Genetics and Population Analysis

TeraPCA: a fast and scalable software package to
study genetic variation in tera-scale genotypes

Aritra Bose !'T, Vassilis Kalantzis %', Eugenia Kontopoulou ', Mai Elkady’,
Peristera Paschou 3* and Petros Drineas'

1Computer Science Department, Purdue University, West Lafayette, IN, 47907, USA and
2|BM Research, Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA and
3Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.

*To whom correspondence should be addressed. TEqual Contribution.
Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Principal Component Analysis (PCA) is a key tool in the study of population structure in human
genetics. As modern datasets become increasingly larger in size, traditional approaches based on loading
the entire dataset in the system memory (RAM) become impractical and out-of-core implementations are
the only viable alternative.

Results: We present TeraPCA, a C++ implementation of the Randomized Subspace lteration method to
perform PCA of large-scale datasets. TeraPCA can be applied both in-core and out-of-core and is able to
successfully operate even on commodity hardware with a system memory of just a few gigabytes. Moreover,
TeraPCA has minimal dependencies on external libraries and only requires a working installation of the
BLAS and LAPACK libraries. When applied to a dataset containing a million individuals genotyped on a
million markers, TeraPCA requires less than five hours (in multi-threaded mode) to accurately compute
the ten leading principal components. An extensive experimental analysis shows that TeraPCA is both fast
and accurate and is competitive with current state-of-the-art software for the same task.

Availability: Source code and documentation are both available at https:/github.com/aritra90/TeraPCA
Contact: ppaschou@purdue.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction that emerges by computing any reasonable notion of genotypic distance
between every pair of samples using the n genotyped loci results in the
observation that the leading PCs mirror geography, e.g. see (Novembre
et al., 2008; Wang et al., 2010; Paschou et al., 2014) for detailed
discussions and examples. This observation was leveraged by (Price
et al., 2006; Patterson et al., 2006; Price et al., 2010) to derive one of the
most established methods to account (and correct) for the confounding
effects of population stratification in genome-wide association studies
(GWAS). The method in (Price et al., 2006; Patterson et al., 2006;
Price et al., 2010) is essentially equivalent to using a small number of
leading PCs as covariates in order to check for associations between
genetic loci and affection status in statistical tests, and is implemented in
the EIGENSTRAT software package which is routinely used in GWAS
analyses to correct for population stratification. Other applications of

Principal Component Analysis (PCA) is perhaps the most fundamental
unsupervised linear dimensionality reduction technique. It was invented by
Pearson in the early 1900s (Pearson, 1901); and later reinvented and named
by Hotelling in the 1930s (Hotelling, 1933, 1936). In statistical parlance,
PCA converts a set of observations of possibly correlated variables into a set
of linearly uncorrelated (orthogonal) variables called principal components
(PCs). The seminal work of Luca Cavalli-Sforza and collaborators in the
late 1970s (Menozzi et al., 1978; Chisholm et al., 1995) pioneered the
application of PCA for the study of human genetic variation.

PCA analyses and plots appear in virtually every single paper that
analyzes human genetic variation in order to make inferences about
population structures. Given m samples genotyped on n genetic loci,

it is well-known that applying PCA on the m X m covariance matrix ; ; .]) .
PCA include the identification of sets of genetic loci that are ancestry-

informative or are under selective pressure (Paschou et al., 2007; Price

1

© The Author(s) (2019). Published by Oxford University Press. All rights reserved. For Permissions, please email:
journals.permissions@oup.com

6102 [Udy g0 uo Jasn Ateiqi] Ajistoaiun oAng Aq 6260SS/2S L Z19/SOIBWIOUIOIN/SE0 "0 | /I0P/10B11Sqe-|011iB-90UBAPE/SOIJBWIOUIOIG/WO09 dNo dlwapede//:sdjy Wol) papeojumod

Bose et al.

et al., 2006; Paschou et al., 2008); and, when combined with other lines
of evidence such as social structure and linguistics, the extraction of
complex population histories and demographic structures (Bose et al.,
2017). We also note that PCA extracts the fundamental features of a dataset
without complex computational modeling. Interestingly, even the output of
model-based, more complex, methods to detect population structure (such
as ADMIXTURE (Alexander and Novembre, 2009)) typically exhibits
high correlation with the output of PCA, rendering further support to the
significance of PCA in the analysis of human genetics data.

From a computational viewpoint, PCA essentially amounts to
computing eigenvectors of the m X m (normalized) covariance matrix
associated with the dataset at hand. When m does not exceed a few
thousands, all eigenvectors can be computed by appropriate dense
linear algebra routines in LAPACK, a Fortran 90 matrix factorization-
based library which is widely used for solving systems of linear
equations, least-squares problems, eigenvalue problems, and singular
value problems (Anderson et al., 1999). Matrix factorization-based dense
eigenvalue solvers return all m eigenvectors with a time complexity in the
order of O(m?), which becomes impractical as m, the number of samples,
increases. Practical applications of PCA in population genetics only
require the computation of those principal components (PCs) determined
by the eigenvectors associated with only a few (say 10-20) of the
largest eigenvalues. Computing a few of the leading eigenvalues and
associated eigenvectors of large (sparse or dense) matrices is typically
achieved by first projecting the original eigenvalue problem onto a low-
dimensional subspace which includes an invariant subspace associated
with the relevant eigenvectors. This low-dimensional subspace can be
formed in many different ways, e.g., by means of subspace iteration or
Krylov projection schemes and much work in the Numerical Analysis
community has been devoted in understanding the theoretical properties
of such approaches (Parlett, 1998; Saad, 2011). In particular, a variant
of the family of Krylov projection schemes, the so-called Implicitly
Restarted Arnoldi method (IRA), is the projection scheme of choice in
FlashPCA2 (Abraham et al., 2017), a software package which has been
shown to outperform other PCA software packages, both in terms of
memory usage and wall-clock time. On the other hand, recent advances
in the design and analysis of Randomized Numerical Linear Algebra
(RandNLA) (Drineas and Mahoney, 2016) algorithms have yielded novel
insights as well as fast and efficient alternatives to approximate the leading
principal components of large matrices (Halko et al., 2011; Musco and
Musco, 2015; Drineas and Mahoney, 2018; Drineas ef al., 2018). Indeed,
FastPCA (Galinsky et al., 2016) applied such randomized algorithms to
perform PCA analyses in population genetics data.

This paper presents TeraPCA, a C++ software package to perform
PCA of tera-scale genotypic datasets that can not fully reside in the
system memory. TeraPCA is essentially an out-of-core implementation of
the Randomized Subspace Iteration method (Rokhlin et al., 2010; Halko
et al., 2011) and features minimal dependencies to external! libraries.
As the amount of time spent on I/O typically dominates the wall-clock
time in out-of-core scenarios, TeraPCA builds a high-dimensional initial
approximation subspace by loading the dataset from secondary storage
exactly once. The dimension of this initial approximation subspace can be
controlled directly by the user. Each subsequent iteration of Randomized
Subspace Iteration “corrects” the initial subspace so that an invariant
subspace associated with the leading target eigenvectors is computed. The
dataset needs to be accessed twice in each iteration, but, fortunately, a
few steps of Randomized Subspace Iteration are typically sufficient in
practice in order to get highly accurate approximations to the leading

! In contrast to FlashPCA2 which relies on the IRA implementation on the
Spectra C++ library, TeraPCA comes with an in-house implementation of
the Randomized Subspace Iteration algorithm.

eigenvectors. Note here that the above idea is somewhat orthogonal to
the ideas underlying IRA, which builds the approximation subspace in
a vector-by-vector manner, thus necessitating a large number of dataset
fetches from secondary storage to even form an approximation subspace
whose dimension is equal to or slightly larger than the number of PCs that
we seek to approximate.

TeraPCA was tested extensively on both real (Human Genome
Diversity Panel, 1000 Genomes, etc.) and synthetic datasets. Our
synthetic datasets were generated via the Pritchard-Stephens-Donelly
(PSD) model (Pritchard et al., 2000; Gopalan et al., 2016). Our results
suggest that TeraPCA is both fast and accurate and in most cases
outperforms other out-of-core PCA libraries such as FlashPCA?2. Specific
highlights include the computation of the ten leading principal components
of a dataset of one million samples genotyped on one million genetic
markers (this dataset exceeds 3.5 TBs in uncompressed format) in about
13 hours (using a single thread) and in less than 4.5 hours (using 12 threads).

2 Methods
Simulated Datasets

The first group of the datasets used for our experiments was generated using
the Pritchard-Stephens-Donelly’s (PSD) model of simulating genotypes.
In particular, a recent study (Gopalan et al., 2016) simulated genotypic
data by obtaining individual ancestry proportions from the PSD model to
fit the 1000 Genomes dataset and then modelling the per-population allele
frequencies using Wright’s F's7 and the Weir & Cockerham estimate (Weir
and Cockerham, 1984). We developed a multi-threaded C++ package
which is essentially an efficient implementation of the R code developed
in Tera-Structure (Gopalan et al., 2016). We generated various datasets
in order to evaluate TeraPCA’s performance, with the number of markers
ranging from 100,000 to 1,000,000 and the number of samples ranging
from 5,000 to 1,000,000.

Table 1. Our data sets (simulated and real)

Dataset Size Size # Samples # SNPs
(PEDfile) (BED file)
S1 (simulated) 19GB 120 MB 5,000 1,000,000

Sa (simulated) 38 GB 239 MB 10,000 1,000,000
Ss (simulated) 373 GB 24 GB 100,000 1,000,000
Sy (simulated) 1.9TB 117 GB 500,000 1,000,000
Ss (simulated) 3.7TB 233 GB 1,000,000 1,000,000
Se (simulated) 38 GB 2.4 GB 100,000 100,000

S7 (simulated) 150 GB 9.4 GB 2,000 20,000,000
HGDP 615MB 39MB 1,043 154,417
1000 Genomes 8.4 GB 483 MB 2,504 808,704
PRK 2GB 126 MB 4,706 111,831
T2D 1.8GB 111 MB 6,370 72,457

Real Datasets

The Human Genome Diversity Panel (HGDP) dataset consists of 1,043
individuals genotyped at 660,734 SNPs, across 51 populations across
Africa, Europe, Middle East, South and Central Asia, East Asia, Oceania,
and the Americas (Cann et al., 2002). We ran Quality Control (QC) on
the data by filtering SNPs with minor allele frequency below 0.01 and
subsequently pruning for LD using a window size of 1000 kb. Moreover,
we set the variance inflation factor to 50 and set 72 > 0.2, thus retaining
154,471 variants. We applied the same parameters for LD pruning on

6102 [Udy g0 uo Jasn Ateiqi] Ajistoaiun oAng Aq 6260SS/2S L Z19/SOIBWIOUIOIN/SE0 "0 | /I0P/10B11Sqe-|011iB-90UBAPE/SOIJBWIOUIOIG/WO09 dNo dlwapede//:sdjy Wol) papeojumod

TeraPCA

the 1000 Genomes dataset which has 2,504 individuals sampled from
26 different populations across all continents genotyped at 39 million
SNPs. After QC, we retained approximately 808,704 SNPs and ran our
experiments on the pruned dataset.

We also tested the performance of TeraPCA on case-control data,
which are ubiquitous in population genetics. We used the Wellcome
Trust Case Control Consortium’s (WTCCC) Type 2 Diabetes (T2D) and
Parkinson’s (PRK) datasets. The T2D dataset had 6,371 individuals (1,816
cases and 4,555 controls) genotyped on 313,654 SNPs and the PRK
dataset had 5,000 individuals (2,000 cases and 3,000 controls) genotyped
on 500,000 SNPs. We removed related samples from these datasets and
pruned them using the aforementioned QC parameters resulting in datasets
with 6,370 individuals genotyped on 72,457 SNPs for T2D and 4,706
individuals genotyped on 111,831 SNPs for Parkinson’s.

TeraPCA

TeraPCA first normalizes the genotypes using the same procedure
that was used by both FlashPCA (Abraham and Inouye, 2014) and
FastPCA (Galinsky et al., 2016) (see our supplementary material for
details) and then applies Randomized Subspace Iteration in an out-of-core
fashion.

The main parameters of TeraPCA are as follows (see our supplementary
material for more details and our code release for full documentation):

1. Number of PCs to be computed (denoted by k). Default value is set
to k := 10.

2. Number of contiguous rows of the SNP-major input matrix fetched
from the secondary storage at each time unit (denoted by /3). This can
be user-defined or automatically determined based on the available
system memory.

3. Dimension of the initial approximation subspace (denoted by s).
Default value is set to s := 2k.

4. Convergence tolerance (denoted by tol). Default value is set to tol :=
le — 3.

The wall-clock time of TeraPCA is affected by all of the above
parameters. Clearly, reducing tol or increasing k results in an increase of
the wall-clock time. Using a higher-dimensional approximation subspace,
i.e., increasing s, might reduce the corresponding wall-clock time as it
typically enhances convergence towards the k-leading eigenvectors. On
the other hand, increasing the value of s also increases the amount of
floating-point operations performed. Finally, since only a part of the dataset
can fit in the system memory at any time unit, the choice of 3 is typically
determined automatically by TeraPCA based on the size of the system
memory. The total amount of time spent on I/O is largely independent of
the value of 3 but we have observed that the value of 3 has an effect on
the wall-clock time of the LAPACK routines.

3 Implementation and Discussion

The performance of TeraPCA was tested on both simulated and real-
world genotypic datasets. All our experiments were performed at Purdue’s
Brown cluster on a dedicated node which features an Intel Xeon Gold
6126 processor running at 2.6 GHz with 96 GB of RAM and a 64-bit
CentOS Linux 7 operating system. Table 1 lists the number of samples,
number of SNPs, and size of each dataset. Datasets S through S7 are
synthetic datasets and the remaining ones are real-world datasets. This
section provides comparisons between TeraPCA and FlashPCA2. The
latter has already been shown to be faster than previous methods such
as FlashPCA (Abraham and Inouye, 2014), FastPCA (Galinsky et al.,
2016), etc. The results reported throughout the remainder of this section
were obtained by setting the amount of system memory made available to

L]
0.01 ik o
>y
- °
N’A ¢ *
0.00 ‘Qﬁ‘ i
o~
O
o
-0.01
A ACB FIN MSL
ASW E GBR MXL .
o BEB GIH # PEL
—0.02 & cpx e GWD PL
& CEU e BS e PUR
e CHB ¢ MU + sTU
-0.03 CHs v JPT > TSI
> CLM KHV < YRI]
ESN A LWK ¢
-0.03 -0.02 -0.01 0.00 0.01

PC1

Fig. 1. Projection of the samples of the 1000 Genomes dataset on the top two left singular
vectors (PC1 and PC2), as computed by TeraPCA.

TeraPCA (as well as FlashPCA?2) to 2 GBs. This is precisely the amount
of memory allowed to FlashPCA2 in prior work.

3.1 Synthetic datasets

Datasets Sp through S5 in Table 1 have a fixed number of SNPs (equal to
one million) and a varying number of samples (from 5,000 to one million).
On the other hand, dataset Sg was used to fine-tune prior state-of-the-art
methods and contains 100,000 samples genotyped on 100,000 SNPs. S7
was used to test the performance of TeraPCA on extremely rectangular
matrices, where the number of SNPs heavily outnumbers the number of
individuals.

We first consider the plots of the three leading principal components
returned by both TeraPCA and FlashPCA?2 for dataset Sg (see Figure 1
in supplementary material). TeraPCA and FlashPCA2 show a complete
visual agreement with each other and both libraries agree with the
expected outcome of the PSD model. For this particular example, TeraPCA
terminated in just under 40 minutes, while FlashPCA2 required 141
minutes?.

Table 2 lists the wall-clock times achieved by TeraPCA when applied
on datasets S through S7. For datasets S4 and Sy, which were the
largest ones in our collection, TeraPCA terminated after 7.3 and 13.2 hours
respectively. On the other hand, FlashPCA2 did not terminate within the
50 hours limit that we imposed. TeraPCA outperformed FlashPCA2 on
all synthetic datasets, with a speedup that ranged between 1.3 and 4.5, at
least for those datasets where FlashPCA2 terminated within our 50 hour
limit. We note that for all synthetic datasets the leading PCs returned by
TeraPCA and FlashPCA2 showed perfect correlation as measured by the
Pearson correlation coefficient (equal to one in all cases). To further test
TeraPCA’s performance on datasets where the number of SNPs heavily
outnumbers the number of individuals, we applied it to S7 and observed

2 To be fair in our comparisons between TeraPCA and FlashPCA2, we
performed multiple runs of FlashPCA2 on dataset Sg in order to explore
and understand its properties. In particular, we varied the convergence
criterion in FlashPCA2 and recorded the resulting trade-off between wall-
clock time and digits of accuracy for the top ten computed eigenvalues.
Fixing the convergence tolerance in FlashPCA?2 to three digits of accuracy
and the maximum number of iterations of FlashPCA2 to 100 was the best
choice in terms of the tradeoff between running time and accuracy (see
Supplementary text for more details)

6102 [Udy g0 uo Jasn Ateiqi] Ajistoaiun oAng Aq 6260SS/2S L Z19/SOIBWIOUIOIN/SE0 "0 | /I0P/10B11Sqe-|011iB-90UBAPE/SOIJBWIOUIOIG/WO09 dNo dlwapede//:sdjy Wol) papeojumod

Bose et al.

that even in a heavily under-determined system, TeraPCA outperformed
FlashPCAZ2 by a factor of 2.9, with similar accuracy guarantees.

3.2 Real datasets

We first considered the Human Genome Diversity Panel (HGDP)
dataset (Cann et al., 2002). TeraPCA was marginally faster than
FlashPCA2 and both libraries required about seven seconds. A plot of
the projection of the HGDP dataset along the two leading PCs computed
by TeraPCA is shown in Figure 2 in the supplementary material.Given the
relatively small size of this dataset, we were able to compute the exact
ten leading eigenvectors using LAPACK. Figure 2 reports the entry-wise

Value

200 400 600 800 1000
Index

Fig. 2. Entry-wise relative error of the top ten leading eigenvectors returned by TeraPCA
for the HGDP dataset, compared to the eigenvectors returned by LAPACK. The y-axis
shows the relative error; recall that each eigenvector has 1,043 entries. We observe that the

relative error is roughly the same for each entry of a specific eigenvector.

error of the ten leading eigenvectors returned by TeraPCA. As expected,
eigenvectors associated with the largest eigenvalues are captured more
accurately since they converge faster.

In addition, Supplementary Table 1 reports the relative and absolute
errors of the ten leading eigenvalues returned by TeraPCA and FlashPCA2.
For TeraPCA, the (much) higher accuracy in the approximation of the
three-four leading eigenvalues is due to the fact that these approximate
eigenvalues kept improving as Randomized Subspace Iteration kept
iterating to approximate the trailing eigenvalues and eigenvectors. On the
other hand, the accuracy in the approximation of the eigenvalues returned
by FlashPCA2 was somewhat uniform for all eigenvalues.

TeraPCA and FlashPCA2 showed similar qualitative and computational
performance on the pruned 1000 Genomes dataset (see Figure 1), with
FlashPCA2 terminating slightly faster than TeraPCA. Notice that this
dataset is also the one in which the number of SNPs outnumbered the
number of individuals by the largest factor.

PCA is an essential tool to detect population stratication in GWAS.
In order to evaluate TeraPCA’s performance on real-world case-control
studies, we applied it on WTCCC’s T2D and PRK datasets. Like other
real-world datasets, both FlashPCA2 and TeraPCA performed similarly,
needing roughly the same wall-clock time. Execution of TeraPCA on these
datasets can also be done in-core, as they fit in the system memory, leading
to comparatively faster computation.

Table 2. Wall-clock running times comparisons for
the datasets of Table 1 using a single thread and 2
GBs of system memory (* indicates no convergence

after 50 hrs).

Dataset TeraPCA FlashPCA2 Speed-up
S 26.2 mins 33.3 mins 1.27
Sa 393 mins 87.5 mins 2.22
S3 7.9 hrs 35.6 hrs 4.50
Sa 7.3 hrs n/a* 0o
Ss 132 hrs n/a* [
Se 39.5 mins 141.1 mins 3.57
S~ 373 mins 106.5 mins 2.86
HGDP 6.5 secs 7.7 secs 1.22
1000 Genomes 4.3 mins 3.5 mins 0.81
T2D 96 secs 119 secs 1.24
PRK 76 secs 73 secs 0.96

3.3 Multithreading

The wall-clock times of TeraPCA and FlashPCA2 can significantly
improve by executing the associated linear algebra computations using
more than one threads. This is indeed the most obvious way to speed up
software such as ours. To test the performance of TeraPCA as a function
of the number of threads, we focused on datasets S1, S2, S4, Se, S7,
and the 1000 Genomes dataset. The number of threads was set to
4, 8, and 12 and the speedups reported in Figure 3 are against the
single-thread execution of TeraPCA. Generally speaking, we observed a
1.6x-2.8x speedup, which is somewhat sub-optimal. The reason underlying
this non-optimality is that we used multithreading only for the linear
algebraic operations. However, much of the wall-clock time is spent on
1/O operations in order to load the dataset from secondary memory, a
procedure that cannot be multithreaded. We emphasize that FlashPCA2
did not demonstrate comparable improvements when multi-threading was
enabled. In particular, when applied to the dataset Sg, the wall-clock time
of FlashPCA2 reduced only by two minutes, i.e., from 141 minutes to 139

minutes.
8 =5
=5
Sy
S
25 + 6
-8
1000 Genomes
o,
=
2,
w0
1.5 -

W ‘ ‘ ‘ ‘
2 4 6 8 10 12

Number of threads

Fig. 3. Speedup of TeraPCA over single-threaded execution.

In all of the above experiments we set s := 2k and k := 10. Finally,
Supplementary Figure 6 reports the amount of time required to multiply
the (normalized) covariance matrix by a set of s vectors using the DGEMM
BLAS routine of MKL and a varying number of threads for different values

6102 [Udy g0 uo Jasn Ateiqi] Ajistoaiun oAng Aq 6260SS/2S L Z19/SOIBWIOUIOIN/SE0 "0 | /I0P/10B11Sqe-|011iB-90UBAPE/SOIJBWIOUIOIG/WO09 dNo dlwapede//:sdjy Wol) papeojumod

TeraPCA

of s and § for datasets S¢ and HGDP. It is worth noting that while an
exhaustive analysis lies outside the goals of this paper, it is easy to verify
that doubling the value of s does not double the amount of time required
to perform the multiplication, while larger values of s also lead to higher
speedups when multiple threads are used. Similarly, very small values of
(3 are likely to penalize the performance of DGEMM due to non-optimal
cache utilization.

4 Summary and future work

In this paper we presented TeraPCA, a C++ library to perform out-of-core
PCA analysis of massive genomic datasets. It is based on Randomized
Subspace Iteration, building upon principled and theoretically sound
methods to approximate the top principal components of massive
covariance matrices. TeraPCA returns highly accurate approximations
to the top principal components, while taking advantage of modern
computer architectures that support multi-threading and it has minimal
dependencies to external libraries. TeraPCA can be applied both in-core
and out-of-core and is able to successfully operate even on personal
workstations with a system memory of just a few gigabytes. Numerical
experiments performed on synthetic and real datasets demonstrate that
TeraPCA performs similarly or better when compared to state-of-the-art
software packages such as FlashPCAZ2, on a single thread and significantly
better with multi-threading.

Future work will focus on implementing a distributed memory version
of TeraPCA using the Message Passing Interface (MPI) standard. Another
interesting research direction would be to combine TeraPCA with block
Krylov subspace techniques.

5 Author’s contributions

AB, VK, EK, and PD conceived and designed the work. AB, VK, and
EK developed the TeraPCA C++ package. EK, ME, and AB developed
the C++ package to generate the simulated data sets from the PSD model.
PD and PP participated in and discussed analyses. AB and VK ran the
experiments. AB, VK, EK, PD, and PP wrote and revised the manuscript.

6 Funding

This work has been partially supported by NSF [IIS-1661760, IIS-
1661756, 11S-1715202] to PP and PD.

7 Acknowledgements

The authors are grateful to P. Gopalan and W. Hao for sharing their R script
to generate the simulated data sets as well as for their valuable comments.
The authors are also thankful to P. Anappindi for contributing to the code
in the pilot phase.

References

Abraham, G. and Inouye, M. (2014). Fast principal component analysis of large-scale
genome-wide data. PLOS ONE, 9(4), 1-5.

Abraham, G., Qiu, Y., and Inouye, M. (2017). Flashpca2: principal component
analysis of biobank-scale genotype datasets. Bioinformatics, 33(17), 2776-2778.

Alexander, D. H. and Novembre, J. & Lange, K. (2009). Fast model-based estimation
of ancestry in unrelated individuals. Genome Res.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D.
(1999). LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition.

Bose, A., Platt, D. E., Parida, L., Paschou, P., and Drineas, P. (2017). Dissecting
population substructure in india via correlation optimization of genetics and
geodemographics. bioRxiv.

Cann, H. M., de Toma, C., Cazes, L., Legrand, M.-F., Morel, V., Piouffre, L.,
Bodmer, J., Bodmer, W. F., Bonne-Tamir, B., Cambon-Thomsen, A., Chen, Z.,
Chu, J., Carcassi, C., Contu, L., Du, R., Excoffier, L., Ferrara, G. B., Friedlaender,
J. S., Groot, H., Gurwitz, D., Jenkins, T., Herrera, R. J., Huang, X., Kidd, J., Kidd,

K. K., Langaney, A., Lin, A. A., Mehdi, S. Q., Parham, P., Piazza, A., Pistillo,
M. P, Qian, Y., Shu, Q., Xu, J., Zhu, S., Weber, J. L., Greely, H. T., Feldman,
M. W., Thomas, G., Dausset, J., and Cavalli-Sforza, L. L. (2002). A human genome
diversity cell line panel. Science, 296(5566), 261-262.

Chisholm, B., Cavalli-Sforza, L. L., Menozzi, P., and Piazza, A. (1995). The History
and Geography of Human Genes. The Journal of Asian Studies, 54(2), 490.

Drineas, P. and Mahoney, M. W. (2016). RandNLA: Randomized Numerical Linear
Algebra. Communications of the ACM, 59(6), 80-90.

Drineas, P. and Mahoney, M. W. (2018). Lectures on Randomized Numerical Linear
Algebra, The Mathematics of Data, IAS/Park City Math. Ser., volume 25, pages
1-45. Amer. Math. Soc., Providence, RI.

Drineas, P, Ipsen, I. C. F, Kontopoulou, E., and Magdon-Ismail, M. (2018).
Structural convergence results for low-rank approximations from block krylov
spaces. SIAM Journal of Matrix Analysis and Applications, to appear.

Galinsky, K. J., Bhatia, G., Loh, P-R., Georgiev, S., Mukherjee, S., Patterson, N. J.,
and Price, A. L. (2016). Fast principal-component analysis reveals convergent

evolution of adh1b in europe and east asia. The American Journal of

Human Genetics, 98(3), 456-472.

Gopalan, P., Hao, W., Blei, D. M., and Storey, J. D. (2016). Scaling probabilistic
models of genetic variation to millions of humans. Nat Genet, 48(12), 1587-1590.
27819665[pmid].

Halko, N., Martinsson, P. G., and Tropp, J. A. (2011). Finding structure
with randomness: Probabilistic algorithms for constructing approximate matrix
decompositions. SIAM Review, 53(2), 217-288.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 24(6), 417-441.

Hotelling, H. (1936). Relations Between Two Sets of Variates. Biometrika, 28(3/4),
321-377.

Menozzi, P, Piazza, A., and Cavalli-Sforza, L. (1978). Synthetic maps of human
gene frequencies in europeans. Science, 201(4358), 786-792.

Musco, C. and Musco, C. (2015). Randomized block krylov methods for stronger and
faster approximate singular value decomposition. In C. Cortes, N. D. Lawrence,
D.D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 1396—1404. Curran Associates, Inc.

Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A. R., Auton, A., Indap, A.,
King, K. S., Bergmann, S., Nelson, M. R., Stephens, M., and Bustamante, C. D.
(2008). Genes mirror geography within europe. Nature, 456, 98 EP —.

Parlett, B. (1998). The Symmetric Eigenvalue Problem. Society for Industrial and
Applied Mathematics.

Paschou, P., Ziv, E., Burchard, E. G., Choudhry, S., Rodriguez-Cintron, W.,
Mahoney, M. W., and Drineas, P. (2007). Pca-correlated snps for structure
identification in worldwide human populations. PLOS Genetics, 3(9), 1-15.

Paschou, P., Drineas, P., Lewis, J., Nievergelt, C. M., Nickerson, D. A., Smith,
J. D, Ridker, P. M., Chasman, D. I, Krauss, R. M., and Ziv, E. (2008). Tracing
sub-structure in the european american population with pca-informative markers.
PLOS Genetics, 4(7), 1-13.

Paschou, P., Drineas, P., Yannaki, E., Razou, A., Kanaki, K., Tsetsos,
F., Padmanabhuni, S. S., Michalodimitrakis, M., Renda, M. C., Pavlovic,
S., Anagnostopoulos, A., Stamatoyannopoulos, J. a., Kidd, K. K., and
Stamatoyannopoulos, G. (2014). Maritime route of colonization of Europe.
Proceedings of the National Academy of Sciences of the United States of America,
111(25), 9211-9216.

Patterson, N., Price, A. L., and Reich, D. (2006). Population structure and
eigenanalysis. PLOS Genetics, 2(12), 1-20.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11), 559-572.

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A.,
and Reich, D. (2006). Principal components analysis corrects for stratification in
genome-wide association studies. Nature Genetics, 38, 904 EP —. Article.

Price, A. L., Zaitlen, N. A., Reich, D., and Patterson, N. (2010). New approaches
to population stratification in genome-wide association studies. Nat Rev Genet,
11(7), 459-463. 20548291 [pmid].

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of
population structure using multilocus genotype data. Genetics, 155(2), 945-959.
10835412[pmid].

Rokhlin, V., Szlam, A., and Tygert, M. (2010). A randomized algorithm for principal
component analysis. SIAM Journal on Matrix Analysis and Applications, 31(3),
1100-1124.

Saad, Y. (2011). Numerical Methods for Large Eigenvalue Problems. Society for
Industrial and Applied Mathematics.

Wang, C., A Szpiech, Z., Degnan, J., Jakobsson, M., J Pemberton, T., Hardy, J., B
Singleton, A., and A Rosenberg, N. (2010). Comparing Spatial Maps of Human
Population-Genetic Variation Using Procrustes Analysis, volume 9. Statistical
applications in genetics and molecular biology.

6102 [Udy g0 uo Jasn Ateiqi] Ajistoaiun oAng Aq 6260SS/2S L Z19/SOIBWIOUIOIN/SE0 "0 | /I0P/10B11Sqe-|011iB-90UBAPE/SOIJBWIOUIOIG/WO09 dNo dlwapede//:sdjy Wol) papeojumod

Bose et al.

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btz157/5430929 by Bukkyo University Library user on 08 April 2019

