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ABSTRACT

Dynamic networks are characterized by topologies that vary with
time and are represented by time-graphs. The notion of connec-
tivity in time-graphs is fundamentally different than that in static
graphs. End-to-end connectivity is achieved opportunistically by
store-forward-carry paradigm if the network is so sparse that source-
destination pairs are usually not connected by complete paths. In
static graphs, it is well known that the network connectivity is tied
to the spectral gap of the underlying adjacency matrix of the topol-
ogy: if the gap is large, the network is well connected and a ran-
dom walk on this graph has a small hitting time. In this paper,
we investigate a similar metric for time-graphs, which indicates
how quickly opportunistic methods deliver packets to destinations,
speed of convergence in estimating an entity and quickness in the
online optimization of protocol parameters, etc. To this end, a time-
graph is represented by a 3-mode reachability tensor which yields
whether a vertex is reachable from another node within t steps.
Our observations from an extensive set of simulations show that the
correlation between the expected hitting time of a random walk in
the time-graph (following a non-homogenous Markov Chain) and
the second singular value of the matrix obtained by unfolding the
reachability tensor is significantly large, above 90%.
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C.2.1 [Computer-Communication Networks]: Network Archi-
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1. INTRODUCTION
In wireless mobile networks, end-to-end connectivity is achieved

collectively without the need for an established infrastructure us-
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ing self-configuring applications and protocols (i.e. routing). Be-
cause of node mobility and other forms of dynamism in the network
topology, the information these protocols use change frequently.
Rather than fetching more recent information at the cost of over-
head, the protocols may employ opportunistic methods to cope
with dynamism [1]. In addition, the density of the network may
be low so that source-destination pairs are not connected by com-
plete paths most of the time. In such intermittently connected net-
works, end-to-end connectivity is achieved over time by utilizing
the store-forward-carry paradigm.

It is useful for many applications to characterize how well the
network is connected. For example, in well connected networks
epidemic algorithms quickly spread the messages to the network
and the minimum and/or maximum time needed to spread informa-
tion to the whole network is small. Mechanisms that are used to
estimate or optimize a parameter quickly converges if the network
is well connected and the information flow is fast. Similarly, a ran-
dom walk based mechanism, in which a random walker moves to
neighboring nodes with equal probabilities, quickly terminates with
success if the network is well connected. In intermittently con-
nected networks, even though there are no complete paths between
source-destination pairs at any given time instants, the messages
are delivered relatively quickly to the destinations if the network is
well-mixed.

In static networks, the connectivity of the network can be quan-
tified by the spectral gap of the graph that represents the network,
λ1−λ2, where λ1 and λ2 are the two largest eigenvalues of the ad-
jacency matrix of the graph [13]. If the spectral gap of the graph is
large, the mixing time, the number of steps that a random walk must
make on the graph before reaching a distribution that is acceptably
close to the stationary distribution is small. A large spectral graph
implies that hitting time, the number of steps a random walk makes
before visiting a particular subset of the graph vertices for the first
time, and the cover time, the number of steps a random walk must
make to visit each vertex in the graph, are small.

In dynamic networks, the network topology constantly evolves
typically in a non-deterministic manner, by inserting or deleting
edges and/or nodes over time and the notion of connectivity is dif-
ferent from static networks. Consider the snapshots taken from a
mobile network, that are depicted in Figure 1. In this example,
nodes A and F are never connected. However, node A sends a
packet to C at t1. At this time C has no neighbor that it can for-
ward this packet for delivery to F . C keeps the packet until t2 in
its buffers and send it to E at this time. At t3, now E transmits
the packet to node F . This delivery method exploits the dynamism
in the network for end-to-end connectivity. This is called store-
carry-forward paradigm and widely used in routing protocols for
networks with intermittent connectivity [22]. Even though com-
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(a) Network Topology at
t1

(b) Network Topology at
t2

(c) Network Topology at
t3

(d) Network Topology at
t4

Figure 1: Evolution of a network over time. A and F are never

connected. Still, end-to-end connectivity can be maintained be-

tween these nodes over time.

plete paths between a majority of node pairs time can do not exist
in this scenario, the links between the nodes might be formed so
that one node quickly reaches another over time.

In this paper, we propose a structural metric that is similar to the
spectral gap of the static networks to characterize the connectivity
of dynamic networks. Other metrics can characterize the properties
such as expected cluster numbers, average connected cluster size in
a way (similar to the property in static graphs that when the spectral
gap is 0, the network has more than one connected clusters). These
metrics could also be useful in determining the optimum data dis-
semination protocols, quantifying the network vulnerability, etc.

A dynamic, variable topology network is represented by a time-

graph, which indicates the creation and deletion of the vertices
and/or edges in time. In particular, we use 3-mode adjacency ten-
sors or 3-dimensional arrays and relate the structure of the time-
graph to the network connectivity. The tensor yields whether two
nodes are connected at a given time, similar to the adjacency matrix
of a static graph, i.e. the entry Aijk = 1 in the adjacency tensor if
vertex i is connected to vertex j at time k.

As a general rule, if the network is well connected, an oppor-
tunistic method such random walk performs better. This quality
stems from the fact that random walk is able to sample nodes in a
network with respect to a (typically uniform) probability distribu-
tion in a small number of steps in well connected networks. Hence,
the performance of the random walk indicates how well the net-
work is connected. In dynamic networks, the forwarding probabili-
ties are derived from the adjacency tensor and continuously change
in time. Therefore, random walks follow non-homogenous Markov
Chains. On the other hand, the structural elements of the network
is deduced through a series of operations on the adjacency tensor.
Using the information given by the adjacency tensor, we can obtain
the reachability tensor, which reports if a node can be reachable
from another node within t time steps. We normalize the rows of
the matrices of this tensor, and unfold it around the “distinguished”
mode or dimension [15], which in this case is the dimension that
depicts the time. This operation yields a two dimensional matrix.
We use the singular values of this matrix as the structural metrics
of the time-graphs.

Our observations based on the data from extensive simulations
show that the correlation between the second singular value of this
matrix and the expected hitting time is very high, above 0.9, which
is a very large value for correlation. Hence, the second singu-
lar value is a good indicator of network connectivity. Performing

these experiments, we used a variety of node density values and
node speed values so that the data forwarding can be in the form
of store-and-forward as well as store-carry-forward. Tensors have
been drawing a lot of interest recently; however, researchers still
have a very long way of investigating the algebraic properties of
the tensors. Therefore, it is not possible to support these observa-
tions with theoretical proof yet. Still, our experiments show that the
proposed singular value can be used to evaluate the connectivity of
dynamic networks.

The rest of this paper is organized as follows. In the next sec-
tion we review the related work. In Section 3, we introduce our
time-graph model, explain how the expected hitting time on time-
graphs is derived and present the notion of reachability tensor. In
Section 4, we show that the hitting time is highly correlated to the
structural properties of reachability tensor via data obtained from
simulations with various mobility models. Section 5 concludes the
paper.

2. RELATED WORK
Random walks and the related Markov Chain Monte Carlo method

are predominant in many areas of Computer Science, Mathemat-
ics, Engineering, Physics, Biology, Economics, etc. Random walks
have been proposed as key algorithmic ingredients in protocols for
various aspects of network design and maintenance. Existing liter-
ature [3, 6, 14] reports that a task for which independent sampling
would be a good algorithmic primitive, such as searching, will ben-
efit from random walks.

Dynamic networks constantly evolve by inserting or deleting
edges and/or vertices over time. The notion of time evolving graphs
was introduced by Kumar et al. in [9] as a novel combinatorial
object to depict dynamic networks. In this model, a time graph
G = (V, E) consists of a set V of nodes where each node vi has
an associated interval D(vi) on the time axis, called the duration
of vi, and a set E of edges. A node vi is said to be alive at time
t, if t ∈ D(vi). Each edge is a triplet (vi, vj , t) where vi and vj

are nodes in V and t is a point in time. The interpretation is that
each edge is created at a point in time at which two end-points are
alive. In [5], the author describes a combinatorial reference model
capturing characteristics of time varying networks. The proposed
time-graph model gives rise to several different metrics that may
serve as objective functions in routing strategies, such as “earliest
time to reach one or all the destinations”. Scherrer et al. propose
methods to describe dynamic graphs in [18] using properties such
as the number of links and average degree as a function of time.
Other relatively few studies that investigate dynamic graphs include
[2, 12, 16]. The works generally investigate properties such as ex-
istence of communities and community size as well as how these
properties change with time. On the other hand, we are interested
in the structure of the entire dynamic graph, which we relate to the
end-to-end connectivity.

There has been significant progress in understanding the linear
algebraic properties of multi-mode tensors. Many researchers have
focused on tensor decompositions, which have been successfully
applied in data analysis [8, 11, 15, 21]. However, we are not aware
of any attempt to connect tensors with the random walks or the
notion of network connectivity.

In a wireless network, the dynamism stems from the node mo-
bility. Mobility of nodes can be exploited to deliver packets to des-
tination nodes that are not immediately connected to source nodes.
In their seminal paper, Grossglauser and Tse show that if the net-
work topology changes over time, the mobility can increase wire-
less network capacity assuming delay can be traded-off, and unlim-
ited storage is available [7]. This result has inspired the design of
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Figure 2: A tensor representation of time-graphs. Ai repre-

sents the adjacency matrix obtained from the network snapshot

obtained at time ti. Ai is the i-th slab of the adjacency tensor

A.

routing protocols for Delay Tolerant Networks where the connec-
tivity is intermittent and it is not possible to form immediate paths
between source-destination pairs. Instead, intermediate nodes have
to store and carry the packets until they encounter the destination
node or another node that is more likely to deliver the packet. Ex-
amples include [19, 20]. However, the question of how node mobil-
ity affects the evolving connectivity graph of the network remains
unanswered.

3. METHODOLOGY
In this section, we introduce our time-graph combinatorial ob-

ject. Then, we derive the expected hitting time for a random walk
in an evolving time-graph. Finally, we present the notion of reach-
ability tensor which we will use to denote the structure of the time-
graph.

3.1 Our Time-Graph Model
In constructing the time-graphs, we discretize the continuous

time intervals and focus on the edges instead of vertices. Let t0, t1, . . . , tm

denote discrete time moments. In this simple scenario, an edge be-
tween two nodes vi and vj might be present at t0 and t1 but dis-
appear at t2 and t3, and reappear at t4. We emphasize that the
vertices on the graph are fixed. In our setting, deletion of a node vi

corresponds to making the node disconnected from the rest of the
network, e.g. all edges adjacent to vi disappear, and insertion of
a node corresponds to adding an edge between vi and other nodes
that vi contacts with. Clearly, at any time moment, any number of
nodes might be disconnected or isolated.

We focus on undirected, unweighted time-graphs, which pro-
vide information of whether there is a bidirectional connection be-
tween two nodes at a time instant. Let V be the set of all the
nodes of the time-graph, whose cardinality is n; |V | = n. Let
T = {t1, t2, . . . , tm} denote the set of all time moments of in-
terest. At each time, t ∈ T , we take a snapshot of the dynamic
network. Let G represent the time-graph and Gk, k = 1, . . . , m,
denote the snapshots of the dynamic graph obtained at time tk. Ak

denotes the adjacency matrix of Gk . Clearly, Ak is an n × n ma-
trix. This representation implies a 3-dimensional array or a 3-mode
n × n × m tensor A, which consists of all m matrices Ak. Aijk

is equal to 1 if there is an edge between nodes vi and vj at time tk,
otherwise it is zero. We call A the adjacency tensor of the time-

graph G. The snapshot of the dynamic network at a specific time
moment corresponds to a slab of the tensor [15]. Figure 2 depicts
the tensor representation of time-graphs.

3.2 Expected Hitting Times of the Random Walks
on Time-Graphs

Given the abstraction of time-graphs, we can visualize and for-
mally define random walks on dynamic networks. Random walks
in fixed graphs proceed in discrete steps: at time t0 the walk takes
a step from vertex v(t0) to a vertex v(t1) that is adjacent to v(t0)
and is chosen uniformly at random. This node makes a similar de-
cision at time t1. The transitions of the random walk is modeled by
a Markov Chain where the transition probabilities are the same at
all times. In other words, the Markov Chain is homogeneous. Ran-
dom walks in time-graphs are essentially the same, except for that
even though v(t1) is adjacent to v(t0) at time t0, they might not be
adjacent to each other at time t1 (when the next transition actually
takes place). The transition probabilities also change with time. As
a result, the Markov Chain becomes non-homogeneous. The state
space of the Markov Chain is fixed and each state corresponds to a
particular node in the network.

The connectivity of the time-graph can be evaluated by the ex-
pected hitting time of a random walk on that graph. The hitting
time is the number of steps a random walk takes to reach a partic-
ular node for the first time. If the network is well connected, the
expected hitting time is small. We now summarize the results given
in [17] to derive the expected hitting time in a non-homogeneous
Markov Chain.

For notational convenience, we only use j instead of vj and k
instead of tk. Let Xk denote the state of the Markov Chain, the
node at which the random walk resides at time k. Multiple step
transition probabilities from time k to time k + a are defined as

pk,k+a(i, j) = P{Xk+a = j|Xk = i} (1)

where a ≥ 1. For presentation simplicity, let pk(i, j) = pk,k+1(i, j).
Single step transition probabilities are thus

pk(i, j) =

{

1

ζi

k

if i and j are neighbors at time k

0 otherwise
(2)

where ζi
k is the number of neighbors node i has at time k. The

entries pk(i, j) with 0 ≤ i, j ≤ n − 1 constitute the probability
transition matrix at time k, Pk. Note that Pk is obtained by nor-
malizing the rows of Ak.

Transition probabilities have the following properties:

• pk(i, j) ≥ 0 for all i, j ∈ V and k ≥ 0.

•
∑

j∈V pk(i, j) = 1 for all i ∈ V and k ≥ 0.

• pk(i, i) = 0 if ζi
k > 0 and 1 otherwise.

• ph,k(i, j) =
∑

l∈V
ph,r(i, l)pr,k(l, j) for all r such that

h < r < k

Let Θ denote the time at which a random walk first hits node d
when the random walk starts at another node s ∈ V \{d}. Without
loss of generality, assume that the random walk is initiated at time
t = 0. The hitting time is

Θ = inf{k > 0; Xk = d}. (3)

To find the hitting time, a new non-homogeneous Markov Chain
can be defined where d is now an absorbing state. State d always
transitions to itself with probability 1 no matter how many neigh-
bors node d has. All the other transition probabilities remain the
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same. In both Markov Chains, the expected time a random walk
first hits state d is the same. The probability transition matrix at
time k for this Markov Chain is

Qk =

[

Rk Hk

0 1

]

(4)

where the (n − 1) × (n − 1) matrix Rk represents the transition
probabilities between the states in the subset V \{d} at time k (i.e.
Rk is Pk with dth row and column removed) and Hk is the n −
1 length vector denoting single step transition probabilities from
V \{d} to d at time k.

Using the non-homogeneous Markov Chain whose transition prob-
ability matrices in time are given in (4), the tail distribution for the
hitting time is

P (Θ > η) = P (∀i, i ≤ η, Xi ∈ V \{d})

= α

(

η−1
∏

k=0

Rk

)

1n−1 (5)

where 1n−1 is a length n − 1 column vector whose entries are all
1 and α is the n− 1 entry row vector indicating the initial distribu-
tion of the random walk. Equation 5 indicates the probability that
random walk still remains in V \{d} after η time steps.

Since Θ is a discrete random variable,

E[Θ] =
∑

η≥0

ηP (Θ = η) =
∑

η≥0

P (Θ > η) (6)

with P (Θ > 0) = 1 since s ∈ V \{d}. Hence, the expected hitting
time can be rewritten as

E[Θ] = α



I +
∑

η≥1

η−1
∏

k=0

Rk



 1n−1 (7)

where I is the n − 1 × n − 1 identity matrix.
Consider two matrices Qk and Qk+1 of type (4). Their product

is

QkQk+1 =

[

RkRk+1 RkHk+1 + Hk

0 1

]

.

Since all the terms of the matrices are positive,

[Hk](i) ≤ [RkHk+1](i) + [Hk](i) (8)

∀i 6= d, which indicates that probability of transition to d increases
and the probability of random walk remaining at a state other than
the destination decreases at every time step. A more detailed dis-
cussion can be found in [17].

3.3 Reachability Tensor
Using the initial time-graph model, we define another tensor,

reachability tensor, B. This tensor indicates whether a node is
reachable from another node after a certain number of steps. Let
Tk be defined as

Tk = min

(

1,

k
∏

i=0

Ai

)

(9)

where 1 is an all 1 n × n matrix. The product
∏k

i=0
Ai is n × n

matrix. The entry that corresponds to the i-th row and the j-th
column of this matrix gives the number of k-step paths that start at
i and end at j. If this value is above 0, a random walk starting from
node i at time 0 can end up at node j at time k and there is at least
one k-step path connecting i to j. The k-th slap of the reachability
tensor B is defined as follows:

Bk = min

(

1,
k
∑

i=0

Ti

)

. (10)

When Bk(i, j) = 1, node j is reachable from node i in at most
k steps, i.e. j is reachable from i after k time steps. The number of
slabs in B is defined as

τ = inf(k; Bk = 1) (11)

if there exists such k ≤ m. In this case, every vertex in the graph is
reachable from every other one in τ time steps. Otherwise, τ = m.
τ is named the time-diameter of the time-graph. Note that if this
procedure is applied on a fixed graph, the time-diameter becomes
the diameter of the graph, which is the maximum distance between
two nodes in terms of hop count.

B is a n × n × τ tensor, i.e. B ∈ ℜn×n×τ . Define the matrix
S ∈ ℜτ,n×n, where the columns of the matrix consist of varying
the 3rd mode of B, i.e. the mode or the dimension that describes
the time. Note that this mode the distinguished dimension, i.e. it
is qualitatively different than the other modes, which both model
the vertices in the network. Each column of this matrix consists
of a slab of the tensor. We refer to the construction S as matri-

cizing or unfolding B along mode 3. Before matricizing B, all the
rows in each of its slabs are normalized. In the next section, we
experimentally show that there is a high correlation between the
first and second singular values of S, ρ1 and ρ2 respectively and
the expected hitting time in the dynamic network.

4. EVALUATION
In this section, we perform the expected hitting time analysis on

data gathered by simulations with a variety of mobility models and
extract the structural properties of reachability tensor.

4.1 Simulation Setup: Gathering Data
Our observations are based on data generated by a custom sim-

ulator. Each node moves independently according to a common
mobility model. Unless otherwise noted, we used 50 nodes in the
simulations. The nodes have 250m communication range and two
nodes can communicate directly if they are in the communication
range of each other. The nodes move in a X ×X m2 region. In or-
der to capture the different levels of population densities, X varies
from 1000 m to 3000 m in the simulations. This way, we obtain
node densities that are very low so that every node has at most one
neighbor most of the time as well as high densities where nodes
almost always have multiple neighbors. Regardless, the network
topology continuously changes. We use a large range of speed val-
ues to model different levels of dynamism. The snapshots are taken
at every 0.05 seconds. The simulation time is 1000 seconds. For
each scenario, we have performed 5 runs. The results in the graphs
are the averaged values. The correlation values on the other hand
are calculated using the raw data as the correlation between the av-
eraged values are much higher.

Each run starts with random node displacement and initial warm-
up duration to reach stationary node distribution of the mobility
model. We calculate the expected hitting time for each node with
random walk equally likely to start every node other than the des-
tination to obtain the expected hitting time for the particular time-
graph. All results are averaged over 5 different instances. For eval-
uation, we used the following mobility models1:

• Random Walk Mobility Model: In this mobility model, mo-
bile nodes have fixed journey durations, t. At the beginning

1A more detailed discussion of these models can be found in [4].
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Figure 3: The results for Random Waypoint Mobility Model. The curves that represent the expected hitting time and the first two

singular values of S are very similar. Experiments show that the correlation between the expected hitting time and the each of the

singular values is very high, above 0.9.

of each journey, the node randomly selects a speed value
and a direction value. The speed is a uniform random vari-
able within the interval [vmin, vmax]. Similarly, the direc-
tion is also uniformly distributed within the interval [0, 2π].
If a node reaches a simulation boundary, it bounces off the
boundary with an angle that depends on its original direc-
tion. In the simulations, t = 10 seconds. In each run, the
node speed varies within the interval [vmin, vmax]. We used
vmax = 2vmin and varied vmin from 0 m/s to 30 m/s.

• Random Waypoint Mobility Model: In this model, the nodes
pick destination points and speed values at the beginning of
their journeys and move towards their destinations with the
selected speed. The duration of a journey is as long as it
takes the node to arrive at the destination point. Once the
node arrives at its destination, it can pause for some duration
of time before selecting a new destination point and a new
speed value. The speed values in this model are the same as
the ones used in the Random Walk Mobility Model.

• Boundless Simulation Area Mobility Model: Each node con-
tains a speed value v and a direction θ correlated in time.
Each node updates its speed and direction every ∆t seconds
according to

v(t + ∆t) = min (max (v(t) + ∆v, vmin) , vmax)

θ(t + ∆t) = θ(t) + ∆θ

where ∆v is uniformly distributed between [−Amax∆t, Amax∆t]
and ∆θ is uniformly distributed in [−α, α], where Amax is
the maximum acceleration and α is the maximum change in

the direction of node mobility. In this simulation model, the
simulation area is a 2-D torus instead of a rectangular area.
If a node reaches a boundary, they continue their movement
and reappear on the other side of the area. Contrary to pre-
vious models, the node mobility is not memoryless in this
mobility model. In the simulations we used, ∆t = 0.2 sec-
onds, Amax = vmax∆t and α = π/10 . vmin and vmax

vary in the same way as they do in the previous models.

• Gauss-Markov Mobility Model: This model is similar to the
previous model in how the nodes update their speed and di-
rection values. Differently in this model, the nodes move in
a rectangular area and their movement reflects off the bound-
ary they encounter. The speed and direction values are up-
dated according to

v(t + ∆t) = αv(t) + (1 − α)v̄ + ωv

√

(1 − α2)

θ(t + ∆t) = αθ(t) + (1 − α)θ̄ + ωθ

√

(1 − α2)

where α is the correlation coefficient, v̄ and θ̄ mean speed
and direction as t → ∞ and ωv and ωθ are random variables
from a Gaussian distribution with mean 0 and variance 1. In
our simulations, we use α = 0.75 and ∆t = 0.2 seconds.
We randomly initiate θ̄ for each node. When a node reaches
a boundary, its movement is reflected. In this model, we vary
v̄ from 0 to 60 m/s.

We quantify the dynamism in the network using normalized av-

erage link change rate metric LCR [10], which is calculated by

LCR =
1

TS

∑

k
(Ea

k + Ed
k)

n(n − 1)/2
(12)
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where TS is the simulation time, Ea
k is the number of edges added

to the network and Ed
k is the number of edges deleted from the at

the k-th time step. The total number of link changes is divided by
the maximum possible number of edges in the network, n(n−1)/2,
with n being the number of the nodes for normalization and the
simulation time TS for normalization.

We run our simulations and evaluate the data resulting from the
simulations on machines with two dual-core sequence processors
at 3.0 GHz and 4GB random access memory. A simulation run in
which nodes move according to the random walk mobility model
with vmin = 5 m/s and vmax = 10 m/s in a 3000 × 3000 m2 area
and the evaluation of the data resulting from this run takes about 95
minutes.

4.2 Results and Discussion
Figure 3 shows the results obtained from simulations in which

nodes move according to the Random Waypoint Mobility Model.
As expected, the links change with a larger rate as the node speed
increases as shown in Figure 3(a). However, the nodes moving with
speed values selected from the same range cause different levels of
dynamism as the size of the area covered by the network changes.
When the area is small, for each node, the number of nodes which
are located at a distance close to the communication range is more.
The movement of these nodes cause increasing number of link ad-
ditions and link deletions. Figure 3(b) shows how the expected
hitting time changes with the node speed in different values for the
size of area. In a sparse network where source-destination pairs are
likely disconnected, the node that carries the random walk is more
likely to encounter with a connected portion of the network that
contains the destination node at high node mobility. As a result,
the expression [RkHk+1](i) in (8) has higher values for all k and
for each entry i. Remember that the sum of this expression over i
yields the transition probability to the destination node in two steps.
This in turn decreases the product [RkRk+11n−1](i), which is the
probability that the random walk remains at a state i that is dif-
ferent from the destination after two steps. Consequently, the hit-
ting time decreases and paths between disconnected nodes can be
formed more quickly. This also leads to decreasing time-diameters
with increasing node mobility as shown in Figure 3(e). However,
more dynamism does not necessarily mean better connectivity. In
a dense network, the destination nodes are usually connected with
the rest of the network. Even though the links change at a very
large rate, the number of neighbors that are adjacent to each node
does not change dramatically over time with increasing mobility.
Hence, the expected hitting time does not change much with the
mobility.

Figure 3(c) shows how the first singular value of the matricized
reachability tensor, ρ1 changes. Figure 3(d) depicts the character-
istics of the second singular value of the matricized reachability
tensor, ρ2. Note that these curves have very similar characteristics
to the expected hitting time shown in Figure 3(b). Both ρ1 and ρ2

remain steady in dense networks whereas they decrease with node
mobility in sparse networks. The experiments show that the cor-
relation between ρ1 and the expected hitting time is slightly above
0.93. When we consider ρ2, the correlation is very close to 0.95
which is very high. Note that even though the figures show the av-
eraged values, the correlation values are calculated using the raw
data from each single run, not the averaged results. The correla-
tion between the averaged values is even higher. In the rest of this
section, we will focus on the expected hitting time and ρ2.

In Figure 4, we show that there is similar relationship between
expected hitting time and ρ2 when the nodes move according to
the Random Walk Mobility Model. The expected hitting time de-
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Figure 4: The results for Random Walk Mobility Model. The

expected hitting time and the second singular value of the un-

folded reachability tensor have similar characteristics. Our ex-

periments show that the correlation between two value is be-

yond 0.95 for this mobility model.

creases with node mobility in sparse networks, but does not change
much in dense networks due to the same reasons explained for the
Random Waypoint Mobility Model as depicted in Figure 4(a). ρ2

also has the same characteristics as shown in Figure 4(b). The cor-
relation between ρ2 and the expected hitting time is around 0.96.
The results on the expected hitting time and ρ2 when the nodes
move according to Boundless Simulation Area Mobility Model are
given in Figure 5(a) and Figure 5(b), respectively. The character-
istics of these entities are consistent with their counterparts in the
previous mobility models. In this particular case, the correlation
between the expected hitting time and ρ2 is above 0.96. As de-
picted in Figure 6, the same arguments hold for the results with the
Gauss-Markov Mobility Model. The expected hitting time and the
second singular value of the matricized reachability tensor decrease
with the dynamism in the network as Figures 6(a) and 6(b) show,
respectively. In this mobility model, the correlation between ρ2 and
the expected hitting time is over 0.97.

Additionally, we have performed simulations to see how the ex-
pected hitting time and ρ2 values vary with the number of the nodes
in the network and if our observation about the correlation still
holds. In this case, we used the random waypoint mobility in the
node movements in various network area size with fixed speed val-
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Figure 5: The results for Boundless-area Mobility Model. The

expected hitting time and ρ2 are again very similar. The corre-

lation in this case is again more than 0.95.

ues vmin = 10 m/s and vmax = 20 m/s. Fig.7 shows the char-
acteristics of the expected hitting time and ρ2 with respect to the
number of nodes in the network. As in prior cases, the similari-
ties between the characteristics of these entities are eminent. The
correlation between these two sets of data is above 93%.

Up until now, we have compared the expected hitting time and
ρ2 values separately. When values obtained from all the simulation
runs(more than 2000 runs) are considered altogether, the correla-
tion coefficient is above 0.9.

In our evaluation, we assume that the transition of the random
walk between the nodes or the transition between states in the Markov
Chain takes place at once, without any delay. However, the time it
takes a node to transmit a packet to a neighbor can be large es-
pecially if the packet size is large. In order to capture the large
packet size effect, the snapshots of the network can be taken at a
lower rate, or with large intervals between two consecutive snap-
shots. Still, the correlation between the expected hitting time and
ρ2 remains very large.

5. CONCLUSION
In this paper, we investigate the relationship between the dy-

namism in the network and the network connectivity in mobile
networks. To represent the dynamic networks, a novel combina-
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Figure 6: The results for Gauss-Markov Mobility Model. The

results are consistent with the other mobility models. The cor-

relation between the expected hitting time and ρ2 is very large,

approximately 0.97.

torial time-graph model is proposed. Instead of a adjacency ma-
trix, the time-graph is modeled by a 3-mode adjacency tensor, or 3-
dimensional array A. In this model, slabs of the tensor correspond
to the adjacency matrices of the snapshots of the network at discrete
time instants. In a time-graph, if vertice vi is connected to vertice
vj at time tk, the entry Aijk in the tensor is 1. This tensor rep-
resentation leads us to the expected hitting time of a random walk
that proceeds in the time-graph using non-homogeneous Markov
Chains and another tensor which is referred to as reachability ten-
sor B. The entry Bijk equals 1 if a random walk starting from node
vi can end up in node vj at time k; otherwise it equals 0. The rows
of each slab of this tensor is normalized and then matricized or
unfolded along mode-3 (time axis), which is the distinguished di-
mension of the time-graph in which the other two modes represent
the vertices. Our observations based on an extensive set of experi-
ments indicate that there is a significantly large correlation between
the second singular value of the matricized reachability tensor of a
time-graph and the expected hitting time for random walks on that
time-graph, above 0.9. This a very large correlation value; there-
fore, it is a good indicator of end-to-end connectivity for dynamic
networks.

This study provides a connection between the structure and the
properties of time-graphs and the network connectivity in a dy-
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Figure 7: Expected hitting time and ρ2 with respect to the num-

ber of nodes in the network. The prior observations are true for

this case as well. The correlation between the expected hitting

time and ρ2 is 0.93.

namic network, which presents fundamental differences from the
connectivity in fixed networks. To the best of our knowledge, there
is no prior study that makes a similar attempt. In addition, ad-
jacency and reachability tensors can potentially yield information
that characterizes a wide range of dynamic network properties such
as average number of clusters, expected cluster size, etc. In future
work, we will investigate such other structural properties. We also
plan to develop distributed mechanisms to calculate/estimate these
metrics so that they could be used by network protocols and appli-
cations for mobile ad-hoc and delay tolerant networks. In addition,
our plans involve developing the mathematical foundations behind
the observations.
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