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Supplementary Note1

Normalized data sets2

We assembled 48,225 genotypes for 891 samples from 90 well-defined ethnic groups (see Supple-3

mentary Table 1) which were collected from various sources [1–5]. After quality control for4

minor allele frequency (MAF) > 0.05, missingness rate less than 0.05 and Hardy-Weinberg test5

statistic less than 0.001 we removed 942 markers to end up with 47,283 autosomal SNPs. We did6

not use the Indian samples from the 1000 Genomes [6] project because of unavailability of their7

geographical coordinates as well as caste and language information. Additionally, three (GIH,8

STU, ITU) out of the five Indian populations in the 1000 Genomes project were collected from9

Indian Diaspora living in the USA (Houston) and the UK and might be biased and/or lead to10

gross underestimation of genetic diversity.11

Social and language group encodings12

India primarily has five language groups namely Andamanese (AND), Austro-Asiatic (AA), Dra-13

vidians (DR), Indo-Europeans (IE) and Tibeto-Burmese (TB). AND is split further into two14

groups: Ongan and the Great Andamanese languages. Apart from these it has some language15

isolates across the country but we have not included them in our study. PCA plot on Indian16

populations (Supplementary Figure S2 and Figure 1) reveal clusters corresponding to these lan-17

guage groups showing correlation of genetic mixture and langauge groups. Caste on the other18

hand further stratifies mixing of people due to the long imposed endogamy practiced in India.19

Caste has been a category of exclusion and social stratification in Indian society for the past 200020

years [7]. The society was mainly divided into privileged and under-privileged groups, constituted21

of upper or forward castes and lower or backward castes, respectively. Outside this caste structure22

were the Dalits or “untouchables” who were mostly subsistence farmers. They usually encompass23

broader range of communities apart from Scheduled Castes, as used by the Government of India.24

These communities usually constituted of tribal societies of the forest habitats and often practiced25

subsistence farming [7]. We encoded these forward and backward caste groups as Social Group26

A (SGA) and Social Group B (SGB), respectively. For the tribes outside of the caste system we27

used Social Group C (SGC).28

As the consolidated data set was put together from so many varied sources, there was an29

imbalance of social group and language family representation (Table A) in the samples.30
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Language Groups Social Groups
AA AND DR IE TB SGA SGB SGC

131 52 336 279 93 207 211 473

Table A: Number of samples per social and language groups in the entire consolidated data set
as shown in Table S1A.

Language Groups Social Groups
AA DR IE TB SGA SGB SGC

92 93 94 89 107 43 218

Table B: Number of samples per social and language groups in the normalized data set. The
normalization was done by language and geographical regions.

We had 16 SGA, 26 SGB, 48 SGC populations as well as 15 AA, 3 AND, 32 DR, 29 IE and 1131

TB groups respectively for the entire data set. To create the normalized data set, we removed the32

population group Garo from the TB data set as the social group they belong to were unknown.33

Thus, the resulting data set had 90 individuals from TB and we sub-sampled a similar number34

of individuals from the other three language families. The sub-sampling was done with respect35

to the social group affiliation and geographical locations. As AA and TB speakers are more36

homogeneously located in the forests and hills of Central, East, and Northeast India, and, on37

the other hand, IE and DR speakers are more spread across the northern and southern India, we38

sampled individuals in order to guarantee a balanced representation of geographical variance. We39

also made sure that all language groups are equally represented in the normalized data set. This40

resulted in having 368 individuals sampled across 33 populations from all over India (Table B). We41

created multiple normalized subsets of the original consolidated data set using the same technique.42

For example, as shown in Table S1B, we included Kashmiri Pandits and Kshatriya for IE SGA43

in the normalized subset used in this study. However, to check robustness, we included Brahmins44

and Srivastava for another subset and the same was done for each sociolinguistic category. Indeed,45

all our analyses returned similar results with very minor changes in the squared correlation values.46

Correlation Optimization of Genetics and Geodemographics (COGG)47

We now describe in more detail the proposed Correlation Optimization of Genetics and Geodemo-48

graphics (COGG) method, which maximizes the correlation between one of the top two principal49

components and the geodemographic matrix, containing geographical coordinates, caste, tribe50

and language information. We restrict our encoding into three castes: SGA, SGB and SGCs,51

naming them as such instead of widely used conventional socially stigmatizing terms. We noticed52

that the Middle castes are genetically closer to the SGA, such as Kshatriya or Brahmins, hence,53

we labelled both Forward and Middle castes as SGA. Although the term Backward Class (as well54

as Scheduled castes and Scheduled Tribes) is used by the Government of India to classify social55

groups which are socially and educationally disadvantaged, we chose to call them SGB.56

Let u be the m-dimensional vector containing (say) either of the top two PCs of the genetic
covariance matrix, as computed by a software such as EIGENSTRAT [8], and let G denote the
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geodemographic matrix, as follows:

G =
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The social groups (SGA, SGB and SGC) and language (AA, DR, IE, TB) encoding was done as follows:

Social groups (or Languages)=

{
1, if the sample belongs to that social group (or Language)

0, otherwise

Let a be the k-dimensional vector whose elements are a1 . . . ak (in our case, k = 9). COGG solves the57

following optimization problem:58

max
a

Corr

(
u,

k∑
i=1

aiGi

)
. (1)

Recalling the definition of the Pearson correlation coefficient, we can rewrite the above optimization prob-59

lem as60

max
a

Corr

(
u,

k∑
i=1

aiGi

)
= max

a

uT (
∑k
i=1 aiGi)√

Var [u] Var
[∑k

i=1 aiGi

] = max
a

∑k
i=1 ai(u

TGi)√
Var [u]

∑k
i,j=1 ai(G

T
i Gj)aj

. (2)

Let di = uTGi/
√

Var [u] for i = 1 . . . k and let d be the vector of the di’s. Also, let Mij = GT
i Gj for

all i, j = 1 . . . k and let M be the matrix of the Mij ’s. By definition, M is a square, symmetric positive
definite matrix and hence its square root M1/2 is well-defined. We can now rewrite the above equation as

max
a

(
u,

k∑
i=1

aiGi

)
= max

a

dTa√
aTMa

= max
a

dTa

‖M1/2a‖2
.

To understand the last equality let ‖x‖2 denote the Euclidean norm of the vector x and recall that:61

(i) since M is symmetric positive definite matrix, M = (M1/2)TM1/2 and (ii)
√

xTx = ‖x‖2 for any62

vector x, including x = M1/2a. Now assume that M is invertible and make the change of variable63

p = M1/2a/‖M1/2a‖2. Notice that p is a unit norm vector (its Euclidean norm is equal to one) and that64

a = ‖M1/2a‖2M−1/2p. (3)

Thus, we get:65

max
p,‖p‖2=1

(
u,

k∑
i=1

aiGi

)
= max

p,‖p‖2=1
dTM−1/2p. (4)

Using sub-multiplicativity and the fact that p is a unit norm vector,66

dTM−1/2p ≤ ‖dTM−1/2‖2‖p‖2 = ‖dTM−1/2‖2 =
√

dTM−1d. (5)
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The last equality follows from the fact that ‖x‖2 =
√

xTx for any vector x. The above upper bound is
true for any unit norm vector p and can actually be achieved by the vector pmax:

pmax =
M−1/2d

‖M−1/2d‖2
.

Indeed, it is easy to verify that pmax is a unit norm vector that satisfies

dTM−1/2pmax = dTM− 1
2

M−1/2d

‖M−1/2d‖2
=

dTM−1d√
dTM−1d

=
√

dTM−1d.

Thus, from eqn. (5), it follows that pmax is a maximizer for the optimization problem of eqn. (4). If we let

amax = M−1d,

it is easy to see that the above values for amax and pmax satisfy

amax = ‖M1/2amax‖2M−1/2pmax,

as stipulated by the change of variables from eqn. (3), and thus amax maximizes COGG. Plugging in the67

solution for a, COGG revealed a squared Pearson correlation coefficient r2 = 0.93 for PC1 vs G and68

r2 = 0.85 for PC2 vs G. These values represent a many fold increase from the original correlation values of69

r2 = 0.6 for PC1 vs G′ and r2 = 0.06 for PC2 vs G′, where G′ is the matrix G without the sociolinguistic70

features, containing only the geographical coordinates. This highlights that geography is not enough as a71

feature to understand the genetic structure of the Indian populations.72

To evaluate COGG without zero-one indicator variables we also applied a different encoding for G73

where we assigned 1, 2 and 3 for SGA, SGB and SGC, respectively in the social category and similarly 1,74

2, 3 and 4 for AA, DR, IE and TB in language category. Running COGG with this encoding resulted in75

values of r2 equal to 0.79 for PC1 and 0.82 for PC2, respectively. We observe that the value of r2 for PC176

shows a decrease from 0.92 (when the previous encoding of zero-one indicator variable was used) to 0.79,77

whereas for PC2 it shows a smaller decrease.78

We also investigated whether the values returned by COGG are statistically significant. We performed79

1,000 iterations with randomly permuted values of the columns related to caste and language encoding in80

G. We do not permute the columns corresponding to the geographical coordinates in order to maintain81

a baseline for the comparison. We randomly permuted the rows (individuals) corresponding to the seven82

columns (variables related to castes and language affiliations) in G and in each iteration we run COGG83

to find the optimal amax and the respective r2 value. We find that the random permutations return a84

maximal value of r2 equal to 0.6422 for PC1 and 0.1679 for PC2 (Supplementary Figure S6). This is a85

minor increase from 0.6 and 0.06 respectively for PC1 and PC2, clearly indicating the importance of the86

caste and language encoding in G.87

If there is ”multicolinearity” or strongly correlated variables in G, the inverse of that matrix might88

exhibit numerical instability as the smallest singular value of the covariance matrix might be close to89

zero. To avoid this, we regulate the smallest singular value by taking a regularized pseudoinverse of the90

covariance matrix.91

Prior work attempted to disentangle the effects of non-genetic variables such as geography, linguistics,92

subsistence, social or ecological factors from the genetic variables captured by the top principal components.93

One such study [9] regressed the top 20 PCs computed from the genotypes of the Khoe-San populations94

with various combinations of geographic, linguistic and subsistence covariates, and used cross-validation95

scores to understand which non-genetic variable can predict the observed genetic patterns. They observed96

that languages improve the predictive capacity of a model that includes only geography in the sub-Saharan97

and the Southern African data set. This is similar to the intuition of COGG, which provides a conceptually98

straightforward model to do an in-depth study to account for the factors within the broad generic non-99

genetic factors, such as which language and social group explain most of the genetic variation captured by100

the top principal components. Also, in addition, we do a feature selection procedure to obtain the most101

significant variables in the geodemographic matrix, unlike previous studies. Another study [10] employed a102

Bayesian framework to isolate ecological factors from geographic distances. Broadly, COGG tries to achieve103

the same goal, but it provides the ease of use in this setting, where one can just encode the environmental104

and ecological factors as covariates and solve the underlying optimization problem to obtain the maximum105

correlation. Along with this, it is easier to comprehend, as it is closer to a linear regression setting.106
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Canonical Correlation Analysis (CCA)107

Finally, there is no mathematical reason to restrict COGG to the top two PCs of the genetic similarity108

covariance matrix. Prior work has exclusively focused on studying the correlation between longitude109

and latitude and the top two principal components; COGG goes beyond this by adding geodemographic110

features to study more general correlations. Our next method applies Canonical Correlation Analysis111

(CCA, introduced in [11]) to simultaneously study the correlation between the top q Principal Components112

(where q is a user-defined parameter) and the geodemographic matrix G. CCA extracts linear components113

that capture correlations between two input datasets, in a manner analogous to PCA. From a statistical114

point of view, CCA extracts directions of maximal “correlation” between a pair of datasets represented115

by matrices. From a linear algebraic point of view, CCA measures the similarities between the subspaces116

spanned by the columns of each of the two datasets, represented by matrices [12]. In our case, we extend117

the optimization problem of eqn. (1) to identify the maximal correlation to include the matrix of top118

q principal components denoted as U ∈ Rm×q for m individuals and G, the geodemographic matrix as119

described earlier. We obtain U by considering the top q left singular vectors of the genetic covariance120

matrix of the normalized subset. Formally, we define the following optimization problem, which we call121

COGG-CCA:122

max
a,b

Corr

 q∑
j=1

bjUj ,

k∑
i=1

aiGi

 , (6)

where b is a p-dimensional vector whose entries are the bj ’s and a is a k-dimensional vector whose entries123

are the ai; Uj and Gi represent the j-th and i-th column of U and G as column vectors. Solving COGG-124

CCA analytically dates back to the work of [11] and allows us to obtain the following closed form solution125

for the vectors a and b, the unknown coefficient vectors associated with the matrices G and U, respectively.126

Let ΣUU = Cov [U,U ], ΣGU = Cov [G,U ], and ΣGG = Cov [G,G] denote three covariance matrices
and construct

Σ = Σ
−1/2
GG ΣGUΣ

−1/2
UU .

Then, a is the top right singular vector of the matrix Σ and b is the top left singular vector of Σ; it is127

well-known that the maximum correlation coefficient is equal to the largest singular value of the matrix128

Σ. Applying COGG-CCA on our data, we obtain the maximum value r2 = 0.94 for q = 8. To check for129

statistical significance of COGG-CCA, we first formed the baseline of r2 by just including the geographical130

coordinates in the geodemographic matrix G. This resulted in r2 = 0.74. Next, we permuted the features131

in both the matrices, G and U, respectively which resulted in a very small increase from the baseline with132

r2 = 0.76, whereas COGG-CCA, even with smaller values of q resulted in very high r2 (Supplementary133

Figure S7).134

Feature selection using Orthogonal Matching Pursuit (OMP)135

We used a greedy feature selection algorithm described in [13] to select features in the geodemographic136

matrix G ∈ Rm×k containing m individuals and k demographic features. The precise algorithm is described137

below.138
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Algorithm 1 OMP Algorithm for Feature Selection

1: Input: matrix G, column vector U ∈ Rm, ε > 0
2: Output: matrix C ∈ Rm×p which has columns of G with indices in τ , |τ | = p, p < k
3: τ ← φ; r ← 0; U(0) ← U; G(0)←G;C← φ
4: while ‖U(r)‖2 > ε do
5: for i ∈ {1, 2, · · · , k} − τ do

6: choose i corresponding to maximum corr
(
U(r),G

(r)
i

)
7: end for
8: τ ← τ ∪ {i}; V← G

(r)
i

9: remove column i from G(r) to form G′(r)

10: project G′(r) onto the subspace orthogonal to V, i.e., G(r+1) ← G′(r) −
(
VV†

)
G′(r)

11: project U(r) onto the subspace orthogonal to V, i.e., U(r+1) ← U(r) −
(
VV†

)
U(r)

12: r ← r + 1
13: end while
14: C← Gτ

Ridge Leverage Scores139

We start with the definition of the statistical leverage scores of a matrix.140

Definition 1 Given an arbitrary m×n matrix A with m > n, let U denote the n×d matrix consisting
of the d left singular vectors of A and let Ui∗ denote the ith row of the matrix U as a row vector. Then,
the statistical leverage scores of the rows of A are given by

`i = ‖Ui∗‖22

Classical leverage scores quantify the importance of each column i for the range space of the data matrix141

A. They are widely used in regression problems, outlier detection and randomized matrix algorithms.142

They are used to select important features from an under-determined system. To address instability issues143

in a regression, ridge regression is performed and an extension of this notion of classical leverage scores to144

a ridge regression setting is known as ridge leverage scores. It is defined as follows.145

Definition 2 The ridge leverage score τi
λ(A) is defined as,

τi
λ(A) =

(
AA>

(
AA> + λIn

)−1)
ii

where λ > 0 is the regularization parameter. Further simplifying, the row ridge leverage scores boil down
to the following,

τi
λ(A) =

(
AA>

(
AA> + λIn

)−1)
ii

=
(
UΣV>VΣ>U>(UΣV>VΣ>U> + λIn)−1

)
ii

=
(
UΣ2U>(UΣ2U> + λUU>)−1

)
ii

=
(
UΣ2(Σ2 + λ)−1U>

)
ii

=
(
UΣλU

>)
ii

For the above, we have assumed that A has full row rank as d >> n. Therefore the thin SVD (Singular146

Value Decomposition) of A is UΣV>, where U ∈ Rn×n, V ∈ Rd×n and Σ ∈ Rn×n whose diagonal147

elements are the singular values of A. For the above simplification we have used the fact that U and V148

are orthogonal matrices with orthonormal columns hence, UU> = U>U = In and VV> = V>V = Id149

and their inverse is equal to transpose. Also, from above, Σλ ∈ Rn×n and the ith diagonal entry of it is150

defined as,151

(Σλ)ii =

√
σ2
i

σ2
i + λ

, i = {1, 2, · · · , n} (7)
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Thus, we can write the row ridge leverage scores as,

τλ(A) = ‖UΣλ‖22

Armed with this definition we devise the algorithm to calculate the RLS statistic.152

Algorithm 2 Row Ridge leverage score algorithm

1: Input: A matrix, A ∈ Rm×n
2: Output: τλ(A) ∈ Rm×1
3: B = AA>

4: Compute thin SVD of B = UΣV>

5: Choose λ = mean{σ1, σ2, · · · , σn} where σi is the ith diagonal element of Σ
6: Compute (Σλ) as defined in 7
7: Compute τλ(A) = ‖UΣλ‖22
8: Return the vector τλ(A)

We obtain the row ridge leverage scores in this manner for the respective mean-centered (the columns153

of the matrix are centered around it’s mean i,e. the mean of each column is subtracted from values154

corresponding to each row of the column) genotype matrix consisting of m individuals and n SNPs and155

the geodemographic matrix (described earlier). Thereafter, we compute the additive ridge leverage score156

per population as described in the Materials and Methods. This ensures important observations from both157

matrices are considered together.158

Running COGG with the significant ethnic groups as shown in Table 1 on 90 pan-Indian populations159

further confirmed the importance of these populations in shaping Indian genetics. The r2 value between160

geographical coordinates and the PCs came out to be 0.21 for PC1 and 0.08 for PC2, when COGG was161

run with populations from Table 1. COGG was run for the same populations and the values returned162

were r2 = 0.853 for PC1 and the geodemographic matrix G and r2 = 0.794 for PC2 and G. Thus, COGG163

returns very high correlations using only the populations selected using the RLS statistics, capturing most164

of the variance reflected by the top PCs of the genetic matrix.165

Estimating population admixture166

We applied ADMIXTURE on the three data sets namely, the pan-Indian data set, the normalized Indian167

data set and the Eurasian data set just like we did for PCA. ADMIXTURE on the entire Indian data168

set (Supplementary Figure S3A), with all populations, revealed that the groups SGB and SGCs for AA169

and TB, along with some DR SGB and SGCs (such as Paniyas, Kadar and Irulas) show divergence from170

DR SGA and IE populations (Supplementary Figure S9). This is replicated in the ADMIXTURE output171

of the normalized Indian data set. When applied on the Eurasian data set, the IE and DR SGAs, along172

with IE SGB and SGCs cluster together with most Northwestern Frontier populations. The TB SGC173

and SGA show signs of admixture from the Chinese populations. Some Middle Eastern populations and174

Caucasians share the same ancestral components as the IE and DR SGA. The European populations175

seem to be sharing very small amount of ancestral components with the IE and DR speaking groups. To176

investigate further and quantify the shared ancestry between these populations we employed a quantitative177

meta-analysis of ADMIXTURE which was first developed in [14].178

We now describe in more detail our quantitative analysis of ADMIXTURE’s output. Given a target179

population X and reference populations Y, Z, etc., we were interested in quantifying the amount of ancestry180

of population X that is captured by populations Y, Z, etc. Towards that end we devised a new approach to181

quantitatively analyze the output of ADMIXTURE. Recall that ADMIXTURE, for a particular value of182

K, will represent each sample using K coordinates. Thus, for a particular value of K and for a particular183

population Y with n samples, we can represent the output of ADMIXTURE for this population as an184

n-by-K table. Then, for each reference population Y, we summarize this n-by-K matrix using its top right185

singular vector only; in all our analyses, the top singular value corresponding to the top right singular186

vector captured at least 80% of the reference population variance as represented by ADMIXTURE. Let187

vY be the top right singular vector (a K-dimensional vector) for population Y; similarly, let vZ be the top188
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right singular vector (a K-dimensional vector) for population Z, etc. Now that we have represented the189

ADMIXTURE output for each population as a K-dimensional signature vector, we can apply standard190

vector space calculus in order to answer our original question: how much of the ancestry of population X191

is captured by population Y, or population Z, etc. More specifically, in order to compute the percentage192

of the ancestry of population X that is captured by population Y, we compute the percentage of the norm193

of VX that is captured (in projection sense) by vY . Formally, we compute194

‖VX − vY · v†Y · Vx‖F
‖VX‖F

which returns a value between zero and one. In the above, VX denotes the m-by-K matrix representing195

the m samples of population X with respect to the K coordinates returned by ADMIXTURE. The notation196

v†Y indicates the pseudoinverse of the vector vY , which is equal to the transpose of the vector vY , suitably197

normalized. It is also worth noting that the norm used in the above equation is the standard matrix198

Frobenius norm. In order to quantify the amount of ancestry of population X that is captured by both199

populations Y and Z, we form the K-by-2 matrix V = [vY vZ ] whose columns are the vectors vY and vZ200

and we compute201

‖VX − V · V † · Vx‖F
‖VX‖F

In the above equation, V † denotes the pseudoinverse of the matrix V ; the matrix V V † is a projector202

on the subspace spanned by the column space of V . Thus, we basically extract from the matrix VX the203

part of VX that is captured by the (subspace spanned by the) vectors vY and vZ .204

The meta-analysis when applied on the pan-Indian data set (891 individuals; 90 populations) showed205

that AA SGC share a small amount of ancestry with other IE and DR tribal speakers (19%), whereas206

TB SGC are completely isolated (Supplementary Figure S3B). DR SGC show divergence from other pop-207

ulations, which is due to a few tribal populations such as Irula, Kadar, and Paniyas (as pointed out in208

Figure S2A). We investigate this further when we apply the meta-analysis on the pan-Indian data set209

and study the meta-analysis of each population group (Supplementary Table S2). The most significant210

observation is that IE and DR populations across their caste affiliations (except DR SGC) cluster together,211

showing high shared ancestry among the SGA and SGB. The IE SGC also share very high ancestry with212

the IE and DR SGA and SGC. This supports the autochthonous origin of the caste system in India. Ap-213

plying the meta-analysis of ADMIXTURE to the Eurasian data along with the normalized Indian data214

set shows that the IE and DR speakers, along with the TB SGA, share significant amount of ancestry215

with Northwestern Frontier provinces (maximum in IE SGA, who share close to 80%), which is further216

validated by f3 statistics. The TB SGC and TB SGA share approximately 94% and 68% ancestry with217

the Chinese populations, as well as with Mongolia. The Uygurs, along with the whole of Central Asia218

seems to share a small amount of ancestry with the IE populations across social groups, as well as with219

DR SGA. We see similar trends in Turkey, Caucasia and European populations, sharing more ancestry220

with IE and DR SGAs. These populations also share close to 20% ancestry with IE SGCs. This shows221

that with the spread of IE languages, some tribes have been in touch with the migrating populations who222

followed the path from Siberia and Mongolia through Central Asia and Northwestern Frontier provinces.223

We validate these findings with f3 statistics and TreeMix analyses.224

Linear Discriminant Analysis225

The genotype score value was assigned as the sum of a value of 0 for the major allele and 1 for the minor226

allele for each strand. The counts for each genotype out of N samples are n00 for homozygous major227

allele, n01 for a heterozygous genotype, and n11 for the homozygous minor allele. The total score across N228

samples will be 1 ·n01+2 ·n11, with the average being s̄ = (n01+2 ·n11)/(2N). The average squared score is229

s̄2 = (n01+4 ·n11)/(2N), so the variance is Var [s] = s̄2−(s̄)
2
. Scores assigned to each genotype are scaled230

to be (s − s̄)/
√

Var [s]. In the case of Hardy-Weinberg equilibrium, this reduces to a form proportional231

to that employed in Eigenstrat [8]. This adjustment was applied to PCA computations performed for232

comparisons with LDA in this study, as well as in the normalization of the LDA input scores.233

We maintain a matrix, d ∈ RN×D, where N rows represent the individuals and D columns represent234

a genotype score. There are G groups of populations and each group has p individuals. The matrix d235
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is indexed as dgpi,k, where p ∈ g (g ∈ G) and i ∈ p, each with a vector of genotype scores indexed by236

k ∈ D. We define, ngp = |p| for p ∈ g, and ng. =
∑
p∈g npg, then N =

∑
g∈G ng., the data are decomposed237

into components dgpi,k = x...,k + xg..,k + xgp.,k + xgpi,k such that
∑
i∈p xgpi,k = 0,

∑
p∈g ngpxgp.,k = 0,238

and
∑
g∈G ng.xg..,k = 0.This produces a hierarchic decomposition of the variations among groups and239

populations similar to AMOVA [15], but each population and group is weighted by the number of samples240

they contain. Their values are determined from x...,k = N−1
∑

g∈G,p∈g,i∈p
dgpi,k, xg..,k = n−1g.

∑
p∈g,i∈p

dgpi,k −241

x...,k, xgp.,k = n−1gp
∑
i∈p
dgpi,k − x...,k − xg..,k, and xgpi,k = dgpi,k − x...,k − xg..,k − xgp.,k.242

The total covariance is243

ck′,k = N−1
∑

g∈G,p∈g,i∈p
(dgpi,k′ − x...,k′) (dgpi,k − x...,k)

= N−1
∑
g∈G

ng.xg..,k′xg..,k +N−1
∑

g∈G,p∈g
ngpxgp.,k′xgp.,k +N−1

∑
g∈G,p∈g,i∈p

xgpi,k′xgpi,k.

Then N−1
∑

g∈G,p∈g,i∈p
xgpi,k′xgpi,k represents the variation within populations,

N−1
∑

g∈G,p∈g
ngpxgp.,k′xgp.,k represents the variation between populations within groups, and

(SB)k′k = N−1
∑
g∈G

ng.xg..,k′xg..,k represents the variation between groups. The total variation within

groups is:

(SW )k′k = N−1
∑

g∈G,p∈g
ngpxgp.,k′xgp.,k +N−1

∑
g∈G,p∈g,i∈p

xgpi,k′xgpi,k

.244

While this could be evaluated for each individual SNP by choosing k = k′ and probing those, it is245

desirable to find combinations of SNPs that are most informative of the genetic differences among groups.246

Those combinations may be expressed in terms of vectors û with components ûk. Then the projections247

on the x’s would have the form
∑
k∈[D]

xgpi,kûk. Along these projections, it is possible to write a ratio248

expressing the variation between groups vs within groups as f(û) = ûTSB û
ûTSW û

[16,17]. Identifying v = S
1/2
W û,249

this becomes f( ˆu(ˆ)v) = v̂TS
−1/2
W SBS

−1/2
W v̂. This yields stationary values where v̂ are eigenvectors of250

S
−1/2
W SBS

−1/2
W , with eigenvalues directly corresponding to f .251

The genetic associations identified by the û were tested by comparing the f ’s computed from the252

populations to those obtained for samples randomly permuted among the groups. Another caveat is that253

the largest eigenvalues of S
−1/2
W correspond to the smallest eigenvalues of SW . Yet, these are the most254

sensitive to sampling variation, genotyping errors, and cumulative computational errors. Further, the255

smallest, most error prone eigenvalues in SW tend to dominate S
−1/2
W , as well as f ’s, even though they256

do not carry useful information. We apply a threshold for a ratio between eigenvalues of SW between257

maximum and threshold, yielding a reciprocal square root ratio for included eigenvalues and eigenvectors258

in constructing S
−1/2
W . This restricts the computation to the subspace operationally spanned (or explored)259

by S
−1/2
W .260

In general, d will be N×D dimensional with SB and SW being D×D. Eigenvector computational space261

requirements for these tend to be prohibitive. Further, d will span an N � D dimensional space. In the262

singular value decomposition d = USV T where V is orthonormal, then ddT = US2UT , with S2 diagonal.263

Since ddT is symmetric, U is also orthonormal. Once U and S were determined by diagonalization of ddT ,264

V = dTUS−1. V then represents a basis of N orthogonal D dimensional vectors. In that basis, dV = US265

and V TSBV and V TSWV are N ×N matrices. Computations of f were performed in this basis. LDA was266

run the normalized Indian data set of 33 populations, but now the groupings were by language affiliations267

of the individuals. The top two discriminants when plotted against each other, revealed a very strong268

evidence on the langauge-caste interplay, as pointed out in the selected features from COGG. In Figure269

S3A, separate clines appear from left to right, with the first cline of IE SGC, followed by AA SGC, DR SGC270

and TB SGC and TB SGA. Further clines of DR SGB, DR SGA and IE SGA and IE SGB appear. This271

clearly shows the genetic stratification influenced by caste groups and then language groups within the272

caste groups. Thus, we see a two-layer stratification, when LDA was run with the language-caste groups.273
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Next, we applied LDA to the same dataset, to look further into the geography-social group-language274

interplay which was revealed by COGG. We first computed LDA with the supervised regional groups275

such as ‘North’, ‘South’, ‘East’, ‘Northeast’, ‘Central-East’ and ‘Central’. The first two discriminants276

(Supplementary Figure S5B) reveals the stratification by the geographical locations of the individuals277

under study. There is a clear gradient from TB speakers in the left forming a cline with IE speakers on278

the right reflecting the east-west span of India with IE speakers in the northwestern regions surrounding279

Pakistan and TB speakers in northeastern states. However, LDA does not pick up the north-south variation280

between IE, AA and DR speakers. Instead we get a blob of IE SGC, IE SGA with DR speakers. This is281

probably attributed to the strict imposition of endogamy on IE and DR speakers across India.282
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[2] Chaubey, G., Metspalu, M., Choi, Y., Mägi, R., Romero, I. G., Soares, P., Van Oven, M., Behar,288

D. M., Rootsi, S., Hudjashov, G., et al. (2011). Population genetic structure in indian austroasiatic289

speakers: The role of landscape barriers and sex-specific admixture. Molecular Biology and Evolution290

28(2), 1013–1024.291

[3] Moorjani, P., Thangaraj, K., Patterson, N., Lipson, M., Loh, P. R., Govindaraj, P., Berger, B., Reich,292

D., and Singh, L. (2013). Genetic evidence for recent population mixture in India. American Journal293

of Human Genetics 93(3), 422–438.294

[4] Basu, A., Sarkar-Roy, N., and Majumder, P. P. (2016). Genomic reconstruction of the history of extant295

populations of India reveals five distinct ancestral components and a complex structure. Proceedings296

of the National Academy of Sciences 113(6), 1594–1599.297

[5] Reich, D., Thangaraj, K., Patterson, N., Price, A. L., and Singh, L. (2009). Reconstructing Indian298

population history. Nature 461(7263), 489–494.299

[6] Auton, A., Abecasis, G. R., Altshuler, D. M., Durbin, R. M., Abecasis, G. R., Bentley, D. R.,300

Chakravarti, A., Clark, A. G., Donnelly, P., Eichler, E. E., et al. (2015). A global reference for human301

genetic variation. Nature 526(7571), 68–74.302

[7] Thapar, R. (2014). Can genetics help us understand Indian social history? Cold Spring Harbor303

perspectives in biology 6(11), a008599.304

[8] Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and Reich, D. (2006).305

Principal components analysis corrects for stratification in genome-wide association studies. Nature306

Genetics 38(8), 904–909.307
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Tamil Nadu
Adi-Dravider; Irula; Gounder; Kurumba; 
Malayan; Kuravar; Kallars; Sakilli; Vysya; 
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Asur; Birhor; Korwa  
Santhal; Munda; Ho
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Bhunjia; Bonda; 

Savara; Juang
Andhra Pradesh

Chenchus; Gadaba; Kamsali; 
Kattunayakan; Kamsali; Madiga; 

Naidu; Malli; Mala; Velama

Assam
GaroBihar

Chamar; Kharia

Gujarat
Bhil; Meghawal, 

Gujarati Brahmins

Karnataka
Hallaki; Hakkipikki

Kerala
Kadar; Kuruchiyan; Paniya

Madhya Pradesh
Gond; Lambadi; Mawasi;

Sahariya; Korku; 

Chhatisgarh
Dhurwa

Sherpa; Tharus

Meghalaya
Khasi

Rajasthan
Kanjars; Meena

Sikkim
Subba

Vedda

Tibet
Tibet-refugees

Tripura
Jamatia
Tripuri

Uttar Pradesh
Brahmins; Dharkars; Dusadh; Kol; 
Kshatriya; Lodi; Srivastava; Vaish; 

Scheduled Caste

Uttarakhand
Brahmins

Bengal
Bhumij; Kurmi; 

Brahmins

Kashmir
Kashmiri Pandits; Changapa

Lakshwadeep
Minicoy

Maharashtra
Maratha

Manipur
Brahmins

Arunachal 
Nysha

Austro-Asiatic SGC

Dravidian SGA Indo-European SGC

Tibeto-Burman SGA

Punjab
Khatri

Austro-Asiatic SGB

Dravidian SGC

Dravidian SGB

Indo-European SGB

Indo-European SGA

Tibeto-Burman SGC

Andamanese
Greater Andamanese; 

Jarawa; Onge

Andamanese

Nagaland
Aonaga

Naga

Fig S1: (A) Location of origin of samples of 90 populations in the pan-Indian dataset,

grouped by geographic state and colored by sociolinguistic affiliation.

(B) Top two PCs extracted from the normalized data set consisting of 368 individuals,

genotyped on 47,283 SNPs marked by geographic states and colored by geographic

regions (North: Green; West: Olive; South: Red; Centre: Yellow; East: Blue and North

East: Indigo) show that the top two PCs have very low correlation with geography.
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Centre

South

West

North North East



Fig S2: (A) PCA plot of all mainland Indian samples (839 individuals). We note that the formation of the clusters is primarily dominated by language groups, with TB_SGC and

TB_SGA forming a cluster with Khasis (AA_SGC) and Tharus (IE_SGC) showing signs of admixture. The IE and DR speakers form a cline with a gradient of social groups

within, IE_SGA and DR_SGC occupying the ends of the cline. We also observe that the Irulas, Paniyas, Kurumba and Kadars show divergence from other Dravidian tribal

populations.

(B) ALL 891 Indian samples (including outliers from Andaman islands) projected as the top two PCs. In presence of outliers, we observe a cline for mainland Indian populations

and an outlier cluster of Ongan language speaking Jarawa (AND_JW) and Onge (AND_ONG). However, the Great Andamanese (AND_GA) lies near the mainland Indian

populations. Proportions of variance explained for the top 3 PCs are 33%, 22% and 12.7%,

Fig S2: Population Structure of Indian populations

A B

Khasis & Tharus

Irulas, Paniyas & 
Kadar



Fig S3A: Admixture ancestry of Indian populations

Fig S3A: An ADMIXTURE plot (for values of K between two and eight) of the pan-Indian data set (891 individuals; 47,283 SNPs) clearly shows the five main

components related to language groups (Dravidian, Indo-European, Tibeto-Burman, Andamanese and Austro-Asiatic); see, for example, the plot for K equal to

five or six. The plot also shows the divergence of the Dravidian SGC (DR_SGC) and the Andaman samples from rest of DR speakers and mainland India,

respectively.



Fig S3B: Admixture ancestry of Indian populations

Fig S3B: Meta-analysis of the results of the ADMIXTURE plot (see Methods for details) to visually and numerically quantify the amount of shared ancestry (as

revealed by ADMIXTURE) between any pair of populations. Darker colors indicate larger amounts of shared ancestry; we observe a higher amount of shared

ancestry between the Indo-European and Dravidian populations, across all social groups, indicating the existence of significant admixture between the two

linguistic groups. The isolation of the Dravidian SGC samples is primarily due to the isolation of hill SGCs (such as Irula, Kadar, Paniyas, etc.). Greater

Andamanese (AND_GA) shares more ancestry with mainland Indian populations than other Andamanese groups Jarawa (AND_JW) and Onge (AND_ONG).



Fig S4: Stratification in Indian populations

Fig S4: (A) First and third PCs reveal clusters stratified by sociolinguistic groups in the normalized data set of 368 individuals (33 populations). SGCs from different language

groups diverge (IE_SGC is closer to other IE speakers) TB_SGC forms a cluster with TB_SGA being closer to IE and AA speakers. AA speakers form a cluster of their own.

(B) Second and third PCs extracted from the normalized data set reveal clear clusters by the sociolinguistic groups. DR_SGC shows divergence from fellow DR speakers (SGA

and SGB) who tightly cluster with IE_SGB and IE_SGC. IE_SGA forms one end of a cline with maximal variance along with AA_SGC forming the other end with AA_SGB and

IE_SGB possibly mixing in Central India.
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Fig S5: LDA plots

Fig S5: (A) Plotting the top two discriminants by language groups. Layers of stratification appear, from left to right. Although the LDA was performed by

language groups, we see a two-layer stratification, first by castes and then by languages. The IE_SGA form a separate cline, followed by DR_SGA; then, the

IE_SGC and DR_SGB follow. Then some DR and AA tribal populations cluster together, followed by a separate cluster of IE tribal populations.

(B) Plotting the top two discriminants by geographic regions. Layers of stratification appear from left to right. TB speakers occupy the left as IE speakers

occupy the right side of the plot mirroring the east-west expanse of the map of India. However, the north-south variation does not appear as clearly as the

east-west. This is perhaps confounded by the endogamy practiced by IE and DR populations.
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Random
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COGG: 0.93

Before
COGG: 0.06

Random
Permutations

COGG: 0.86

Fig S6: Statistical significance of the COGG output (using random permutations of the features) Clearly, COGG is statistically significant for both the first and the second principal 

components. 

Fig S6: Statistical Significance of COGG



Before

COGG-CCA:0.74

Random

Permutations

COGG-CCA

Fig S7a: COGG-CCA, when run with top 8 PCs, shows statistical significance with r2 = 0.94 when compared against random permutations of the variables with average r2 = 0.75.

Fig S7b: Varying number of PCs to perform COGG-CCA results in the maximum r2 when top 6 to 8 PCs are used. 

Fig S7: COGG-CCA
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Fig S8:Most significant (Z-score higher than 85) outgroup 𝑓3statistics of the form f3(YRI;A,B) where YRI is the

outgroup, A are the groups from Table S1 and B are all the pan-Indian populations in our data spanning across social

groups and language families.

Fig S8: Shared ancestry of Indian populations



Fig S9: Shared Ancestry between IE and DR

Fig S9: The shared ancestry matrix of relatedness between IE and DR speakers show that high relatedness with some divergent groups, following from the PC plot in Fig S5a. The 

DR_SGA share very high ancestry with IE SGA and SGC, showing that there was high admixture and contact between these groups prior to endogamy.  
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Fig S10A: Network analysis of Eurasia in light of Indian 
populations

Fig S10A: Networks formed using the top five PCs (see Materials and Methods for the network formation algorithm) and five nearest neighbors

showing three major paths leading to the two entry points of India.



B

Fig S10B: Shared ancestry of Eurasian populations

Fig S10B: Meta-analysis of the ADMIXTURE output reveals that, overall, Indian populations share a great proportion of ancestry with the so-called Indian Northwestern Frontier

populations, namely the SGC populations spanning Afghanistan and Pakistan. In concordance with previous studies we find higher degrees of shared ancestry in Central Asian

populations with IE and DR SGA. In particular, IE SGA share large amounts of ancestry with other IE speaking populations (i.e., Europeans). However, IE, TB, and DR speakers

also share considerable amounts of ancestry with the Uygurs. On the other hand, AA speakers, who have been suggested as the earliest settlers of India, appear more isolated.



Population Name 
# of 

Samples 
State/Province 

Broad 
Region 

Language Caste Latitude Longitude Dataset 

Adi-Dravider 5 Tamil Nadu South Dravidian 
Social Group B 

(SGB) 
12.11 79.053 Moorjani et al. (2013)  

Aonaga 4 Nagaland NorthEast Tibeto_Burmese Unknown 25.6667 94.133 Reich et al. (2009) +Metspalu et al. (2011)  

Asur 2 Jharkhand 
Eastern 
States 

Austro_Asiatic 
Social Group C 

(SGC) 
23.76 86.42 Chaubey et al. (2011) +Metspalu et al. (2011)  

Bhil 17 Gujarat NorthWest Indo-European SGC 23.0333 72.667 Moorjani et al. (2013) +Reich et al. (2009)  

Bhumij 5 West Bengal 
Eastern 
States 

Austro_Asiatic SGC 21.806 87.114 Moorjani et al. (2013)  

Bhunjia 1 Odisha 
Eastern 
States 

Indo-European SGC 21.27 81.56 Metspalu et al. (2011)  

Birhor 20 Jharkhand 
Eastern 
States 

Austro_Asiatic SGC 23.991 84.816 Basu et al. (2016)  +Moorjani et al. (2013)  

Bonda 4 Odisha 
Eastern 
States 

Austro_Asiatic SGC 18.4 81.88 Metspalu et al. (2011)  

Brahmin 15 Uttar Pradesh North Indo-European 
Social Group A 

25.75 82.683 Moorjani et al. (2013)  
(SGA) 

Chamar 10 Bihar 
Eastern 
States 

Indo-European SGC 25.37 83.04 Metspalu et al. (2011)  

Changapa 5 Ladakh North Tibeto_Burmese SGC 34.02 79.004 Moorjani et al. (2013)  

Chenchus 10 Andhra Pradesh South Dravidian SGC 18 79.59 Metspalu et al. (2011) + Reich et al. (2009) 

Dhurwa 1 Bihar 
Eastern 
States 

Dravidian SGC 18.78 82.68 Metspalu et al. (2011)  

Dharkars 12 Uttar Pradesh North Indo-European SGC 25.44 83.1 Metspalu et al. (2011)  

Dusadh 10 Uttar Pradesh North Indo-European SGB 25.44 84.56 Metspalu et al. (2011)  

Gadaba 1 Andhra Pradesh South Austro_Asiatic SGC 18.79 82.7 Chaubey et al. (2011)  

Garo 4 Assam NorthEast Tibeto_Burmese Unknown 26.17 90.62 Metspalu et al. (2011)  

Gond 38 
Madhya 
Pradesh 

Central Dravidian SGC 22.1 82.16 Reich et al. (2009) +Metspalu et al. (2011) +Basu et al. (2016)   

Gounder 5 Tamil Nadu South Dravidian SGA 12.1 79.1 Moorjani et al. (2013)  

Gujarati_Brahmin 20 Gujarat  NorthWest Indo-European SGA 22.29 70.94 Basu et al. (2016)   

Hallaki 7 Kannada South Dravidian SGC 13.9167 74.15 Reich et al. (2009)  

Hakkipikki 4 Kannada South Dravidian SGC 14.78 74.51 Metspalu et al. (2011)  

Ho 28 Jharkhand 
Eastern 
States 

Austro_Asiatic SGC 25.4 86.13 Reich et al. (2009) +Metspalu et al. (2011) +Basu et al. (2016)   

Irula 25 Tamil Nadu South Dravidian SGC 11.58 76.609 Basu et al. (2016)  +Moorjani et al. (2013)  

Iyer 20 Tamil Nadu South Dravidian SGA 13.1 80.2 Basu et al. (2016)   

Jamatia 18 Tripura NorthEast Tibeto_Burmese SGC 23.84 92.17 Basu et al. (2016)   

Juang 2 Odisha 
Eastern 
States 

Austro_Asiatic SGC 21.49 83.98 Metspalu et al. (2011)  

Kadar 20 Kerala South Dravidian SGC 9.96 77.16 Basu et al. (2016)   

Kallar 5 Tamil Nadu South Dravidian SGC 10.99 78.22 Metspalu et al. (2011) +Moorjani et al. (2013)  

Kamsali 4 Andhra Pradesh South Dravidian SGB 15.49 78.29 Reich et al. (2009)  

Kanjars 8 Rajasthan North Indo-European SGC 26.45 80.32 Metspalu et al. (2011)  

Kashmiri_Pandit 20 Kashmir North Indo-European SGA 34.22 75.5 Reich et al. (2009) +Moorjani et al. (2013)  

Kattunayakkan 5 Andhra Pradesh South Dravidian SGC 9.55 76.8 Moorjani et al. (2013)  

Kharia 8 Bihar 
Eastern 
States 

Austro_Asiatic SGC 21.89 83.36 Metspalu et al. (2011) +Reich et al. (2009)   

Khasi 3 Meghalaya NorthEast Austro_Asiatic SGC 24.87 90.72 Metspalu et al. (2011)  

Khatri 19 Punjab North Indo-European SGA 30.52 76.76 Basu et al. (2016)   

Kol 17 Uttar Pradesh North Indo-European SGB 25.15 82.58 Metspalu et al. (2011)  

Korku 4 
Madhya 
Pradesh  

Central  Austro_Asiatic SGB 22.711 75.88 Moorjani et al. (2013)  



Korwa 18 Jharkhand 
Eastern 
States 

Austro_Asiatic SGC 22.39 82.79 Basu et al. (2016)   

Kshatriya 27 Uttar Pradesh North Indo-European SGA 25.45 82.41 Moorjani et al. (2013) +Metspalu et al. (2011)  

Kurmi 1 West Bengal East  Indo-European SGB 22.85 88.3 Metspalu et al. (2011)  

Kuruchiyan 5 Kerala South Dravidian SGC 11.73 76.41 Moorjani et al. (2013)  

Kurumba 13 Tamil Nadu South Dravidian SGC 10.54 76.27 Reich et al. (2009) +Metspalu et al. (2011)  

Lambadi 1 
Madhya 
Pradesh 

Central Dravidian SGC 17.45 78.5 Metspalu et al. (2011)  

Lodi 5 Uttar Pradesh North Indo-European SGB 26.45 83.24 Reich et al. (2009)  

Madiga 19 Andhra Pradesh South Dravidian SGB 17.58 79.35 Moorjani et al. (2013) +Reich et al. (2009)  

Mala 18 Andhra Pradesh South Dravidian SGB 17.22 78.29 Moorjani et al. (2013) +Reich et al. (2009)  

Malayan 2 Tamil Nadu South Dravidian SGC 9.58 76.51 Metspalu et al. (2011)  

Malai_Kuravar 5 Tamil Nadu South Dravidian SGB 13.84 80.22 Moorjani et al. (2013)  

Malli 5 Andhra Pradesh South Dravidian SGB 10.55 72.63 Moorjani et al. (2013)  

Manipuri_Brahmin 20 Manipur NorthEast Tibeto_Burmese SGA 24.812 93.94 Basu et al. (2016)   

Mawasi 1 
Madhya 
Pradesh 

Central Austro_Asiatic SGB 23.15 77.42 Basu et al. (2016)   

Maratha 7 Maharashtra West Indo-European SGA 18.5 73.7 Basu et al. (2016)   

Meghawal 6 Gujarat NorthWest Indo-European SGB 26.18 73.04 Reich et al. (2009) +Metspalu et al. (2011)  

Meena 1 Rajasthan NorthWest Indo-European SGC 28.29 74.98 Metspalu et al. (2011)  

Minicoy 5 Lakshwadeep SouthWest Indo-European SGB 8.28 73.06 Moorjani et al. (2013)  

Munda 5 Jharkhand 
Eastern 
States 

Austro_Asiatic SGB 21.6 83.76 Moorjani et al. (2013)  

Naga 4 Nagaland NorthEast Tibeto_Burmese SGC 25.67 94.11 Metspalu et al. (2011)  

Naidu 4 Andhra Pradesh South Dravidian SGA 13.13 79.06 Reich et al. (2009)  

Narikkuravar 5 Tamil Nadu South Dravidian SGC 13.17 79.4 Moorjani et al. (2013)  

Nysha 4 
Arunachal 
Pradesh 

NorthEast Tibeto_Burmese SGC 26.55 92.4 Reich et al. (2009)  

Pallan 20 Tamil Nadu South Dravidian SGA 9.92 78.12 Basu et al. (2016)   

Palliyar 5 Tamil Nadu South Dravidian SGC 10.89 76.84 Moorjani et al. (2013)  

Pulliyar 5 Tamil Nadu South Dravidian SGB 11.02 76.98 Metspalu et al. (2011)  

Piramalai_Kallars 8 Tamil Nadu South Dravidian SGC 10.99 78.22 Metspalu et al. (2011)  

Paniyas 27 Kerala South Dravidian SGC 9.5 76.8 Moorjani et al. (2013) + Metspalu et al. (2011) + Basu et al. (2016) 

Sahariya 4 
Madhya 
Pradesh 

Central Indo-European SGB 25.28 81.54 Reich et al. (2009)  

Sakilli 4 Tamil Nadu South Dravidian SGB 9.86 76.97 Metspalu et al. (2011)  

Santhal 28 Jharkhand Central+East Austro_Asiatic SGC 24.3 87.3 Metspalu et al. (2011) +Reich et al. (2009) +Basu et al. (2016)   

Satnami 4 
Madhya 
Pradesh 

Central Indo-European SGB 20.29 85.58 Reich et al. (2009)  

Savara 2 Odisha Central+East Austro_Asiatic SGB 18.8 82.7 Metspalu et al. (2011)  

Sherpa 5 Nepal NorthEast Tibeto_Burmese SGC 29.2 83.4 Moorjani et al. (2013)  

Srivastava 2 Uttar Pradesh North Indo-European SGA 25.1 82.37 Reich et al. (2009)  

Subba 5 Sikkim NorthEast Tibeto_Burmese SGC 27.34 88.6 Moorjani et al. (2013)  

Tharu 31 Nepal North Indo-European SGC 29.23 79.3 Reich et al. (2009) +Basu et al. (2016)  + Metspalu et al. (2011) 

Tibet-refugees 5 Tibet North Tibeto_Burmese SGC 29.625 91.17 Moorjani et al. (2013)  

Tripuri 19 Tripura NorthEast Tibeto_Burmese SGC 23.81 91.2 Basu et al. (2016)   

Vaish 4 Uttar Pradesh North Indo-European SGA 25.46 82.44 Reich et al. (2009)  

Vedda 4 Sri Lanka SriLanka Indo-European SGC 6.44 80.5 Moorjani et al. (2013)  

Velamas 14 Andhra Pradesh South Dravidian SGA 17.05 79.27 Reich et al. (2009)  + Metspalu et al. (2011)  

Vysya 20 Tamil Nadu South Dravidian SGA 14.41 77.39 Reich et al. (2009) +Moorjani et al. (2013)  

WB_Brahmin 18 West Bengal East Indo-European SGA 22.55 88.37 Basu et al. (2016)   



UttarPradesh_SC 5 Uttar Pradesh North Indo-European SGB 25.42 83.1 Metspalu et al. (2011)  

TamilNadu_SC 2 Tamil Nadu South Dravidian SGB 13.05 80.18 Metspalu et al. (2011)  

UttarPradesh_Brahmins 8 Uttar Pradesh North Indo-European SGA 26.06 83.18 Metspalu et al. (2011)  

Uttaranchal_Brahmins 1 Uttar Pradesh North Indo-European SGA 29.6 79.65 Metspalu et al. (2011)  

Jarawa 19 Andaman Andaman Ongan SGC 11.7 92.6 Basu et al. (2016) 

Onge 26 Andaman Andaman Ongan SGC 11.7 92.6 Basu et al. (2016) 

Great Andmanese 7 Andaman Andaman 
Great 

Andamanese 
SGC 12.2 93 Reich et al. (2009) 

TamilNadu_Brahmin 2 Tamil Nadu South Dravidian SGA 12.49 78.42 Metspalu et al. (2011)  

 

 

 

 

Table S1A: A detailed description of the Indian samples, including their place of origin, language, caste affiliations, and respective longitude/latitude. The last column references the publication describing the respective dataset (we 

use the first author’s last name and year of publication as a shortcut to the relevant reference from our bibliography). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Population Name 
# of 

Samples 
State/Province BroadRegion Language Caste Latitude Longitude Dataset 

Bhil 17 Gujarat NorthWest Indo-European SGC 23.0333 72.6667 
Moorjani et al. (2013) [6]+Reich et 

al. (2009)  

Kanjars 8 Rajasthan North Indo-European SGC 26.45 80.32 Metspalu et al. (2011)  

Kashmiri_Pandit 20 Kashmir North Indo-European SGA 34.22 75.5 
Reich et al. (2009) +Moorjani et 

al. (2013) [6] 

Chamar 10 Bihar 
Eastern 
States 

Indo-European SGC 25.37 83.04 Metspalu et al. (2011)  

Kshatriya 27 Uttar Pradesh North Indo-European SGA 25.45 82.41 
Moorjani et al. (2013) 

[6]+Metspalu et al. (2011)  

Meghawal 6 Gujarat NorthWest Indo-European SGB 26.18 73.04 
Reich et al. (2009) +Metspalu et 

al. (2011)  

Tharus 2 Nepal Central Indo-European SGC 27.12 83.45 Metspalu et al. (2011)  

Sahariya 4 
Madhya 
Pradesh 

Central Indo-European SGB 25.28 81.54 Reich et al. (2009)  

Sherpa 5 Nepal NorthEast Tibeto_Burmese SGC 29.2 83.4 Moorjani et al. (2013) [6] 

Changapa 5 Ladakh North Tibeto_Burmese SGC 34.02 79.004 Moorjani et al. (2013) [6] 

Nysha 4 
Arunachal 
Pradesh 

NorthEast Tibeto_Burmese SGC 26.55 92.4 Reich et al. (2009)  

Jamatia 18 Tripura NorthEast Tibeto_Burmese SGC 23.84 92.17 Basu et al. (2016)   

Aonaga 4 Nagaland NorthEast Tibeto_Burmese SGC 25.6667 94.1333 
Reich et al. (2009) +Metspalu et 

al. (2011)  

Naga 4 Nagaland NorthEast Tibeto_Burmese SGC 25.67 94.11 Metspalu et al. (2011)  

Tripuri 19 Tripura NorthEast Tibeto_Burmese SGC 23.81 91.2 Basu et al. (2016)   

Manipuri_Brahmin 20 Manipur NorthEast Tibeto_Burmese SGA 24.812 93.94 Basu et al. (2016)   

Tibet-refugees 5 Tibet North Tibeto_Burmese SGC 29.625 91.17 Moorjani et al. (2013) [6] 

Subba 5 Sikkim NorthEast Tibeto_Burmese SGC 27.34 88.6 Moorjani et al. (2013) [6] 

Khasi 3 Meghalaya NorthEast Austro_Asiatic SGC 24.87 90.72 Metspalu et al. (2011)  

Bhumij 5 West Bengal 
Eastern 
States 

Austro_Asiatic SGC 21.806 87.114 Moorjani et al. (2013) [6] 

Birhor 20 Jharkhand 
Eastern 
States 

Austro_Asiatic SGC 23.991 84.816 
Basu et al. (2016)  +Moorjani et 

al. (2013) [6] 

Munda 5 Jharkhand 
Eastern 
States 

Austro_Asiatic SGB 21.6 83.76 Moorjani et al. (2013) [6] 

Mawasi 1 
Madhya 
Pradesh 

Central Austro_Asiatic SGB 23.15 77.42 Basu et al. (2016)   

Santhal 28 Jharkhand Central+East Austro_Asiatic SGC 24.3 87.3 
Metspalu et al. (2011) +Reich et 

al. (2009) +Basu et al. (2016)   

Kharia 8 Bihar 
Eastern 
States 

Austro_Asiatic SGC 21.89 83.36 
Metspalu et al. (2011) +Reich et 

al. (2009)   

Korku 4 
Madhya 
Pradesh  

Central  Austro_Asiatic SGB 22.711 75.88 Moorjani et al. (2013) [6] 

Korwa 18 Jharkhand 
Eastern 
States 

Austro_Asiatic SGC 22.39 82.79 Basu et al. (2016)   

Sakilli 4 Tamil Nadu South Dravidian SGB 9.86 76.97 Metspalu et al. (2011)  

Irula 25 Tamil Nadu South Dravidian SGC 11.58 76.609 
Basu et al. (2016)+Moorjani et al. 

(2013) [6] 

Kuruchiyan 5 Kerala South Dravidian SGC 11.73 76.41 Moorjani et al. (2013) [6] 

Madiga 19 
Andhra 
Pradesh 

South Dravidian SGB 17.58 79.35 
Moorjani et al. (2013) [6]+Reich et 

al. (2009)  

Vysya 20 Tamil Nadu South Dravidian SGA 14.41 77.39 
Reich et al. (2009) +Moorjani et 

al. (2013) [6] 

Iyer 20 Tamil Nadu South Dravidian SGA 13.1 80.2 Basu et al. (2016)   

 

Table S1B: Normalized subset of samples in India created after carefully selecting populations from Table S1A to equally represent, region, caste and languages. For each population, we include their place of origin, language, caste 

affiliations, and respective longitude/latitude. The last column references the publication describing the respective dataset (we use the first author’s last name and year of publication as a shortcut to the relevant reference).  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S1C: Samples gathered from Europe and Asia, to be merged with the samples from Table S1B, to test hypotheses regarding Indo-European and Tibeto-Burman language dispersals into the Indian sub-continent. 

 

Population Name # of samples Region Data Source 

Adygei 38 Caucasus Cann et al. (2002) +Rajeevan et al. (2003)  

Afghan 24 NW_Frontier Cann et al. (2002) + Di Cristofaro et al. (2013)  

Albania 30 SouthernEU Rajeevan et al. (2003)  

Ami 38 SouthEast Asia                     Rajeevan et al. (2003)  

Atayal 34 SouthEast Asia Rajeevan et al. (2003)  

Azeris 23 CentralAsian Yunusbayev et al. (2015) 

Bedouin 48 MiddleEast Cann et al. (2002) 

Brahui 25 NW_Frontier Cann et al. (2002)  Di Cristofaro et al. (2013)  

Burmese 15 Burmese Chaubey et al. (2011) 

Burusho 25 NW_Frontier Cann et al. (2002)  Di Cristofaro et al. (2013)  

Buryats 22 Siberian Yunusbayev et al. (2015)  

Cambodian 26 SouthEast Asia Cann et al. (2002)  

Chechens 20 Caucasus Yunusbayev et al. (2012)  

Druze 50 MiddleEast Cann et al. (2002)  

French 29 CentralEU Cann et al. (2002)  

Georgians 30 Caucasus Yunusbayev et al. (2012)  

Germans 13 CentralEU Yunusbayev et al. (2015)  

Greek 20 SouthernEU Behar et al. (2012) +d11 

Hakka 37 SouthChina Rajeevan et al. (2003)  

Han 44 NorthChina Cann et al. (2002)  

Hazara 24 NW_Frontier Cann et al. (2002)  + Di Cristofaro et al. (2013)  

Hezhen 9 NorthChina Cann et al. (2002)  

Iranians 20 MiddleEast Behar et al. (2012)  

Ishkashim 10 NW_Frontier Cann et al. (2002)  + Di Cristofaro et al. (2013)  

Italian 37 SouthernEU Cann et al. (2002) + Behar et al. (2012) 

KHV 99 SouthEast Asia Behar et al. (2012)  

Kabardin 3 Caucasus Auton et al. (2015) [41] 

Kurds 6 MiddleEast Yunusbayev et al. (2012)  

Laotians 59 SouthEast Asia Rajeevan et al. (2003)  

Lebanese 8 MiddleEast Behar et al. (2012)  

Libya 17 MiddleEast Rajeevan et al. (2003)  

Mongolians 21 Mongolia Cann et al. (2002)  

Naxi 9 SouthChina Cann et al. (2002) 

Oroqen 10 NorthChina Cann et al. (2002) 

Romanians 32 SouthernEU Behar et al. (2012)  

Russians 83 NorthernEU Cann et al. (2002) +Rajeevan et al. (2003) +Yunusbayev et al. (2015)  

Selkups 20 Siberian Raghavan et al. (2014)  

She 10 SouthChina Cann et al. (2002) 

Swedish 18 NorthernEU Behar et al. (2012)  

Syrians 16 MiddleEast Behar et al. (2012)  

Tajiks 24 CentraAsian Yunusbayev et al. (2015) +Yunusbayev et al. (2012)  

Tu 10 NW_China Cann et al. (2002)  

Tujia 10 CentralChina Cann et al. (2002)  

Turkmens 23 CentralAsian Behar et al. (2012) +Yunusbayev et al. (2012)  

Turks 19 MiddleEast Yunusbayev et al. (2015) +Cann et al. (2002)  

Uyghur 11 Uyghurs Behar et al. (2012)  

Uzbeks 19 CentralAsian Cann et al. (2002)  

Xibo 9 NW_China Rajeevan et al. (2003)  

Yakuts 49 Siberian Behar et al. (2012)  

Yemenites 47 MiddleEast Rajeevan et al. (2003) 



 

 

 

 

 

 

 

 

 

 

 

 

 

Table S2: Shared Ancestry table between the 90 populations found in Table S1A.  The matrix is ordered according to language and social group affiliations. We see that Austro-Asiatic and Tibeto-Burman populations usually show 

divergence from the rest of India and only cluster within themselves. Few DR_SGCs such as Paniyas, Irulas and Kadars, show little shared ancestry with other Dravidian SGC and SGBs, which is explained by their remote locations 

in the hills and their livelihood as nomadic hunter gatherers. The Gonds share a very high amount of ancestry with other Austro-Asiatic and Dravidian populations, which follows from linguistics, as Gondis are bilingual. The Dravidian 

SGB and SGAs share high ancestry with Indo-European SGA/SGB/SGCs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S3: Top 10% of the significant f3 statistics (f3(C; A,B)) highlighting the most admixed populations in India. Gounders, Manipuri Brahmins, Tharus and Gonds are the most admixed among all tribes in India. Detailed f3 statistics 

(for all mainland Indian populations from Table S1A available in supplementary .xlsx file SuppTable3). The Indo-European tribes such as Bhil, Kol and Chamar show signs of admixture from Austro-Asiatic tribes and Indo-European 

forward and SGBs. Changapa, who are a tribe in Ladakh, Jammu and Kashmir in the extreme north surprisingly show signs of admixture from Dravidian tribes, Indo-European SGAs, SGBs and tribes, showing that they have been 

in contact with the rest of the tribes in India. The Gonds show signs of admixture from Austro-Asiatic, Dravidian and Indo-European tribes, which is much expected as Gondis are spanned across central India. Some Gondi samples 

also show admixture from Indo-European and Dravidian SGAs. Expectedly, the Khasis are an admixed population from Tibeto-Burman tribes and Austro-Asiatic tribes. The Khasis are Austro-Asiatic speakers located in the northeast, 

along with Tibeto-Burman tribes. Notably, Manipuri Brahmins uphold the view that they are an admixed population between Indo-European and Tibeto-Burman speakers. The Tharus also are an admixed population, as had been 

noted earlier, with admixture from Indo-European, Dravidian, Austro-Asiatic, and Tibeto-Burman tribes, but not just Indo-Europeans.  

 

 

 

 

 

 

 

A B C F3 Err Z 

DR_SGB IE_SGA Gounder -0.02328 0.000644 -36.114 

IE_SGA TB_SGC Manipuri_Brahmin -0.01583 0.000452 -35.019 

DR_SGB IE_SGC Gounder -0.02188 0.000657 -33.315 

IE_SGA TB_SGC Tharu -0.01364 0.000447 -30.518 

DR_SGA TB_SGC Tharu -0.01292 0.000429 -30.084 

IE_SGC TB_SGC Tharu -0.00843 0.000389 -21.647 

DR_SGC TB_SGC Tharu -0.00913 0.000436 -20.922 

DR_SGC TB_SGC Manipuri_Brahmin -0.0094 0.000484 -19.415 

IE_SGA AA_SGC Iyer -0.00343 0.000241 -14.211 

IE_SGA AA_SGC Gond -0.00449 0.000321 -13.989 

DR_SGC AA_SGC Gond -0.00419 0.000305 -13.722 

IE_SGC AA_SGC Gond -0.00226 0.000171 -13.245 

IE_SGA AA_SGC Kol -0.00347 0.000266 -13.002 

IE_SGA AA_SGC Pallan -0.00411 0.000325 -12.638 

IE_SGA AA_SGC Bhil -0.00326 0.000277 -11.758 

IE_SGA DR_SGC Bhil -0.0036 0.000343 -10.489 

IE_SGC TB_SGC Khasi -0.01008 0.001166 -8.648 

IE_SGB TB_SGC Khasi -0.00981 0.001155 -8.49 

IE_SGA AA_SGC Chamar -0.00292 0.000358 -8.152 

IE_SGA AA_SGC Satnami -0.00503 0.000853 -5.898 



 

 

 

 

 

 

 

 

 

 

 

 

Table S4: Outgroup f3 statistic results for the tests: f3(YRI; X, Y) as visualized in Figure 3 in the pie charts showing shared genetic affinity of X and Y populations, where X is an Indian population and Y is an Eurasian/southeast Asian 

population. The maximum f3 values are returned for every population in X w.r.t Y and then represented here in descending order. The greater the maximum shared genetic affinity, the darker is the color used in the pie chart in Fig 

3. This table shows that the Europeans share more genetic drift with the IE_SGA and East Asians with the TB_SGC, reflecting on the gateways of gene flow to the Indian subcontinent.  

 


