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We introduce single-set spectral sparsification as a deterministic
sampling–based feature selection technique for regularized least-squares
classification, which is the classification analog to ridge regression. The
method is unsupervised and gives worst-case guarantees of the general-
ization power of the classification function after feature selection with
respect to the classification function obtained using all features. We also
introduce leverage-score sampling as an unsupervised randomized fea-
ture selection method for ridge regression. We provide risk bounds for
both single-set spectral sparsification and leverage-score sampling on
ridge regression in the fixed design setting and show that the risk in
the sampled space is comparable to the risk in the full-feature space. We
perform experiments on synthetic and real-world data sets; a subset of
TechTC-300 data sets, to support our theory. Experimental results indi-
cate that the proposed methods perform better than the existing feature
selection methods.

1 Introduction

Ridge regression, a popular technique in machine learning and statistics, is
a commonly used penalized regression method. Regularized least-squares
classifier (RLSC) is a simple classifier based on least squares and has a
long history in machine learning (Zhang & Peng, 2004; Poggio & Smale,
2003; Rifkin, Yeo, & Poggio, 2003; Fung & Mangasarian, 2001; Suykens &
Vandewalle, 1999; Zhang & Oles, 2001; Agarwal, 2002). RLSC is also the
classification analogue to ridge regression. It has been known to perform
comparably to the popular support vector machines (SVM) (Rifkin et al.,
2003; Fung & Mangasarian, 2001; Suykens & Vandewalle, 1999; Zhang &
Oles, 2001). RLSC can be solved by simple vector space operations and does
not require quadratic optimization techniques like SVM.
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We propose a deterministic feature selection technique for RLSC with
provable guarantees. There exist numerous feature selection techniques,
which work well empirically. There also exist randomized feature selec-
tion methods like leverage-score sampling, (Dasgupta, Drineas, Harb, Josi-
fovski, & Mahoney, 2007) with provable guarantees, which work well
empirically. But the randomized methods have a failure probability and
have to be rerun multiple times to get accurate results. Also, a randomized
algorithm may not select the same regardless in different runs. A determin-
istic algorithm will select the same features regardless of how many times it
is run. This becomes important in many applications. Unsupervised feature
selection involves selecting features oblivious to the class or labels.

In this work, we present a new, provably accurate unsupervised feature
selection technique for RLSC. We study a deterministic sampling-based
feature selection strategy for RLSC with provable nontrivial worst-case
performance bounds. We also use single-set spectral sparsification and
leverage-score sampling as unsupervised feature selection algorithms for
ridge regression in the fixed design setting. Since the methods are unsu-
pervised, it will ensure that the methods work well in the fixed design
setting, where the target variables have an additive homoskedastic noise.
The algorithms sample a subset of the features from the original data matrix
and then perform regression tasks on the reduced dimension matrix. We
provide risk bounds for the feature selection algorithms on ridge regression
in the fixed design setting.

The number of features selected by both algorithms is proportional to the
rank of the training set. The deterministic sampling-based feature selection
algorithm performs better in practice when compared to existing methods
of feature selection.

2 Our Contributions

We introduce single-set spectral sparsification as a provably accurate deter-
ministic feature selection technique for RLSC in an unsupervised setting.
The number of features selected by the algorithm is independent of the num-
ber of features but depends on the number of data points. The algorithm se-
lects a small number of features and solves the classification problem using
those features. Dasgupta et al. (2007) used a leverage-score-based random-
ized feature selection technique for RLSC and provided worst-case guaran-
tees of the approximate classifier function to that using all features. We use a
deterministic algorithm to provide worst-case generalization error guaran-
tees. The deterministic algorithm does not come with a failure probability,
and the number of features required by the deterministic algorithm is less
than that required by the randomized algorithm. The leverage-score-based
algorithm has a sampling complexity of O( n

ε2 log( n
ε2

√
δ
)), whereas single-

set spectral sparsification requires O(n/ε2) to be picked, where n is the
number of training points, δ ∈ (0, 1) is a failure probability, and ε ∈ (0, 1/2]
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is an accuracy parameter. As in Dasgupta et al. (2007), we also provide
additive-error approximation guarantees for any test point and relative-
error approximation guarantees for test points that satisfy some conditions
with respect to the training set.

We introduce single-set spectral sparsification and leverage-score sam-
pling as unsupervised feature selection algorithms for ridge regression and
provide risk bounds for the subsampled problems in the fixed design set-
ting. The risk in the sampled space is comparable to the risk in the full-
feature space. We give relative-error guarantees of the risk for both feature
selection methods in the fixed design setting.

From an empirical perspective, we evaluate single-set spectral sparsifica-
tion on synthetic data and 48 document-term matrices, which are a subset
of the TechTC-300 (Davidov, Gabrilovich, & Markovitch, 2004) data set.
We compare the single-set spectral sparsification algorithm with leverage-
score sampling, information gain, rank-revealing QR factorization (RRQR),
and random feature selection. We do not report running times because
feature selection is an offline task. The experimental results indicate that
single-set spectral sparsification outperforms all the methods in terms of
out-of-sample error for all 48 TechTC-300 data sets. We observe that a much
smaller number of features is required by the deterministic algorithm to
achieve good performance when compared to leverage-score sampling.

3 Background and Related Work

3.1 Notation. A, B, . . . denote matrices and α, b, . . . denote column
vectors; ei (for all i = 1 . . . n) is the standard basis, whose dimensional-
ity will be clear from context; and In is the n × n identity matrix. The
singular value decomposition (SVD) of a matrix A ∈ R

n×d is equal to
A = U�VT , where U ∈ R

n×d is an orthogonal matrix containing the left sin-
gular vectors, � ∈ R

d×d is a diagonal matrix containing the singular values
σ1 ≥ σ2 ≥ . . . σd > 0, and V ∈ R

d×d is a matrix containing the right singular
vectors. The spectral norm of A is ‖A‖2 = σ1. σmax and σmin are the largest
and smallest singular values of A. κA = σmax/σmin is the condition num-
ber of A. U⊥ denotes any n × (

n − d
)

orthogonal matrix whose columns
span the subspace orthogonal to U. A vector q ∈ R

n can be expressed as
q = Aα + U⊥β, for some vectors α ∈ R

d and β ∈ R
n−d, that is, q has one

component along A and another component orthogonal to A.

3.2 Matrix Sampling Formalism. We now present the tools of feature
selection. Let A ∈ R

d×n be the data matrix consisting of n points and d
dimensions and S ∈ R

r×d be a matrix such that SA ∈ R
r×n contains r rows

of A. Matrix S is a binary (0/1) indicator matrix, which has exactly one
nonzero element in each row. The non-zero element of S indicates which
row of A will be selected. Let D ∈ R

r×r be the diagonal matrix such that
DSA ∈ R

r×n rescales the rows of A that are in SA. The matrices S and D are
called the sampling and rescaling matrices, respectively. We will replace the
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sampling and rescaling matrices by a single matrix R ∈ R
r×d, where R = DS

denotes the matrix specifying which of the r rows of A are to be sampled
and how they are to be rescaled.

3.3 RLSC Basics. Consider a training data of n points in d dimensions
with respective labels yi ∈ {−1,+1} for i = 1, . . . , n. The solution of binary
classification problems via Tikhonov regularization in a reproducing kernel
Hilbert space (RKHS) using the squared loss function results in the regular-
ized least squares classification (RLSC) problem (Rifkin et al., 2003), which
can be stated as

min
x∈Rn

∥∥Kx − y
∥∥2

2 + λxTKx, (3.1)

where K is the n × n kernel matrix defined over the training data set, λ is a
regularization parameter, and y is the n-dimensional {±1} class label vector.
In matrix notation, the training data set X is a d × n matrix, consisting of n
data points and d features (d � n). Throughout this study, we assume that
X is a full-rank matrix. We shall consider the linear kernel, which can be
written as K = XTX. Using the SVD of X, the optimal solution of equation 3.1
in the full-dimensional space is

xopt = V
(
�2 + λI

)−1
VTy. (3.2)

The vector xopt can be used as a classification function that generalizes to test
data. If q ∈ R

d is the new test point, then the binary classification function is

f (q) = xT
optX

Tq. (3.3)

Then, sign( f (q)) gives the predicted label (−1 or +1) to be assigned to the
new test point q.

Our goal is to study how RLSC performs when the deterministic
sampling-based feature selection algorithm is used to select features in an
unsupervised setting. Let R ∈ R

r×d be the matrix that samples and rescales
r rows of X, thus reducing the dimensionality of the training set from d to
r 	 d and r is proportional to the rank of the input matrix. The transformed
data set into r dimensions is given by X̃ = RX, and the RLSC problem
becomes

min
x∈Rn

∥∥∥K̃x − y
∥∥∥2

2
+ λxTK̃x, (3.4)

giving an optimal vector x̃opt . The new test point q is first dimensionally
reduced to q̃ = Rq, where q̃ ∈ R

r, and then classified by the function,
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f̃ = f (q̃) = x̃T
optX̃

T
q̃. (3.5)

In subsequent sections, we will assume that the test point q is of the form
q = Xα + U⊥β. The first part of the expression shows the portion of the test
point that is similar to the training set, and the second part shows how much
the test point is novel compared to the training set, that is, ‖β‖2 measures
how much of q lies outside the subspace spanned by the training set.

3.4 Ridge Regression Basics. Consider a data set X of n points in d
dimensions with d � n. Here X contains n independent and identically
distributed (i.i.d.). samples from the d-dimensional independent variable.
y ∈ R

n is the real-valued response vector. Ridge regression(RR) or Tikhonov
regularization penalizes the �2 norm of a parameter vector β and shrinks
the estimated coefficients toward zero. In the fixed design setting, we have
y = XTβ + ω, where ω ∈ R

n is the homoskedastic noise vector with mean 0
and variance σ 2. Let βλ be the solution to the ridge regression problem. The
RR problem is stated as

β̂λ = arg min
β∈Rd

1
n

∥∥y − XTβ
∥∥2

2 + λ ‖β‖2
2 . (3.6)

The solution to equation 3.6 is β̂λ = (XXT + nλId)−1Xy. One can also solve
the same problem in the dual space. Using change of variables β = Xα,
where α ∈ R

n, and let K = XTX be the n × n linear kernel defined over the
training data set. The optimization problem becomes

α̂λ = arg min
α∈Rn

1
n

∥∥y − Kα
∥∥2

2 + λαTKα. (3.7)

Throughout this study, we assume that X is a full-rank matrix. Using the
SVD of X, the optimal solution in the dual space (see equation 3.7) for the
full-dimensional data is given by α̂λ = (K + nλIn)−1y. The primal solution
is β̂λ = Xα̂λ.

In the sampled space, we have K̃ = X̃
T

X̃. The dual problem in the sam-
pled space can be posed as

α̃λ = arg min
α∈Rn

1
n

∥∥∥y − K̃α

∥∥∥2

2
+ λαTK̃α. (3.8)

The optimal dual solution in the sampled space is α̃λ = (K̃ + nλIn)−1y. The
primal solution is β̃λ = X̃α̃λ.
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3.5 Related Work. The work most closely related to ours is that of
Dasgupta, Drineas, Harb, Josifovski, and Mahoney (2007), who used a
leverage-score-based randomized feature selection technique for RLSC and
provided worst-case bounds of the approximate classifier with that of the
classifier for all features. The proof of their main quality-of-approximation
results provided an intuition of the circumstances when their feature se-
lection method will work well. The running time of leverage-score-based
sampling is dominated by the time to compute the SVD of the training set
(i.e., O(n2d)), whereas for single-set spectral sparsification, it is O(rdn2).
Single-set spectral sparsification is a slower and more accurate method
than leverage-score sampling. Another work on dimensionality reduction
of RLSC is that of Avron, Sindhwani, and Woodruff (2013), who used effi-
cient randomized algorithms for solving RLSC in settings where the design
matrix has a Vandermonde structure. However, this technique is different
from ours, since their work is focused on dimensionality reduction using
linear combinations of features but not on actual feature selection.

Lu, Dhillon, Foster, and Ungar (2013) used randomized Walsh-
Hadamard transform to lower the dimension of data matrix and subse-
quently solve the ridge regression problem in the lower-dimensional space.
They provided risk bounds of their algorithm in the fixed design setting.
However, this is different from our work, since they use linear combinations
of features, while we select actual features from the data.

4 Our Main Tools

4.1 Single-Set Spectral Sparsification. We describe the single-set spec-
tral sparsification algorithm (BSS1, for short) of Batson, Spielman, and Sri-
vastava (2009) as algorithm 1. Algorithm 1 is a greedy technique that selects
columns one at a time. Consider the input matrix as a set of d column vectors
UT = [u1, u2, . . . ., ud], with ui ∈ R

�(i = 1, .., d). Given � and r > �, we iterate
over τ = 0, 1, 2, ..r − 1. Define the parameters Lτ = τ − √

r�, δL = 1,Uτ =
δU (τ + √

�r) and δU = (1 + √
�/r)/(1 − √

�/r). For U, L ∈ R and A ∈ R
�×�, a

symmetric positive-definite matrix with eigenvalues λ1, λ2, . . . , λ�, defines

	 (L, A) =
�∑

i=1

1
λi − L

; 	̂ (U, A) =
�∑

i=1

1
U − λi

as the lower and upper potentials, respectively. These potential functions
measure how far the eigenvalues of A are from the upper and lower barriers

1The name BSS comes from the authors: Batson, Spielman, and Srivastava.
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U and L, respectively. We defineL(u, δL, A, L) andU (u, δU , A,U) as follows:

L
(
u, δL, A, L

) = uT
(
A − (

L + δL

)
I�

)−2 u

	
(
L + δL, A

) − 	 (L, A)
− uT (

A − (
L + δL

)
I�

)−1 u,

U
(
u, δU , A,U

) = uT
((

U + δU

)
I� − A

)−2 u

	̂ (U, A) − 	̂
(
U + δU , A

) + uT ((
U + δU

)
I� − A

)−1u.

At every iteration, there exists an index iτ and a weight tτ > 0 such that
tτ

−1 ≤ L(ui
τ

, δL, A, L) and tτ
−1 ≥ U (ui

τ

, δU , A,U). Thus, there will be at most
r columns selected after τ iterations. The running time of the algorithm is
dominated by the search for an index iτ satisfying

U
(

ui
τ

, δU , Aτ ,Uτ

)
≤ L

(
ui

τ

, δL, Aτ , Lτ

)

and computing the weight tτ . One needs to compute the upper and lower
potentials 	̂ (U, A) and 	 (L, A) and hence the eigenvalues of A. Cost per
iteration is O

(
�3

)
, and the total cost is O

(
r�3

)
. For i = 1, . . . , d, we need

to compute L and U for every ui which can be done in O
(
d�2

)
for every

iteration, for a total of O
(
rd�2

)
. Thus, the total running time of the algorithm

is O
(
rd�2

)
. We present the following lemma for the single-set spectral

sparsification algorithm (algorithm 1).

Lemma 1. BSS (Batson et al., 2009). Given U ∈ R
d×� satisfying U TU = I�

and r > �, we can deterministically construct sampling and rescaling matrices
S ∈ R

r×d and D ∈ R
r×r with R = DS, such that, for all y ∈ R

�,

(
1 −

√
�/r

)2 ∥∥Uy
∥∥2

2 ≤ ∥∥RUy
∥∥2

2 ≤
(

1 +
√

�/r
)2 ∥∥Uy

∥∥2
2 .

We now present a slightly modified version of lemma 1 for our theorems:

Lemma 2. Given U ∈ R
d×� satisfying U TU = I� and r > �, we can deterministi-

cally construct sampling and rescaling matrices S ∈ R
r×d and D ∈ R

r×r such that
for R = DS,

∥∥U TU − U T RT RU
∥∥

2 ≤ 3
√

�/r .

Proof. From lemma 1, it follows that

σ�

(
UTRTRU

) ≥
(

1 −
√

�/r
)2

and σ1

(
UTRTRU

) ≤
(

1 +
√

�/r
)2

.
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Thus,

λmax(U
TU − UTRTRU) ≤ (1 − (1 −

√
�/r)2) ≤ 2

√
�/r.

Similarly,

λmin(UTU − UTRTRU) ≥ (1 − (1 +
√

�/r)2) ≥ 3
√

�/r.

Combining these, we have
∥∥UTU − UTRTRU

∥∥
2 ≤ 3

√
�/r.

Note: Let ε = 3
√

�/r. It is possible to set an upper bound on ε by setting
the value of r. We will assume ε ∈ (0, 1/2].

4.2 Leverage Score Sampling. Our randomized feature selection
method is based on importance sampling or the so-called leverage-score
sampling of Rudelson and Vershynin (2007). Let U be the top-ρ left singular
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vectors of the training set X. We select rows of U in i.i.d. trials and rescale
the rows with 1/

√
pi where pi is a carefully chosen probability distribution

of the form

pi =
∥∥Ui

∥∥2
2

n
, for i = 1, 2, . . . , d, (4.1)

that is, proportional to the squared Euclidean norms of the rows of the left-
singular vectors. The time complexity is dominated by the time to compute
the SVD of X.

Lemma 3 (Rudelson and Vershynin, 2007). Let ε ∈ (0, 1/2] be an accuracy
parameter and δ ∈ (0, 1) be the failure probability. Given U ∈ R

d×� satisfying
U TU = I�, let p̃ = min{1, r pi }, pi be as equation 4.1, and r = O( n

ε2 log ( n
ε2

√
δ
)).

Construct the sampling and rescaling matrix R. Then with probability at least
(1 − δ), ‖U TU − U T RT RU‖2 ≤ ε.

5 Theory

In this section, we describe the theoretical guarantees of RLSC using BSS
and also the risk bounds of ridge regression using BSS and leverage-score
sampling. Before we begin, we state the following lemmas from numerical
linear algebra, which will be required for our proofs.

Lemma 4 (Stewart & Sun, 1990). For any matrix E, such that I + E is invertible,

(I + E)−1 = I +
∞∑
i=1

(−E)i .

Lemma 5 (Stewart & Sun, 1990). Let A and Ã = A + E be invertible matrices.
Then

Ã−1 − A−1 = −A−1EÃ−1
.

Lemma 6 (Demmel & Veselic, 1992). Let D and X be matrices such that the
product DXD is a symmetric positive-definite matrix with matrix X i i = 1. Let
the product DED be a perturbation such that ‖E‖2 = η < λmin(X). Here λmin
corresponds to the smallest eigenvalue of X . Let λi be the ith eigenvalue of DXD,

and let λ̃i be the ith eigenvalue of D (X + E) D. Then,
∣∣∣ λi −λ̃i

λi

∣∣∣ ≤ η

λmin(X) .

Lemma 7. Let ε ∈ (0, 1/2]. Then
∥∥qTU⊥U⊥T RT RU

∥∥
2 ≤ ε

∥∥U⊥U⊥T q
∥∥

2 .

The proof of this lemma is similar to lemma 4.3 of Drineas, Mahoney,
and Muthukrishnan (2006).
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5.1 Our Main Theorems on RLSC. Theorem 1 shows the additive error
guarantees of the generalization bounds of the approximate classifer with
that of the classifier with no feature selection. The classification error bound
of BSS on RLSC depends on the condition number of the training set and
on how much of the test set lies in the subspace of the training set.

Theorem 1. Let ε ∈ (0, 1/2] be an accuracy parameter and r = O
(
n/ε2

)
be the

number of features selected by BSS. Let R ∈ R
r×d be the matrix, as defined in

lemma 2. Let X ∈ R
d×n with d >> n, be the training set, X̃ = RX the reduced

dimensional matrix, and q ∈ R
d the test point of the form q = Xα + U⊥β. Then

the following hold:

� If λ = 0, then
∣∣∣q̃T X̃ x̃opt − qT Xxopt

∣∣∣ ≤ εκX
σmax

‖β‖2

∥∥y
∥∥

2 .

� If λ > 0, then
∣∣∣q̃T X̃ x̃opt − qT Xxopt

∣∣∣ ≤ 2εκX ‖α‖2

∥∥y
∥∥

2 + 2εκX
σmax

‖β‖2

∥∥y
∥∥

2 .

Proof. We assume that X is a full-rank matrix. Let E = UTU − UTRTRU and
‖E‖2 = ∥∥I − UTRTRU

∥∥
2 = ε ≤ 1/2. Using the SVD of X, we define

� = �UTRTRU� = � (I + E)�. (5.1)

The optimal solution in the sampled space is given by

x̃opt = V (� + λI)−1 VTy. (5.2)

It can be proven easily that � and � + λI are invertible matrices. We focus
on the term qTXxopt . Using the SVD of X, we get

qTXxopt = αTXTXxopt + βU⊥T (
U�VT)

xopt

= αTV�2 (
�2 + λI

)−1
VTy (5.3)

= αTV
(
I + λ�−2)−1

VTy. (5.4)

Equation 5.3 follows because of the fact that U⊥TU = 0 and by substituting
xopt from equation 3.2. Equation 5.4 follows from the fact that the matrices
�2 and �2 + λI are invertible. Now,

∣∣∣qTXxopt − q̃T X̃x̃opt

∣∣∣ = ∣∣∣qTXxopt − qTRTRXx̃opt

∣∣∣
≤

∣∣∣qTXxopt − αTXTRTRXx̃opt

∣∣∣ (5.5)

+
∣∣∣βTU⊥TRTRXx̃opt

∣∣∣ . (5.6)
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We bound equations 5.5 and 5.6 separately. Substituting the values of x̃opt
and �:

αTXTRTRXx̃opt = αTV�VT x̃opt

= αTV� (� + λI)−1 VTy

= αTV
(
I + λ�−1)−1

VTy

= αTV
(
I + λ�−1 (I + E)−1 �−1)−1

VTy

= αTV
(
I + λ�−2 + λ�−1��−1)−1

VTy. (5.7)

The last line follows from lemma 4, which states that (I + E)−1 = I + �,

where � =
∞∑

i=1
(−E)i. The spectral norm of � is bounded by

‖�‖2 =
∥∥∥∥∥

∞∑
i=1

(−E)i

∥∥∥∥∥
2

≤
∞∑

i=1

‖E‖i
2 ≤

∞∑
i=1

εi = ε/(1 − ε). (5.8)

We now bound equation 5.5. Substituting equations 5.4 and 5.7 in 5.5,

∣∣∣qTXxopt − αTXTRTRXx̃opt

∣∣∣
=

∣∣∣αTV{(I + λ�−2 + λ�−1��−1)−1 − (
I + λ�−2)−1}VTy

∣∣∣
≤ ∥∥αTV

(
I + λ�−2)∥∥

2

∥∥VTy
∥∥

2 ‖�‖2 .

The last line follows because of lemma 5 and the fact that all matrices
involved are invertible. Here,

� = λ�−1��−1 (
I + λ�−2 + λ�−1��−1)−1

= λ�−1��−1 (
�−1 (

�2 + λI + λ�
)
�−1)−1

= λ�−1�
(
�2 + λI + λ�

)−1
�.

Since the spectral norms of �,�−1 and � are bounded, we need only to
bound the spectral norm of (�2 + λI + λ�)−1 to bound the spectral norm
of �. The spectral norm of the matrix (�2 + λI + λ�)−1 is the inverse of
the smallest singular value of (�2 + λI + λ�). From perturbation theory of
matrices (Stewart & Sun, 1990) and equation 5.8, we get

∣∣σi

(
�2 + λI + λ�

) − σi

(
�2 + λI

)∣∣ ≤ ‖λ�‖2 ≤ ελ.
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Here, σi(Q) represents the ith singular value of the matrix Q. Also,
σi

2
(
�2 + λI

) = σi
2 + λ, where σi are the singular values of X:

σi
2 + (1 − ε)λ ≤ σi

(
�2 + λI + λ�

) ≤ σi
2 + (1 + ε)λ.

Thus,

∥∥∥(
�2 + λI + λ�

)−1
∥∥∥

2
= 1/σmin

(
�2 + λI + λ�

) ≤ 1/
(
σ 2

min + (1 − ε)λ)
)
.

Here, σmax and σmin denote the largest and smallest singular value of X.
Since ‖�‖2

∥∥�−1
∥∥

2 = σmax/σmin ≤ κX, (condition number of X), we bound
equation 5.5:

∣∣∣qTXxopt − αTXTRTRXx̃opt

∣∣∣
≤ ελκX

σ 2
min + (1 − ε)λ

∥∥∥αTV
(
I + λ�−2)−1

∥∥∥
2

∥∥VTy
∥∥

2 . (5.9)

For λ > 0, the term σ 2
min + (1 − ε)λ in equation 5.9 is always larger than

(1 − ε) λ, so it can be upper-bounded by 2εκX (assuming ε ≤ 1/2). Also,

∥∥∥αTV
(
I + λ�−2)−1

∥∥∥
2

≤ ∥∥αTV
∥∥

2

∥∥∥(
I + λ�−2)−1

∥∥∥
2

≤ ‖α‖2 .

This follows from the fact that
∥∥αTV

∥∥
2 = ‖α‖2 and

∥∥Vy
∥∥

2 = ∥∥y
∥∥

2 as V is a
full-rank orthonormal matrix and the singular values of I + λ�−2 are equal
to 1 + λ/σi

2, making the spectral norm of its inverse at most one. Thus we
get,

∣∣∣qTXxopt − αTXTRTRXx̃opt

∣∣∣ ≤ 2εκX ‖α‖2

∥∥y
∥∥

2 . (5.10)

We now bound equation 5.6. Expanding equation 5.6 using SVD and x̃opt ,

∣∣∣βTU⊥TRTRXx̃opt

∣∣∣ = ∣∣βTU⊥TRTRU� (� + λI) VTy
∣∣

≤ ∥∥qTU⊥U⊥TRTRU
∥∥

2

∥∥� (� + λI)−1
∥∥

2

∥∥VTy
∥∥

2

≤ ε
∥∥U⊥U⊥Tq

∥∥
2

∥∥VTy
∥∥

2

∥∥� (� + λI)−1
∥∥

2

≤ ε ‖β‖2

∥∥y
∥∥

2

∥∥� (� + λI)−1
∥∥

2 .
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The first inequality follows from β = U⊥Tq, and the second inequality fol-
lows from Lemma 7. To conclude the proof, we bound the spectral norm of
� (� + λI)−1. Note that from equation 5.1, �−1��−1 = I + E and ��−1 = I,

� (� + λI)−1 = (
�−1��−1 + λ�−2)−1

�−1 = (
I + λ�−2 + E

)−1
�−1.

One can get a lower bound for the smallest singular value of(
I + λ�−2 + E

)−1
using matrix perturbation theory and by comparing the

singular values of this matrix to the singular values of I + λ�−2. We get

(1 − ε) + λ

σi
2 ≤ σi

(
I + E + λ�−2) ≤ (1 + ε) + λ

σi
2 .

∥∥∥(
I + λ�−2 + E

)−1
�−1

∥∥∥
2
≤ σ 2

max(
(1 − ε) σ 2

max + λ
)
σmin

= κXσmax

(1 − ε) σ 2
max + λ

≤ 2κX

σmax
. (5.11)

We assumed that ε ≤ 1/2, which implies (1 − ε) + λ/σ 2
max ≥ 1/2. Combin-

ing these, we get

∣∣∣βTU⊥TRTRXx̃opt

∣∣∣ ≤ 2εκX

σmax
‖β‖2

∥∥y
∥∥

2 . (5.12)

Combining equations 5.10 and 5.12, we complete the proof for the case
λ > 0. For λ = 0, equation 5.9 becomes zero, and the result follows.

Our next theorem provides relative-error guarantees to the bound on
the classification error when the test point has no new components, that is,
β = 0.

Theorem 2. Let ε ∈ (0, 1/2] be an accuracy parameter, r = O
(
n/ε2

)
be the num-

ber of features selected by BSS, and λ > 0. Let q ∈ R
d be the test point of the form

q = Xα, that is, it lies entirely in the subspace spanned by the training set, and the
two vectors V T y and

(
I + λΣ−2)−1

V Tα satisfy the property

∥∥∥(
I + λΣ−2)−1

V Tα

∥∥∥
2

∥∥V T y
∥∥

2 ≤ ω

∥∥∥∥((
I + λΣ−2)−1

V Tα
)T

V T y
∥∥∥∥

2

= ω

∣∣∣qT Xxopt

∣∣∣
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for some constant ω. If we run RLSC after BSS, then

∣∣∣q̃T X̃ x̃opt − qT Xxopt

∣∣∣ ≤ 2εωκX

∣∣∣qT Xxopt

∣∣∣ .
The proof follows directly from the proof of theorem 1 if we consider

β = 0.

5.2 Our Main Theorems on Ridge Regression. We compare the risk of
subsampled ridge regression with the risk of true dual ridge regression in
the fixed design setting. Recall that the response vector y = XTβ + ω where
ω ∈ R

n is the homoskedastic noise vector with mean 0 and variance σ 2.
Also, we assume that the data matrix is of full rank.

Lemma 8. Let ρ be the rank of X . Form K̃ using BSS. Then,

(1 − Δ) K � K̃ � (1 + Δ) K,

where Δ = C
√

ρ/r . For p.s.d matrices A  B means B − A is p.s.d.

Proof. Using the SVD of X, K̃ = V�
(
UTRTRU

)
�VT . Lemma 2 implies

Iρ (1 − �) � (
UTRTRU

) � Iρ (1 + �) .

Multiplying the left- and right-hand sides of the inequality by V� and �VT ,
respectively, to the above inequality completes the proof.

Lemma 9. Let ρ be the rank of X . Form K̃ using leverage-score sampling. Then,
with probability at least (1 − δ), where δ ∈ (0, 1),

(1 − Δ) K � K̃ � (1 + Δ) K,

where Δ = C ρ

ε2 log ( ρ

ε2
√

δ
).

5.3 Risk Function for Ridge Regression. Let z = Eω[y] = XTβ. The risk
for a prediction function ŷ ∈ R

n is 1
n Eω‖ŷ − z‖2

2. For any n × n positive
symmetric matrix K, we define the following risk function:

R (K) = σ 2

n
Tr

(
K2 (

K + nλIn

)−2
)

+ nλ2zT (
K + nλIn

)−2 z.

Theorem 3. Under the fixed design setting, the risk for the ridge regression
solution in the full-feature space is R(K), and the risk for the ridge regression in
the reduced dimensional space is R(K̃).
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Proof. The risk of the ridge regression estimator in the reduced dimensional
space is

1
n

Eω

∥∥∥K̃α̃λ − z
∥∥∥2

2
= 1

n
Eω

∥∥∥∥K̃
(

K̃ + nλIn

)−1
y − z

∥∥∥∥
2

2
. (5.13)

Taking K̃(K̃ + nλIn)−1 as Q, we can write equation 5.13 as

1
n

Eω

∥∥Qy − Eω

[
Qy

]∥∥2
2 + 1

n

∥∥Eω

[
Qy

] − z
∥∥2

2

= 1
n

Eω

[ ∥∥∥∥K̃
(

K̃ + nλIn

)−1
ω

∥∥∥∥
2

2

]
+ 1

n

∥∥∥∥K̃
(

K̃ + nλIn

)−1
z − z

∥∥∥∥
2

2

= 1
n

Tr
(

K̃
2
(

K̃ + nλIn

)−2
ωωT

)
+ 1

n
zT

(
In − K̃

(
K̃ + nλIn

)−1
)2

z

= σ 2

n
Tr

(
K̃

2
(

K̃ + nλIn

)−2
)

+ nλ2zT
(

K̃ + nλIn

)−2
z.

The expectation is only over the random noise ω and is conditional on the
feature selection method used.

Our next theorem bounds the risk inflation of ridge regression in the
reduced dimensional space compared with the ridge regression solution in
the full-feature space.

Theorem 4. Let ρ be the rank of the matrix X . When using leverage-score sampling
as a feature selection technique, with probability at least 1 − δ, where δ ∈ (0, 1),

R(K̃) ≤ (1 − Δ)−2 R(K),

where Δ = C ρ

ε2 log ( ρ

ε2
√

δ
).

Proof. For any positive semidefinite matrix, K ∈ R
n×n, we define the bias

B(K) and variance V(K) of the risk function as follows:

B(K) = nλ2zT (
K + nλIn

)−2 z,

V(K) = σ 2

n
Tr

(
K̃

2
(

K̃ + nλIn

)−2
)

.

Therefore, R(K) = B(K) + V(K). Now, due to, Bach (2013), we know that
B(K) is nonincreasing in K and V(K) is nondecreasing in K. When lemma 9
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holds,

R(K̃) =V(K̃) + B(K̃)

≤V ((1 + �) K) + B ((1 − �) K)

≤ (1 + �)2 V(K) + (1 − �)−2 B(K)

≤ (1 − �)−2 (V(K) + B(K))

= (1 − �)−2 R(K).

We can prove a similar theorem for BSS.

Theorem 5. Let ρ be the rank of the matrix X. When using BSS as a feature
selection technique, with Δ = Cρ/ε2,

R(K̃) ≤ (1 − Δ)−2 R(K).

6 Experiments

All experiments were performed in Matlab R2013b on an Intel i-7 processor
with 16GB RAM.

6.1 BSS Implementation Issues. Batson et al. (2009) do not provide
any implementation details of the BSS algorithm. Here we discuss several
issues arising during the implementation.

6.1.1 Choice of Column Selection. At every iteration, there are multiple
columns that satisfy the condition U (ui, δU , Aτ ,Uτ ) ≤ L(ui, δL, Aτ , Lτ ). Bat-
son et al. (2009) suggest picking any column that satisfies this constraint.
Instead of breaking ties arbitrarily, we choose the column ui, which has not
been selected in previous iterations and whose Euclidean norm is highest
among the candidate set. Columns with zero Euclidean norm never get
selected by the algorithm. In the inner loop of algorithm 1, U and L has to
be computed for all the d columns in order to pick a good column. This step
can be done efficiently using a single line of Matlab code by making use of
matrix and vector operations.

6.2 Other Feature Selection Methods. In this section, we describe other
feature-selection methods with which we compare BSS.

6.2.1 Rank-Revealing QR Factorization. Within the numerical linear alge-
bra community, subset selection algorithms use the so-called rank revealing
QR (RRQR) factorization. Here we slightly abuse notation and state A as
a short and fat matrix as opposed to the tall and thin matrix. Let A be an
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n × d matrix with (n < d) and an integer k(k < d) and assume partial QR
factorizations of the form

AP = Q
(

R11 R12
0 R22

)
,

where Q ∈ R
n×n is an orthogonal matrix, P ∈ R

d×d is a permutation matrix,
R11 ∈ R

k×k, R12 ∈ R
k×(d−k), and R22 ∈ R

(d−k)×(d−k). The above factorization
is called an RRQR factorization if σmin(R11) ≥ σk(A)/p(k, d), σmax(R22) ≤
σmin(A)p(k, d), where p(k,d) is a function bounded by a low-degree poly-

nomial in k and d. The important columns are given by A1 = Q(
R11
0

) and

σi(A1) = σi(R11) with 1 ≤ i ≤ k. We perform feature selection using RRQR
by picking the important columns that preserve the rank of the matrix.

6.2.2 Random Feature Selection. We select features uniformly at random
without replacement, which serves as a baseline method. To get around the
randomness, we repeat the sampling process five times.

6.2.3 Leverage-Score Sampling. For leverage-score sampling, we repeat
the experiments five times to get around the randomness. We pick the
top-ρ left singular vectors of X, where ρ is the rank of the matrix X.

6.2.4 Information Gain. The information gain (IG) feature selection
method (Yang & Pedersen, 1997) measures the amount of information ob-
tained for binary class prediction by knowing the presence or absence of a
feature in a data set. The method is a supervised strategy, whereas the other
methods used here are unsupervised.

6.3 Experiments on RLSC. The goal of this section is to compare BSS
with existing feature selection methods for RLSC and show that BSS is
better than the other methods.

6.3.1 Synthetic Data. We run our experiments on synthetic data where
we control the number of relevant features in the data set and demonstrate
the working of algorithm 1 on RLSC. We generate synthetic data in the same
manner as given in Bhattacharyya (2004). The data set has n data points and
d features. The class label yi of each data point was randomly chosen to be
1 or −1 with equal probability. The first k features of each data point xi are
drawn from yiN

(− j, 1
)

distribution, where N
(
μ, σ 2

)
is a random normal

distribution with mean μ and variance σ 2 and j varies from 1 to k. The
remaining d−k features are chosen from a N (0, 1) distribution. Thus, the
data set has k relevant features and (d − k) noisy features. By construction,
among the first k features, the kth feature has the most discriminatory power,
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Table 1: Most Frequently Selected Features Using the Synthetic Data Set.

r = 80 k = 90 k = 100

BSS 89, 88, 87, 86, 85 100, 99, 98, 97, 95
RRQR 90, 80, 79, 78, 77 100, 80, 79, 78, 77
Lvg-Score 73, 85, 84, 81, 87 93, 87, 95, 97, 96
IG 80, 79, 78, 77, 76 80, 79, 78, 77, 76

r = 90 k = 90 k = 100

BSS 90, 88, 87, 86, 85 100, 99, 98, 97, 96
RRQR 90, 89, 88, 87, 86 100, 90, 89, 88, 87
Lvg-Score 67, 88, 83, 87, 85 100, 97, 92, 48, 58
IG 90, 89, 88, 87, 86 90, 89, 88, 87, 86

followed by (k − 1)th feature and so on. We set n to 30 and d to 1000. We set
k to 90 and 100 and ran two sets of experiments.

We set the value of r (i.e., the number of features selected by BSS) to
80 and 90 for all experiments. We performed ten-fold cross-validation and
repeated it 10 times. The value of λ was set to 0, 0.1, 0.3, 0.5, 0.7, and 0.9. We
compared BSS with RRQR, IG, and leverage-score sampling. The mean out-
of-sample error was 0 for all methods for both k = 90 and k = 100. Table 1
shows the set of five most frequently selected features by the different
methods for one such synthetic data set across 100 training sets. The top
features picked up by the different methods are the relevant features by
construction and also have good discriminatory power. This shows that
BSS is as good as any other method in terms of feature selection and often
picks more discriminatory features than the other methods. We repeated
our experiments on 10 different synthetic data sets, and each time, the 5
most frequently selected features were from the set of relevant features.
Thus, by selecting only 8% to 9% of all features, we show that we are able
to obtain the most discriminatory features along with good out-of-sample
error using BSS.

Though running time is not the main subject of this study, we point
out that we computed the running time of the different feature selection
methods averaged over 10 ten-fold cross-validation experiments. The time
to perform feature selection for each of the methods averaged over 10 ten-
fold cross-validation experiments was less than 1 second (see Table 2), which
shows that the methods can be implemented in practice.

6.3.2 TechTC-300. We use the TechTC-300 data (Davidov et al., 2004)
consisting of a family of 295 document-term data matrices. The TechTC-300
data set comes from the Open Directory Project (ODP), a large, comprehen-
sive directory of the web, maintained by volunteer editors. Each matrix in
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Table 2: Running Time of Various Feature Selection Methods (in Seconds).

BSS IG LVG RRQR

Synthetic data 0.1025 0.0003 0.0031 0.0016
TechTC-300 75.7624 0.0242 0.4054 0.2631

Notes: For synthetic data, the running time corresponds to the experiment when r = 80
and k = 90 and is averaged over 10 ten-fold cross-validation experiments. For TechTC-
300, the running time corresponds to the experiment when r = 400 and is averaged over
10 ten-fold cross-validation experiments and over 48 TehTC-300 data sets.

the TechTC-300 data set contains a pair of categories from the ODP. Each
category corresponds to a label, and thus the resulting classification task is
binary. The documents that are collected from the union of all the subcat-
egories within each category are represented in the bag-of-words model,
with the words constituting the features of the data (Davidov et al., 2004).
Each data matrix consists of 150 to 280 documents, and each document is de-
scribed with respect to 10,000 to 50,000 words. Thus, TechTC-300 provides
a diverse collection of data sets for a systematic study of the performance
of the RLSC using BSS. We removed all words of length at most four from
the data sets. Next, we grouped the data sets based on the categories and
selected data sets whose categories appeared at least thrice. There were
147 data sets, and we performed ten-fold cross-validation and repeated
it 10 times on 48 such data sets. We set the values of the regularization
parameter of RLSC to 0.1, 0.3, 0.5 and 0.7.

We set r to 300, 400, and 500. We report the out-of-sample error for all 48
data sets. BSS consistently outperforms leverage-score sampling, IG, RRQR
and random feature selection on all 48 data sets for all values of the regular-
ization parameter. Table 3 and Figure 1 show the results. The out-of-sample
error decreases with an increase in the number of features for all methods.
In terms of out-of-sample error, BSS is the best, followed by leverage-score
sampling, IG, RRQR, and random feature selection. BSS is at least 3% to 7%
better than the other methods when averaged over 48 document matrices.
From Figures 1 and 2, it is evident that BSS is comparable to the other meth-
ods and often better on all 48 data sets. Leverage-score sampling requires
a greater number of samples to achieve the same out-of-sample error as
BSS (see table 3, r = 500 for Lvg-Score and r = 300 for BSS). Therefore, for
the same number of samples, BSS outperforms leverage-score sampling in
terms of out-of-sample error. The out-of-sample error of supervised IG is
worse than that of unsupervised BSS, which could be due to the worse
generalization of the supervised IG metric. We also observe that the out-of-
sample error decreases with increase in λ for the different feature selection
methods.
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Table 3: Out-of-Sample Error of TechTC-300 Data Sets Averaged over 10 Ten-
Fold Cross-Validation and over 48 Data Sets for Three Values of r.

r = 300 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

BSS 31.76 ± 0.68 31.46 ± 0.67 31.24 ± 0.65 31.03 ± 0.66
Lvg-Score 38.22 ± 1.26 37.63 ± 1.25 37.23 ± 1.24 36.94 ± 1.24
RRQR 37.84 ± 1.20 37.07 ± 1.19 36.57 ± 1.18 36.10 ± 1.18
Randomfs 50.01 ± 1.2 49.43 ± 1.2 49.18 ± 1.19 49.04 ± 1.19
IG 38.35 ± 1.21 36.64 ± 1.18 35.81 ± 1.18 35.15 ± 1.17

r = 400 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

BSS 30.59 ± 0.66 30.33 ± 0.65 30.11 ± 0.65 29.96 ± 0.65
Lvg-Score 35.06 ± 1.21 34.63 ± 1.20 34.32 ± 1.2 34.11 ± 1.19
RRQR 36.61 ± 1.19 36.04 ± 1.19 35.46 ± 1.18 35.05 ± 1.17
Randomfs 47.82 ± 1.2 47.02 ± 1.21 46.59 ± 1.21 46.27 ± 1.2
IG 37.37 ± 1.21 35.73 ± 1.19 34.88 ± 1.18 34.19 ± 1.18

r = 500 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

BSS 29.80 ± 0.77 29.53 ± 0.77 29.34 ± 0.76 29.18 ± 0.75
Lvg-Score 33.33 ± 1.19 32.98 ± 1.18 32.73 ± 1.18 32.52 ± 1.17
RRQR 35.77 ± 1.18 35.18 ± 1.16 34.67 ± 1.16 34.25 ± 1.14
Randomfs 46.26 ± 1.21 45.39 ± 1.19 44.96 ± 1.19 44.65 ± 1.18
IG 36.24 ± 1.20 34.80 ± 1.19 33.94 ± 1.18 33.39 ± 1.17

Note: The first and second entries of each cell represent the mean and standard deviation.
Items in bold indicate the best results.

We list the most frequently occurring words selected by BSS and
leverage-score sampling for the r = 300 case for seven TechTC-300 data
sets over 100 training sets used in the cross-validation experiments.
Table 4 shows the names of the seven TechTC-300 document term matrices.
The words shown in Tables 5 and 6 were selected in all cross-validation
experiments for these seven data sets. The words are closely related to
the categories to which the documents belong, which shows that BSS and
leverage-score sampling select important features from the training set. For
example, for the document pair (1092 789236), where 1092 belongs to the
category of “Arts:Music:Styles:Opera” and 789236 belongs to the category
of “US:Navy: Decommisioned Submarines,” the BSS algorithm selects sub-
marine, shipyard, triton, opera, libretto, theatre, which are closely related to the
two classes. The top words selected by leverage-score sampling for the same
document pair are seawolf, sturgeon, opera, triton finback, which are closely
related to the class. Another example is the document pair 10539 300332,
where 10539 belongs to “US:Indiana:Localities:S” and 300332 belongs to the
category of “Canada: Ontario: Localities:E.” The top words selected for this
document pair are ontario, elliot, shelbyville, indiana, schererville, which are
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Figure 1: Out-of-sample error of 48 TechTC-300 documents averaged over 10
ten-fold cross-validation experiments for different values of regularization pa-
rameter λ and number of features r = 300. Vertical bars represent standard
deviations.

closely related to the class values. Thus, we see that in using only 2% to
4% of all features, we are able to select relevant features and obtain good
out-of-sample error. The top words selected by leverage-score sampling are
library, fishing, elliot, indiana, shelbyville, ontario, which are closely related to
the class.

Though feature selection is an offline task, we give a discussion of the
running times of the different methods to highlight that BSS can be imple-
mented in practice. We computed the running time of the different feature
selection methods averaged over 10 ten-fold cross-validation experiments
and over 48 data sets (see Table 2). The average time for feature selection
by BSS is approximately over 1 minute, while the rest of the methods take
less than 1 second. This shows that BSS can be implemented in practice and
can scale up to reasonably large data sets with 20,000 to 50,000 features.
For BSS and leverage-score sampling, the running time includes the time to
compute the SVD of the matrix. BSS takes approximately 1 minute to select
features but is at least 3% to 7% better in terms of out-of-sample error than
the other methods. IG takes less than 1 second to select features, but it is 4%
to 7% worse than BSS in terms of out-of-sample error.
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Figure 2: Out-of-sample error of 48 TechTC-300 documents averaged over 10
ten-fold cross-validation experiments for different values of regularization pa-
rameter λ and number of features r = 400 and r = 500. Vertical bars represent
standard deviation.
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Table 4: A Subset of the TechTC Matrices of Our Study.

id1_id2 id1 id2

1092_789236 Arts:Music:Styles:Opera US Navy:Decommisioned Submarines
17899_278949 US:Michigan:Travel & Tourism Recreation:Sailing Clubs:UK
17899_48446 US:Michigan:Travel & Tourism Chemistry:Analytical:Products
14630_814096 US:Colorado:Localities:Boulder Europe:Ireland:Dublin:Localities
10539_300332 US:Indiana:Localities:S Canada:Ontario:Localities:E
10567_11346 US:Indiana:Evansville US:Florida:Metro Areas:Miami
10539_194915 US:Indiana:Localities:S US:Texas:Localities:D

Table 5: Frequently Occurring Terms of the TechTC-300 Data Sets of Table 4
Selected by BSS.

id1_id2 Words

1092_789236 naval,shipyard,submarine,triton,music,opera,libretto,theatre
17899_278949 sailing,cruising,boat,yacht,racing,michigan,leelanau,casino
17899_48446 vacation,lodging,michigan,asbestos,chemical,analytical,laboratory
14630_814096 ireland,dublin,boulder,colorado,lucan,swords,school,dalkey
10539_300332 ontario,fishing,county,elliot,schererville,shelbyville,indiana,bullet
10567_11346 florida,miami,beach,indiana,evansville,music,business,south
10539_194915 texas,dallas,plano,denton,indiana,schererville,gallery,north

Table 6: Frequently Occurring Terms of the TechTC-300 Data Sets of Table 4
Selected by Leverage-Score Sampling.

id1_id2 Words

1092_789236 sturgeon, seawolf, skate, triton, frame, opera, finback
17899_278949 sailing, yacht, laser, michigan,breakfast, county, clear
17899_48446 analysis, michigan, water, breakfast, asbestos, environmental,

analytical
14630_814096 ireland, dublin, estate, lucan, dalkey, colorado, boulder
10539_300332 library, fishing, service, lodge, ontario, elliot, indiana, shelbyville
10567_11346 evansville, services, health, church, south, bullet, florida
10539_194915 dallas, texas, schererville, indiana, shelbyville, plano

6.4 Experiments on Ridge Regression in the Fixed Design Setting. In
this section, we describe experiments on feature selection on ridge regres-
sion in the fixed design setting using synthetic and real data.

6.4.1 Synthetic Data. We generate the features of the synthetic data X
in the same manner as described in section 6.3.1. We generate β ∼ N (0, 1)

and y = XTβ + ω, where ω ∈ R
n and β ∈ R

d. We set n to 30 and d to 1000.
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Figure 3: MSE/Risk for synthetic data for k = 90 and k = 100 using different
feature selection methods as a function of λ. The risk after feature selection is
comparable to the risk of full data.

We set the number of relevant features k to 90 and 100 and ran two sets of
experiments. We set the value of r, the number of features selected by BSS
and leverage-score sampling, to t ∗ n, where t = 6, 7, 8, 9 for both experi-
ments. The value of λ was set to 0.1, 0.3, 0.5, and 0.7. We compared the risk
of ridge regression using BSS and leverage-score sampling with the risk of
full-feature selection and report the MSE/Risk in the fixed design setting
as a measure of accuracy. Figure 3 shows the risk of synthetic data for both
BSS and leverage-score sampling as a function of λ. The risk of the sampled
data is comparable to the risk of the full data in most cases, which follows
from our theory. We observe that for higher values of λ, the risk of sampled
space becomes worse than that of full data for both BSS and leverage-score
sampling. The risk in the sampled space is almost the same for both BSS
and leverage-score sampling. The time to compute feature selection is less
than 1 second for both methods (see Table 7).

6.4.2 TechTC-300. We use two TechTC-300 data sets, “10341-14525” and
“10341-61792,” to illustrate our theory. We add gaussian noise to the labels.
We set the value of r, the number of features to be selected, to 300, 400,
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Table 7: Running Time of Various Feature Selection Methods (in Seconds).

Synthetic Data TechTC (10341-14525) TechTC (10341-61792)

BSS 0.3368 68.8474 67.013
LVG 0.0045 0.3994 0.3909

Note: For synthetic data, the running time corresponds to the experiment when r = 8n.

For TechTC-300, the running time corresponds to the experiment when r = 400.

Figure 4: MSE/Risk for TechTC-300 data using different feature selection meth-
ods as a function of λ. The risk after feature selection is comparable to the risk
of full data.

and 500. The value of λ was set to 0.1, 0.3 and 0.5. We compared the risk
of ridge regression using BSS and leverage-score sampling with the risk of
full-feature selection and report the MSE/Risk in the fixed design setting
as a measure of accuracy. Figure 4 shows the risk of real data for both BSS
and leverage-score sampling as a function of λ. The risk of the sampled
data is comparable to the risk of the full data in most cases, which follows
from our theory. The risk of the sampled data decreases with an increase in
r. The time to perform feature selection is approximately 1 minute for BSS
and less than 1 second for leverage-score sampling (see Table 7).

7 Conclusion

We present a provably accurate feature selection method for RLSC that
works well empirically and also gives better generalization peformance
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than prior existing methods. The number of features required by BSS is of
the order O

(
n/ε2

)
, which makes the result tighter than that obtained by

leverage-score sampling. BSS has been used recently as a feature selection
technique for k-means clustering (Boutsidis & Magdon-Ismail, 2013), and
linear SVMs (Paul, Magdon-Ismail, & Drineas, 2015), and our work on RLSC
helps to expand research in this direction. The risk of ridge regression in the
sampled space is comparable to the risk of ridge regression in the full feature
space in the fixed design setting, and we observe this in both theory and
experiments. Interesting future work in this direction would be to include
feature selection for nonlinear kernels with provable guarantees.
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