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Abstract

Principal Components Analysis (PCA) is often used as a feature extraction proce-
dure. Given a matrix X∈ R

n×d, whose rows representn data points with respect
to d features, the topk right singular vectors of X (the so-calledeigenfeatures),
are arbitrary linear combinations of all available features. The eigenfeatures are
very useful in data analysis, including the regularizationof linear regression. En-
forcing sparsity on the eigenfeatures, i.e., forcing them to be linear combinations
of only asmallnumber of actual features (as opposed to all available features), can
promote better generalization error and improve the interpretability of the eigen-
features. We present deterministic and randomized algorithms that construct such
sparse eigenfeatures whileprovablyachieving in-sample performance comparable
to regularized linear regression. Our algorithms are relatively simple and practi-
cally efficient, and we demonstrate their performance on several data sets.

1 Introduction

Least-squares analysis was introduced by Gauss in 1795 and has since has bloomed into a staple of
the data analyst. Assume the usual setting withn tuples(x1, y1), . . . , (xn, yn) in R

d, wherexi are
points andyi are targets. The vector of regression weightsw∗ ∈ R

d minimizes (over allw ∈ R
d)

the RMS in-sample error

E(w) =

√

√

√

√

n
∑

i=1

(xi · w − yi)2 = ‖Xw − y‖
2
.

In the above, X∈ R
n×d is thedata matrixwhose rows are the vectorsxi (i.e., Xij = xi[j]); and,

y ∈ R
n is the target vector (i.e.,y[i] = yi). We will use the more convenient matrix formulation1,

namely given X andy, we seek a vectorw∗ that minimizes‖Xw − y‖
2
. The minimal-norm vector

w∗ can be computed via the Moore-Penrose pseudo-inverse of X:w∗ = X+y. Then, the optimal
in-sample error is equal to:

E(w∗) = ‖y − XX+y‖
2
.

1For the sake of simplicity, we assumed ≤ n and rank(X) = d in our exposition; neither assumption is
necessary.
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When the data is noisy and X is ill-conditioned, X+ becomes unstable to small perturbations and
overfitting can become a serious problem. Practitioners deal with such situations by regularizing
the regression. Popular regularization methods include, for example, the Lasso [28], Tikhonov
regularization [17], and top-k PCA regression or truncated SVD regularization [21]. In general,
such methods are encouraging some form of parsimony, thereby reducing the number of effective
degrees of freedom available to fit the data. Our focus is on top-k PCA regression which can be
viewed as regression onto the top-k principal components, or, equivalently, the top-k eigenfeatures.
The eigenfeatures are the top-k right singular vectors of X and are arbitrary linear combinations
of all available input features. The question we tackle is whether one can efficiently extractsparse
eigenfeatures(i.e., eigenfeatures that are linear combinations of only asmall number of the available
features) that have nearly the same performance as the top-k eigenfeatures.

Basic notation. A, B, . . . are matrices;a,b, . . . are vectors;i, j, . . . are integers; In is then × n
identity matrix;0m×n is them × n matrix of zeros;ei is the standard basis (whose dimensionality
will be clear from the context). For vectors, we use the Euclidean norm‖ · ‖

2
; for matrices, the

Frobenius and the spectral norms:‖X‖2

F =
∑

i,j X2
ij and ‖X‖

2
= σ1 (X), i.e., the largest singular

value of X.

Top-k PCA Regression. Let X = UΣVT be the singular value decomposition of X, where U
(resp. V) is the matrix of left (resp. right) singular vectors of X with singular values in the diagonal
matrix Σ. For k ≤ d, let Uk, Σk, and Vk contain only the top-k singular vectors and associated
singular values. The best rank-k reconstruction of X in the Frobenius norm can be obtained from
this truncated singular value decomposition as Xk = UkΣkVT

k. Thek right singular vectors in Vk
are called the top-k eigenfeatures. The projections of the data points onto the topk eigenfeatures are
obtained by projecting thexi’s onto the columns of Vk to obtain Fk = XV k = UΣVTVk = UkΣk.
Now, each data point (row) in Fk only hask dimensions. Each column of Fk contains a particular
eigenfeature’s value for every data point and is a linear combination of the columns of X.

The top-k PCA regression uses Fk as the data matrix andy as the target vector to produce regression
weightsw∗

k = F+

k y. The in-sample error of thisk-dimensional regression is equal to

‖y − Fkw∗

k‖2
= ‖y − FkF+

k y‖
2

= ‖y − UkΣkΣ
−1

k UT
ky‖2

= ‖y − UkUT
ky‖2

.

The weightsw∗

k arek-dimensional and cannot be applied to X, but the equivalent weights Vkw∗

k

can be applied to X and they have the same in-sample error withrespect to X:

E(Vkw
∗

k) = ‖y − XV kw
∗

k‖2
= ‖y − Fkw∗

k‖2
= ‖y − UkUT

ky‖2
.

Hence, we will refer to bothw∗

k and Vkw∗

k as the top-k PCA regression weights (the dimension will
make it clear which one we are talking about) and, for simplicity, we will overloadw∗

k to refer to both
these weight vectors (the dimension will make it clear which). In practice,k is chosen to measure
the “effective dimension” of the data, and, typically,k ≪ rank(X) = d. One way to choosek is so
that ‖X − Xk‖F ≪ σk(X) (the “energy” in thek-th principal component is large compared to the
energy in all smaller principal components). We do not arguethe merits of top-k PCA regression;
we just note that top-k PCA regression is a common tool for regularizing regression.

Problem Formulation. Given X ∈ R
n×d, k (the number of target eigenfeatures for top-k PCA

regression), andr > k (the sparsity parameter), we seek to extract a set of at mostk sparse eigenfea-
turesV̂k which use at mostr of the actual dimensions. Let̂Fk = XV̂k ∈ R

n×k denote the matrix
whose columns are thek extracted sparse eigenfeatures, which are a linear combination of a set of at
mostr actual features. Our goal is to obtain sparse features for which the vector of sparse regression

weightsŵk = F̂
+

k y results in an in-sample error‖y − F̂k F̂
+

k y‖
2

that is close to the top-k PCA
regression error‖y − FkF+

k y‖
2
. Just as with top-k PCA regression, we can define the equivalent

d-dimensional weightŝVkŵk; we will overloadŵk to refer to these weights as well.

Finally, we conclude by noting that while our discussion above has focused on simple linear regres-
sion, the problem can also be defined for multiple regression, where the vectory is replaced by a
matrix Y ∈ R

n×ω, with ω ≥ 1. The weight vectorw becomes a weight matrix, W, where each
column of W contains the weights from the regression of the corresponding column of Y onto the
features. All our results hold in this general setting as well, and we will actually present our main
contributions in the context of multiple regression.
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2 Our contributions

Recall from our discussion at the end of the introduction that we will present all our results in the
general setting, where the target vectory is replaced by a matrix Y∈ R

n×ω. Our first theorem
argues that there exists a polynomial-time deterministic algorithm that constructs a feature matrix
F̂k ∈ R

n×k, such that each feature (column ofF̂k) is a linear combination ofat mostr actual
features (columns) from X and results in small in-sample error . Again, this should be contrasted
with top-k PCA regression, which constructs a feature matrix Fk, such that each feature (column of
Fk) is a linear combination ofall features (columns) in X. Our theorems argue that the in-sample
error of our features is almost as good as the in-sample errorof top-k PCA regression, which uses
dense features.
Theorem 1 (Deterministic Feature Extraction). LetX ∈ R

n×d andY ∈ R
n×ω be the input matrices

in a multiple regression problem. Letk > 0 be a target rank for top-k PCA regression onX andY.
For anyr > k, there exists an algorithm that constructs a feature matrixF̂k = XV̂k ∈ R

n×k, such
that every column of̂Fk is a linear combination of (the same) at mostr columns ofX , and

∥

∥

∥
Y − XŴk

∥

∥

∥

F
= ‖Y − F̂k F̂

+

k Y‖F ≤ ‖Y − XW∗

k‖F +

(

1 +

√

9k

r

)

‖X − Xk‖F
σk(X)

‖Y‖
2
.

(σk(X) is thek-th singular value ofX.) The running time of the proposed algorithm isT (Vk) +
O
(

ndk + nrk2
)

, whereT (Vk) is the time required to compute the matrixVk, the top-k right sin-
gular vectors ofX .

Theorem 1 says that one can constructk features with sparsityO(k) and obtain a comparble regres-
sion error to that attained by the dense top-k PCA features, up to additive term that is proportional
to ∆k = ‖X − Xk‖F /σk(X).

To construct the features satisfying the guarantees of the above theorem, we first employ the Al-
gorithmDSF-Select (see Table 1 and Section 4.3) to selectr columns of X and form the matrix
C ∈ R

n×r. Now, letΠC,k (Y) denote the best rank-k approximation (with respect to the Frobenius
norm) to Y in the column-span of C. In other words,ΠC,k (Y) is a rank-k matrix that minimizes
‖Y − ΠC,k (Y) ‖

F
over all rank-k matrices in the column-span of C. Efficient algorithms are known

for computingΠC,k(X) and have been described in [2]. GivenΠC,k(Y), the sparse eigenfeatures
can be computed efficiently as follows: first, setΨ = C+ΠC,k(Y). Observe that

CΨ = CC+ΠC,k(Y) = ΠC,k(Y).

The last equality follows because CC+ projects onto the column span of C andΠC,k(Y) is already
in the column span of C.Ψ has rank at mostk becauseΠC,k(Y) has rank at mostk. Let the
SVD of Ψ be Ψ = UψΣψVT

ψ and set̂Fk = CUψΣψ ∈ R
n×k. Clearly, each column of̂Fk is a

linear combination of (the same) at mostr columns of X (the columns in C). The sparse features
themselves can also be obtained becauseF̂k = XV̂k, soV̂k = X+F̂k.

To prove that̂Fk are a good set of sparse features, we first relate the regression error from usinĝFk
to how wellΠC,k(Y) approximates Y.

‖Y − ΠC,k(Y)‖
F

= ‖Y − CΨ‖F = ‖Y − CUψΣψVT
ψ‖F = ‖Y − F̂kVT

ψ‖F ≥ ‖Y − F̂k F̂
+

k Y‖F .

The last inequality follows becausêF
+

k Y are the optimal regression weights for the featuresF̂k. The
reverse inequality also holds becauseΠC,k(Y) is the best rank-k approximation to Y in the column
span of C. Thus,

‖Y − F̂k F̂
+

k Y‖F = ‖Y − ΠC,k(Y)‖
F

.

The upshot of the above discussion is that if we can find a matrix C consisting of columns of X for
which ‖Y − ΠC,k(Y)‖

F
is small, then we immediately have good sparse eigenfeatures. Indeed, all

that remains to complete the proof of Theorem 1 is to bound‖Y − ΠC,k(Y)‖
F

for the columns C
returned by the AlgorithmDSF-Select.

Our second result employs the AlgorithmRSF-Select (see Table 2 and Section 4.4) to selectr
columns of X and again form the matrix C∈ R

n×r. One then proceeds to constructΠC,k(Y) and
F̂k as described above. The advantage of this approach is simplicity, better efficiency and a slightly
better error bound, at the expense of logarithmically worsesparsity.
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Theorem 2 (Randomized Feature Extraction). Let X ∈ R
n×d andY ∈ R

n×ω be the input matrices
in a multiple regression problem. Letk > 0 be a target rank for top-k PCA regression onX and
Y. For anyr > 144k ln(20k), there exists a randomized algorithm that constructs a feature matrix
F̂k = XV̂k ∈ R

n×k, such that every column of̂Fk is a linear combination of at mostr columns
of X, and, with probability at least .7 (over random choices madein the algorithm),

∥

∥

∥
Y − XŴk

∥

∥

∥

F
= ‖Y − F̂k F̂

+

k Y‖F ≤ ‖Y − XW∗

k‖F +

√

36k ln(20k)

r

‖X − Xk‖F
σk(X)

‖Y‖
2
.

The running time of the proposed algorithm isT (Vk) + O(dk + r log r).

3 Connections with prior work

A variant of our problem is the identification of a matrix C consisting of a small number (sayr)
columns of X such that the regression of Y onto C (as opposed tok features from C) gives small in-
sample error. This is the sparse approximation problem, where the number of non-zero weights in the
regression vector is restricted tor. This problem is known to be NP-hard [25]. Sparse approximation
has important applications and many approximation algorithms have been presented [29, 9, 30];
proposed algorithms are typically either greedy or are based on convex optimization relaxations of
the objective. An important difference between sparse approximation and sparse PCA regression is
that our goal is not to minimize the error under a sparsity constraint, but to match the top-k PCA
regularized regression under a sparsity constraint. We argue that it is possible to achieve a provably
accurate sparse PCA-regression, i.e., use sparse featuresinstead of dense ones.

If X = Y (approximating X using the columns of X), then this is the column-based matrix recon-
struction problem, which has received much attention in existing literature [16, 18, 14, 26, 5, 12, 20].
In this paper, we study the more general problem where X6= Y, which turns out to be considerably
more difficult.

Input sparseness is closely related to feature selection and automatic relevance determination. Re-
search in this area is vast, and we refer the reader to [19] fora high-level view of the field. Again,
the goal in this area is different than ours, namely they seekto reduce dimensionality and improve
out-of-sample error. Our goal is to provide sparse PCA features that are almost as good as the ex-
act principal components. While it is definitely the case that many methods outperform top-k PCA
regression, especially ford ≫ n, this discussion is orthogonal to our work.

The closest result to ours in prior literature is the so-called rank-revealing QR (RRQR) factoriza-
tion [8]. The authors use a QR-like decomposition to select exactly k columns of X and compare
their sparse solution vector̂wk with the top-k PCA regularized solutionw∗

k. They show that

‖w∗

k − ŵk‖2
≤
√

k(n − k) + 1
‖X − Xk‖2

σk(X)
∆,

where∆ = 2 ‖ŵk‖2
+ ‖y − Xw∗

k‖2
/σk(X). This bound is similar to our bound in Theorem 1,

but only applies tor = k and is considerably weaker. For example,
√

k(n − k) + 1 ‖X − Xk‖2
≥√

k ‖X − Xk‖F ; note also that the dependence of the above bound on1/σk(X) is generally worse
than ours.

The importance of the right singular vectors in matrix reconstruction problems (including PCA)
has been heavily studied in prior literature, going back to work by Jolliffe in 1972 [22]. The idea of
sampling columns from a matrix X with probabilities that arederived from VT

k (as we do in Theorem
2) was introduced in [15] in order to constructcoresetsfor regression problems by sampling data
points (rows of the matrix X) as opposed to features (columnsof the matrix X). Other prior work
including [15, 13, 27, 6, 4] has employed variants of this sampling scheme; indeed, we borrow
proof techniques from the above papers in our work. Finally,we note that our deterministic feature
selection algorithm (Theorem 1) uses a sparsification tool developed in [2] for column based matrix
reconstruction. This tool is a generalization of algorithms originally introduced in [1].
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4 Our algorithms

Our algorithms emerge from the constructive proofs of Theorems 1 and 2. Both algorithms necessi-
tate access to the right singular vectors of X, namely the matrix V k ∈ R

d×k. In our experiments, we
used PROPACK [23] in order to compute Vk iteratively; PROPACK is a fast alternative to the exact
SVD. Our first algorithm (DSF-Select) is deterministic, while the second algorithm (RSF-Select)
is randomized, requiring logarithmically more columns to guarantee the theoretical bounds. Prior
to describing our algorithms in detail, we will introduce useful notation on sampling and rescaling
matrices as well as a matrix factorization lemma (Lemma 3) that will be critical in our proofs.

4.1 Sampling and rescaling matrices

Let C ∈ R
n×r containr columns of X∈ R

n×d. We can express the matrix C as C= XΩ, where
thesamplingmatrixΩ ∈ R

d×r is equal to[ei1 , . . . , eir ] andei are standard basis vectors inR
d. In

our proofs, we will make use of S∈ R
r×r, a diagonalrescalingmatrix with positive entries on the

diagonal. Our column selection algorithms return a sampling and a rescaling matrix, so that XΩS
contains a subset of rescaled columns from X. The rescaling is benign since it does not affect the
span of the columns of C= XΩ and thus the quantity of interest, namelyΠC,k(Y).

4.2 A structural result using matrix factorizations

We now present a matrix reconstruction lemma that will be thestarting point for our algorithms.
Let Y ∈ R

n×ω be a target matrix and let X∈ R
n×d be the basis matrix that we will use in order

to reconstruct Y. More specifically, we seek asparse reconstructionof Y from X, or, in other
words, we would like to chooser ≪ d columns from X and form a matrix C∈ R

n×r such that
‖Y − ΠC,k(Y)‖

F
is small. Let Z∈ R

d×k be an orthogonal matrix (i.e., ZTZ = Ik), and express the
matrix X as follows:

X = HZT + E,

where H is some matrix inRn×k and E∈ R
n×d is the residual error of the factorization. It is easy

to prove that the Frobenius or spectral norm of E is minimizedwhen H= XZ. Let Ω ∈ R
d×r and

S ∈ R
r×r be a sampling and a rescaling matrix respectively as defined in the previous section, and

let C = XΩ ∈ R
n×r. Then, the following lemma holds (see [3] for a detailed proof).

Lemma 3 (Generalized Column Reconstruction). Using the above notation, if the rank of the matrix
ZTΩS is equal tok, then

‖Y − ΠC,k(Y)‖
F
≤ ‖Y − HH+Y‖F + ‖EΩS(ZTΩS)+H+Y‖F . (1)

We now parse the above lemma carefully in order to understandits implications in our setting. For
our goals, the matrix C essentially contains a subset ofr features from the data matrix X. Recall that
ΠC,k(Y) is the best rank-k approximation to Y within the column space of C; and, the difference
Y − ΠC,k(Y) measures the error from performing regression using sparseeigenfeatures that are
constructed as linear combinations of the columns of C. Moving to the right-hand side of eqn. (1),
the two terms reflect a tradeoff between the accuracy of the reconstruction of Y using H and the
error E in approximating X by the product HZT. Ideally, we would like to choose H so that Y can
be accurately approximated and, at the same time, the matrixX is approximated by the product HZT

with small residual error E. In general, these two goals might be competing and a balance must be
struck. Here, we focus on one extreme of this trade off, namely choosing Z so that the (Frobenius)
norm of the matrix E is minimized. More specifically, since Z has rankk, the best choice for HZT in
order to minimize‖E‖F is Xk; then, E= X − Xk. Using the SVD of Xk, namely Xk = UkΣkVT

k,
we apply Lemma 3 setting H= UkΣk and Z= Vk. The following corollary is immediate.

Lemma 4 (Generalization of Lemma 7 in [2]). Using the above notation, if the rank of the matrix
VT
kΩS is equal tok, then

‖Y − ΠC,k(Y)‖
F
≤ ‖Y − UkUT

kY‖F + ‖(X − Xk)ΩS(V T
kΩS)+Σ−1

k UT
kY‖

F
.

Our main results will follow by carefully choosingΩ and S in order to control the right-hand side of
the above inequality.
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Algorithm: DSF-Select Algorithm: DetSampling

1: Input: X, k, r.
2: Output: r columns of X in C.
3: Compute Vk and

E = X − Xk = X − XV kVT
k.

4: Run DetSampling to construct sam-
pling and rescaling matricesΩ and S:

[Ω, S] = DetSampling(VT
k, E, r).

5: Return C = XΩ.

1: Input: VT = [v1, . . . ,vd], A = [a1, . . . ,ad], r.
2: Output: Sampling and rescaling matrices[Ω, S].
3: Initialize B0 = 0k×k, Ω = 0d×r, and S= 0r×r.
4: for τ = 1 to r − 1 do
5: SetLτ = τ −

√
rk.

6: Pick indexi ∈ {1, 2, ..., n} andt such that

U(ai) ≤
1

t
≤ L(vi, Bτ−1, Lτ ).

7: Update Bτ = Bτ−1 + tviv
T
i .

8: SetΩiτ = 1 and Sττ = 1/
√

t.
9: end for

10: Return Ω and S.

Table 1: DSF-Select: Deterministic Sparse Feature Selection

4.3 DSF-Select: Deterministic Sparse Feature Selection

DSF-Select deterministically selectsr columns of the matrix X to form the matrix C (see Table 1
and note that the matrix C= XΩ might contain duplicate columns which can be removed without
any loss in accuracy). The heart ofDSF-Select is the subroutineDetSampling, a near-greedy
algorithm which selects columns of VT

k iteratively to satisfy two criteria: the selected columns should
form an approximately orthogonal basis for the columns of VT

k so that(VT
kΩS)+ is well-behaved;

and EΩS should also be well-behaved. These two properties will allow us to prove our results via
Lemma 4. The implementation of the proposed algorithm is quite simple since it relies only on
standard linear algebraic operations.

DetSampling takes as input two matrices: VT ∈ R
k×d (satisfying VTV = Ik) and A∈ R

n×d. In
order to describe the algorithm, it is convenient to view these two matrices as two sets of column
vectors, VT = [v1, . . . ,vd] (satisfying

∑d

i=1
viv

T
i = Ik) and A = [a1, . . . ,ad]. In DSF-Select

we set VT = VT
k and A = E = X − Xk. Givenk andr, the algorithm iterates fromτ = 0 up to

τ = r−1 and its main operation is to compute the functionsφ(L , B) andL(v, B, L) that are defined
as follows:

φ (L, B) =

k
∑

i=1

1

λi − L
, L (v, B, L) =

vT (B − (L + 1) Ik)
−2

v

φ (L + 1, B) − φ (L, B)
− vT (B − (L + 1) Ik)

−1
v.

In the above, B∈ R
k×k is a symmetric matrix with eigenvaluesλ1, . . . , λk andL ∈ R is a parameter.

We also define the functionU(a) for a vectora ∈ R
n as follows:

U(a) =

(

1 −
√

k

r

)

aTa

‖A‖2

F

.

At every stepτ , the algorithm selects a columnai such thatU(ai) ≤ L(vi, Bτ−1, Lτ ); note that
Bτ−1 is a k × k matrix which is also updated at every step of the algorithm (see Table 1). The
existence of such a column is guaranteed by results in [1, 2].

It is worth noting that in practical implementations of the proposed algorithm, there might exist
multiple columns which satisfy the above requirement. In our implementation we chose to break
such ties arbitrarily. However, more careful and informed choices, such as breaking the ties in a way
that makes maximum progress towards our objective, might result in considerable savings. This is
indeed an interesting open problem.

The running time of our algorithm is dominated by the search for a column which satisfies
U(ai) ≤ L(vi, Bτ−1, Lτ ). To compute the functionL, we first need to computeφ(Lτ , Bτ−1) (which
necessitates the eigenvalues of Bτ−1) and then we need to compute the inverse of Bτ−1−(L + 1) Ik.
These computations needO(k3) time per iteration, for a total ofO(rk3) time over allr iterations.
Now, in order to compute the functionL for each vectorvi for all i = 1, . . . , d, we need an additional
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Algorithm: RSF-Select Algorithm: RandSampling

1: Input: X, k, r.
2: Output: r columns of X in C.
3: Compute Vk.
4: RunRandSampling to construct sam-

pling and rescaling matricesΩ and S:

[Ω, S] = RandSampling(VT
k, r).

5: Return C = XΩ.

1: Input: VT = [v1, . . . ,vd] andr.
2: Output: Sampling and rescaling matrices[Ω, S].
3: Fori = 1, ..., d compute probabilities

pi =
1

k
‖vi‖2

2
.

4: InitializeΩ = 0d×r and S= 0r×r.
5: for τ = 1 to r do
6: Select an indexiτ ∈ {1, 2, ..., d} where the

probability of selecting indexi is equal topi.
7: SetΩiτ τ = 1 and Sττ = 1/

√
rpiτ

.
8: end for
9: Return Ω and S.

Table 2:RSF-Select: Randomized Sparse Feature Selection

O(dk2) time per iteration; the total time for allr iterations isO(drk2). Next, in order to compute
the functionU , we need to computeaT

iai (for all i = 1, . . . , d) which necessitatesO(nnz(A)) time,
wherennz(A) is the number of non-zero elements of A. In our setting, A= E ∈ R

n×d, so the
overall running time isO(drk2 +nd). In order to get the final running time we also need to account
for the computation of Vk and E.

The theoretical properties ofDetSampling were analyzed in detail in [2], building on the original
analysis of [1]. The following lemma from [2] summarizes important properties ofΩ.

Lemma 5 ([2]). DetSampling with inputsVT andA returns a sampling matrixΩ ∈ R
d×r and a

rescaling matrixS ∈ R
r×r satisfying

‖(VTΩS)+‖
2
≤ 1 −

√

k

r
; ‖AΩS‖F ≤ ‖A‖F .

We apply Lemma 5 with V= VT
k and A = E and we combine it with Lemma 4 to conclude the

proof of Theorem 1; see [3] for details.

4.4 RSF-Select: Randomized Sparse Feature Selection

RSF-Select is a randomized algorithm that selectsr columns of the matrix X in order to form the
matrix C (see Table 2). The main differences betweenRSF-Select andDSF-Select are two: first,
RSF-Select only needs access to VT

k and, second,RSF-Select uses a simple sampling procedure in
order to select the columns of X to include in C. This samplingprocedure is described in algorithm
RandSampling and essentially selects columns of X with probabilities that depend on the norms of
the columns of VTk. Thus,RandSampling first computes a set of probabilities that are proportional
to the norms of the columns of VTk and then samplesr columns of X inr independent identical trials
with replacement, where in each trial a column is sampled according to the computed probabilities.
Note that a column could be selected multiple times. In termsof running time, and assuming that
the matrix Vk that contains the topk right singular vectors of X has already been computed, the
proposed algorithm needsO(dk) time to compute the sampling probabilities and an additional O(d+
r log r) time to sampler columns from X. Similar to Lemma 5, we can prove analogous properties
for the matricesΩ and S that are returned by algorithmRandSampling. Again, combining with
Lemma 4 we can prove Theorem 2; see [3] for details.

5 Experiments

The goal of our experiments is toillustrate that our algorithms produce sparse features which per-
form as well in-sample as the top-k PCA regression. It turns out that the out-of-sample performance
is comparable (if not better in many cases, perhaps due to thesparsity) to top-k PCA-regression.
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Data (n; d) k = 5, r = k + 1 k = 5, r = 2k

w∗

k ŵDSF

k ŵRSF

k ŵrnd

k w∗

k ŵDSF

k ŵRSF

k ŵrnd

k

Arcene (100;10,000) 0.93

0.99

0.88

0.94

0.91

0.98

1.0

1.0

0.93

1.0

0.89

0.97

0.86

0.98

1.0

1.0

I-sphere (351;34) 0.57

0.58

0.52

0.53

0.55

0.57

0.57

0.57

0.57

0.58

0.51

0.54

0.52

0.55

0.56

0.56

LibrasMov (45;90) 2.9
3.3

2.9
3.6

3.1
3.7

3.7
3.7

2.9
3.3

2.4
3.3

2.6
3.6

3.6
3.6

Madelon (2,000;500) 0.98
0.98

0.98
0.98

0.98
0.98

1.0
1.0

0.98
0.98

0.97
0.98

0.97
0.98

1.0
1.0

HillVal (606;100) 0.68

0.68

0.66

0.67

0.67

0.68

0.68

0.68

0.68

0.68

0.65

0.67

0.67

0.69

0.69

0.69

Spambase (4601;57) 0.30
0.30

0.30
0.30

0.31
0.30

0.28
0.38

0.3
0.3

0.3
0.3

0.3
0.3

0.25
0.35

Table 3: Comparison ofDSF-select andRSF-select with top-k PCA. The top entry in each cell
is the in-sample error, and the bottom entry is the out-sample error. In bold is the method achieving
the best out-sample error.

Compared to top-k PCA, our algorithms are efficient and work well in practice, even better than the
theoretical bounds suggest.

We present our findings in Table 3 using data sets from the UCI machine learning repository. We
used a five-fold cross validation design with 1,000 random splits: we computed regression weights
using80% of the data and estimated out-sample error in the remaining20% of the data. We setk = 5
in the experiments (no attempt was made to optimizek). Table 3 shows the in- and out-sample error
for four methods: top-k PCA regression,w∗

k; r-sparse features regression usingDSF-select, ŵDSF
k ;

r-sparse features regression usingRSF-select, ŵRSF

k ; r-sparse features regression usingr random
columns,ŵrnd

k .

6 Discussion

The top-k PCA regression constructs “features” without looking at the targets – it is target-agnostic.
So are all the algorithms we discussed here, as our goal was tocompare with top-k PCA. However,
there is unexplored potential in Lemma 3. We only explored one extreme choice for the factorization,
namely the minimization of some norm of the matrix E. Other choices, in particular non-target-
agnostic choices, could prove considerably better. Such investigations are left for future work.

As mentioned when we discussed our deterministic algorithm, it will often be the case that in some
steps of the greedy selection process, multiple columns could satisfy the criterion for selection. In
such a situation, we are free to choose any one; we broke ties arbitrarily in our implementation,
and even as is, the algorithm performed as well or better thantop-k PCA. However, we expect that
breaking the ties so as to optimize the ultimate objective would yield considerable additional benefit;
this would also be non-target-agnostic.
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