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1 Introduction

We are interested in developing and analyzing fast Monte Carlo algorithms for performing useful com-
putations on large matrices. We consider new methods for common problems such as matrix multipli-
cation, the Singular Value Decomposition (SVD), and the computation of a compressed approximate
decomposition of a large matrix. Since such computations generally require time which is superlinear
in the number of nonzero elements of the matrix, we expect our algorithms to be useful in many appli-
cations where data sets are modeled by matrices and are extremely large. In all these cases, we assume
that the input matrices are prohibitively large to store in Random Access Memory (RAM) and thus
that only external memory storage is possible. Our algorithms will be allowed to read the matrices a
few, e.g., one or two or three, times and keep a small randomly-chosen and rapidly-computable “sketch”
of the matrices in RAM; computations will then be performed on this “sketch”. We will work within
the framework of the Pass-Efficient computational model, in which the scarce computational resources
are the number of passes over the data, the additional RAM space required, and the additional time
required [8, 10].

Recent interest in computing with massive data sets has led to the development of computational
models in which the usual notions of time-efficiency and space-efficiency have been modified [3, 8, 13,
14, 15]. In the applications that motivate these data-streaming models the data sets are much too
large to fit into main memory. Thus, they are either not stored or are stored in a secondary storage
device which may be read sequentially as a data stream but for which random access is very expensive.
Typically, algorithms that compute on a data stream examine the data stream, keep a small “sketch” of
the data, and perform computations on the sketch. Thus, these algorithms are usually randomized and
approximate, and their performance is evaluated by considering resources such as the time to process an
item in the data stream, the number of passes over the data, the additional workspace and additional
time required, and the quality of the approximations returned. The motivation for our particular
“pass-efficient” approach is that in modern computers the amount of disk storage (external memory)
has increased enormously, while RAM and computing speeds have increased, yet at a substantially
slower pace. Thus, we have the ability to store large amounts of data, but not in RAM, and we do not
have the computational ability to process these data with algorithms that require superlinear time.

2 The Matrix Multiplication Algorithm

We present a simple, novel algorithm for the Matrix Multiplication Problem. Suppose A and B (which
are m × n and n × p respectively) are the two input matrices. In our main algorithm, we perform
c = O(1) independent trials, where in each trial we randomly sample an element of {1, 2, . . . n} with
an appropriate probability distribution P on {1, 2, . . . n}. We form a m× c matrix C consisting of the
sampled columns of A, each scaled appropriately, and we form a c×n matrix R using the same rows of
B, again scaled appropriately. The choice of P and the column and row scaling are crucial features of
the algorithm. When these are chosen judiciously, we prove that CR is a good approximation to AB;
more precisely, we show that, with high probability,

‖AB − CR‖F ∈ O( ‖A‖F ‖B‖F /
√

c),
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where ‖·‖F denotes the Frobenius norm, i.e., ‖A‖2F =
∑

i,j A2
ij . This algorithm can be implemented

without storing the matrices A and B in RAM, provided it can make two passes over the matrices
stored in external memory and use O(m + p) additional RAM memory to construct C and R.

3 The CUR approximation algorithm

We subsequently present an algorithm which, when given an m×n matrix A, computes approximations
to A which are the product of three smaller matrices, C, U , and R, each of which may be computed
rapidly. Let A′ = CUR be the computed approximate decomposition; our algorithm has provable
bounds for the error matrix A−A′. The CUR algorithm chooses c = O(1) columns of A and r = O(1)
rows of A randomly; if the m×c matrix C consists of those c columns of A (after appropriate rescaling)
and the r × n matrix R consists of those r rows of A (also after appropriate rescaling) then the c × r
matrix U may be calculated from C and R. For any matrix X, let ‖X‖F and ‖X‖2 denote its Frobenius
norm and its spectral norm, respectively. It is proven that

‖A−A′‖ξ ≤ min
D:rank(D)≤k

‖A−D‖ξ + poly(k, 1/c) ‖A‖F

holds in expectation and with high probability for both ξ = 2, F and for all k = 1, . . . , rank(A); thus
by appropriate choice of k

‖A−A′‖2 ≤ ε ‖A‖F

also holds in expectation and with high probability. This algorithm may be implemented without
storing the matrix A in Random Access Memory (RAM), provided it can make two passes over the
matrix stored in external memory and use O(m+n) additional RAM memory. To achieve an additional
error (beyond the best rank k approximation) that is at most ε ‖A‖F , the CUR algorithm takes time
which is a low-degree polynomial in max(m, n), k, 1/ε, and 1/δ. The proofs for the error bounds make
important use of matrix perturbation theory and previous work on approximating matrix multiplication
and computing low-rank approximations to a matrix. The probability distribution over columns and
rows and the rescaling are crucial features of the algorithms and must be chosen judiciously.

4 A PTAS for the weighted Max-Cut Problem on dense graphs

Recent work in the development and analysis of randomized approximation algorithms for NP-hard
problems has involved approximating the solution to a problem by the solution to an induced sub-
problem of constant size, where the subproblem is constructed by sampling elements of the original
problem uniformly at random. In light of interest in problems with a heterogeneous structure, for which
uniform sampling might be expected to yield suboptimal results, we investigate the use of nonuniform
sampling probabilities. We show that by judicious choice of sampling probabilities and a variant of the
CUR approximation algorithm, one can obtain error bounds that are superior to the ones obtained
by uniform sampling for weighted versions of the Max-Cut problem, for certain regimes of the error
parameter ε. Of particular interest is one of our techniques: we develop a method to approximate the
feasibility of a large linear program by a nonuniformly randomly chosen subprogram; for more details
see [9].

5 Related Work

In other related work, Achlioptas and McSherry have also computed succinctly-described matrix ap-
proximations using somewhat different sampling techniques [1, 2]. Also included in [1, 2] is a comparison
of their methods with those of [8].

Recent work has focused on developing new techniques for proving lower bounds on the number of
queries a sampling algorithm is required to perform in order to approximate a given function accurately
with a low probability or error [4].
Acknowledgements: The aforementioned results emerged from joint work with Ravi Kannan (Com-
puter Science Department, Yale University) and Michael W. Mahoney (Math Department, Yale Uni-
versity); more details can be found in [5, 6, 7, 8, 9, 10, 11, 12].
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