two-dimensional torus instead of a rectangular area. If a node reaches a boundary, it continues its
movement and reappears on the other side of the area. Contrary to previousmodels, the nodemobility is notmemoryless
in this mobility model. In the simulations we used, ∆t = 0.2 s, Amax = vmax∆t and α = π/10. vmin and vmax vary in the
same way as they do in the previous models.

• Gauss–Markov Mobility Model: This model is similar to the previous model in how the nodes update their speed and
direction values. Differently, in this model the nodes move in a rectangular area and their movement reflects off the

1 A more detailed discussion of these models can be found in [24].
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(a) Expected hitting time. (b) Average diffusion time.

(c) First singular value of S (ρ1). (d) Second singular value of S (ρ2).

(e) Time-diameter (τ ).

Fig. 3. The results for Random Waypoint Mobility Model. The curves that represent the expected hitting time, average diffusion time and the first two
singular values of S are very similar. Experiments show that each of the singular values is highly correlated to the expected hitting time and the expected
hitting time.

boundary they encounter. The speed and direction values are updated according to

v(t + ∆t) = αv(t) + (1 − α)v̄ + ωv


(1 − α2)

θ(t + ∆t) = αθ(t) + (1 − α)θ̄ + ωθ


(1 − α2)

where α is the correlation coefficient, v̄ and θ̄ mean speed and direction as t → ∞ and ωv and ωθ are random variables
from a Gaussian distribution with mean 0 and variance 1. In our simulations, we use α = 0.75 and ∆t = 0.2 s. We
randomly initiate θ̄ for each node. When a node reaches a boundary, its movement is reflected. In this model, we vary v̄
from 0 to 60 m/s.

Fig. 3 shows the results obtained from simulations in which nodes move according to the Random Waypoint Mobility
Model. Fig. 3(a) shows how the expected hitting time changeswith the node speed in different values for the size of area. In a
sparse networkwhere source–destination pairs are likely to be disconnected, the node that carries the randomwalk is more
likely to encounter the destination or nodes that are connected to the destination at highmobility. As a result, the expression
[RkHk+1](i) in Eq. (8) has higher values for all k and for each entry i. Recall that the sum of this expression over i yields the
transition probability to the destination node in two steps. This in turn decreases the product [RkRk+11n−1](i), which is the
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(a) Expected hitting time. (b) Average diffusion time. (c) Second singular value of the reachability
tensor (ρ2).

Fig. 4. The results for Random Walk Mobility Model. The expected hitting time, the average diffusion time and the second singular value of the unfolded
reachability tensor have similar characteristics. Our experiments show that the correlation between the two values is beyond 0.95 for this mobility model.

probability that the randomwalk remains at a state i that is different from the destination after two steps. Consequently, the
hitting time decreases and paths between disconnected nodes can be formed more quickly. As the mobility increases, the
number of contacts between node pairs increase as well. When the messages spread in the network through an epidemic
approach, the number of message passage opportunities increase. As a result, the average diffusion time decreases. This also
leads to decreasing time-diameters with increasing nodemobility as shown in Fig. 3(e). However, more dynamism does not
necessarily mean better connectivity. In a dense network, the destination nodes are usually connected with the rest of the
network. Even though the links change at a very high rate, the network remains connected and the number of neighbors of
each node does not change dramatically over time. Hence, the expected hitting time does not change much with mobility.

Fig. 3(c) shows how the first singular value of the matricized reachability tensor, ρ1, changes. Fig. 3(d) depicts the
characteristics of the second singular value of the matricized reachability tensor, ρ2. Note that these curves have similar
characteristics to the expected hitting time shown in Fig. 3(a) and the average diffusion time in Fig. 3(b). Both ρ1 and ρ2
remain steady in dense networks whereas they decrease with node mobility in sparse networks. The experiments show
that the correlation between ρ1 and the expected hitting time is slightly above 0.93. Similarly, correlation between ρ1 and
the average diffusion time is approximately 0.9. When we consider ρ2, the correlation between the expected hitting time
and the average diffusion time is very close to 0.95 and 0.9, respectively. Note that these large values indicate very strong
correlation.

In the remainder of this section, we will focus on ρ2 as the structural metric of the network. We use the second singular
value because of the standard intuition from expander graphs: the second eigenvalue in static graphs predicts connectivity-
related parameters, such as the expansion and conductance [25]. Besides, our results show that ρ2 predicts end-to-end
connectivity better than ρ1.

In Fig. 4, the characteristics of ρ2 are similar when the nodes move according to the RandomWalk Mobility Model. How
the expected hitting time changes with speed and density is presented in Fig. 4(a); it decreases with nodemobility in sparse
networks, but does not change much in dense networks due to the same reasons as the ones discussed for the Random
Waypoint Mobility Model. ρ2 also has the same characteristics as shown in Fig. 4(c). The correlation between ρ2 and the
expected hitting time of a random walk is around 0.96. When the network is very sparse and the dynamism is low, the
average diffusion time remains constant as shown in Fig. 4(b). This is because the number of opportunities for a message to
spreadwith the epidemic approach is not sufficient for themessage to be able to reach every node starting from any random
node. Still, the correlation between the average diffusion time and the second singular value of the unfolded reachability
tensor is above 0.92.

The results on the expected hitting time, the average diffusion time and ρ2 when the nodesmove according to Boundless
Simulation Area Mobility Model are presented in Fig. 5. The characteristics of these entities are consistent with their
counterparts in the previous mobility models. In this particular case, the correlation between the expected hitting time
and ρ2 is above 0.96 and the correlation between the average diffusion time is more than 0.92. As depicted in Fig. 6, similar
arguments hold for the results with the Gauss–Markov Mobility Model. The expected hitting time and the second singular
value of the matricized reachability tensor decrease as a function of the dynamism in the network as Fig. 6(a) and (c) show,
respectively. In this mobility model, the correlation between ρ2 and the expected hitting time is over 0.97. The correlation
between ρ2 and the average diffusion time on the other hand is approximately 0.93.

Additionally, we have performed simulations to see how the expected hitting time, the average diffusion time and ρ2
values vary with the number of the nodes in the network and whether our observation about the correlation still holds. In
this case, we used the random waypoint mobility in the node movements in various network area sizes with fixed speed
values vmin = 10m/s and vmax = 20m/s. Fig. 7 shows the characteristics of the expected hitting time, average diffusion time
and ρ2 with respect to the number of nodes in the network. From the figures, the similarities between the characteristics
of ρ2 and other entities are eminent. ρ2 is highly correlated both with the expected hitting time and the average diffusion
time, with the respective correlation values 0.93 and 0.89.
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(a) Expected hitting time. (b) Average diffusion time. (c) Second singular value of the reachability
tensor (ρ2).

Fig. 5. The results for Boundless-area Mobility Model. The correlation between the expected hitting time and ρ2 is again more than 0.95. The correlation
between the ρ2 and the average diffusion time is more than 0.92.

(a) Expected hitting time. (b) Average diffusion time.

(c) Second singular value of S (ρ2).

Fig. 6. The results for Gauss–Markov Mobility Model. The results are consistent with the other mobility models. The correlation between the expected
hitting time and ρ2 is very large, approximately 0.97. Considering the average diffusing time, the correlation is approximately 0.93.

Up until now, we have compared the expected hitting time and the average diffusion time with the ρ2 values separately.
When values obtained from all the simulation runs (more than 2000 runs) are considered all together, the correlation
coefficient forρ2 and the expected timebecomes slightlymore than 0.9. Forρ2 and the average diffusion time, the correlation
is 0.87.

In our evaluation, we assume that the transition of the randomwalk between the nodes or the transition between states
in theMarkov Chain or the diffusion of messages in the epidemic approach takes place at once, without any delay. However,
the time needed by a node to transmit a packet to a neighbor can be large especially if the packet size is large. In order
to capture the large packet size effect, the snapshots of the network can be taken at a lower rate, or with large intervals
between two consecutive snapshots. Still, the correlation values remain very large.

5. Conclusion and open problems

In this paper, we investigate the relationship between the dynamism in the network and the network connectivity in
mobile networks. To represent the dynamic networks, a novel combinatorial time-graph model is proposed. Instead of an
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(a) Expected hitting time. (b) Average diffusion time.

(c) Second singular value of S (ρ2).

Fig. 7. Expected hitting time, average diffusion time and ρ2 with respect to the number of nodes in the network. The prior observations are true for this
case as well. The correlation between the expected hitting time and ρ2 is 0.93 whereas the correlation between the average diffusion time and ρ2 is 0.91.

adjacency matrix, the time-graph is modeled by a 3-mode adjacency tensor, or three-dimensional array A. In this model,
slabs of the tensor correspond to the adjacency matrices of the snapshots of the network at discrete time instants. In a
time-graph, if vertex vi is connected to vertex vj at time tk, the entry Aijk in the tensor is 1. This tensor representation
allowed us to obtain the expected hitting time of a random walk that proceeds in the time-graph using non-homogeneous
Markov Chains and the average time for a message that diffuses in epidemic approach to spread to the entire network,
i.e. average diffusion time. Starting from A, we obtain another tensor which we refer to as the reachability tensor B. The
entry Bijk is set to 1 if a random walk starting from node vi can end up in node vj at time k; otherwise it is set to 0. Each
row of each slab of this tensor is normalized and then matricized or unfolded along the third mode (time axis), which is the
distinguished dimension of the time-graph inwhich the other twomodes represent the vertices. Our observations are based
on an extensive set of experiments and indicate that there is a significant correlation between the second singular value of
thematricized reachability tensor of a time-graph and the expected hitting time for randomwalks on that time-graph, above
0.9. For the epidemic approach, the correlation between this singular value and the average diffusion time is close to 0.87.
These are very high correlation values; therefore, the second singular value of the matricized reachability tensor is a good
indicator of connectivity for dynamic networks.

This study provides a connection between the structure and the properties of time-graphs and the network connectivity
in a dynamic network, which presents fundamental differences from the connectivity in fixed networks. To the best of
our knowledge, there is no prior study that makes a similar attempt. In addition, adjacency and reachability tensors can
potentially yield information that characterizes a wide range of dynamic network properties, such as average number of
clusters, expected cluster size, etc. As the eigenvalues of the tensors are understood properly, other structural elements
might also emerge that predict the connectivity of the networks that are defined by tensors. These issues are among the
many open problems that we plan to address in the future.

In this paper, we have showed that end-to-end connectivity in time-graphs can be predicted by the second singular value
of the matricized reachability tensor. In order to do that, we have used an extensive set of simulations to gather adjacency
information. An analysis that proves these claims theoretically rather than using empirical observations is an important
open problem. We plan to work on this problem in future work.
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