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Abstract. We demonstrate that an algorithm proposed by Drineas et.
al. in [7] to approximate the singular vectors/values of a matrix A, is
not only of theoretical interest but also a fast, viable alternative to tra-
ditional algorithms. The algorithm samples a small number of rows (or
columns) of the matrix, scales them appropriately to form a small ma-
trix S and computes the singular value decomposition (SVD) of S, which
is a good approximation to the SVD of the original matrix. We experi-
mentally evaluate the accuracy and speed of this randomized algorithm
using image matrices and three different sampling schemes. Our results
show that our approximations of the singular vectors of A span almost
the same space as the corresponding exact singular vectors of A.

1 Introduction

In many applications we are given an m×n matrix A and we want to compute a
few of its left (or right) singular vectors. Such applications include data clustering
[1], information retrieval [13], property testing of graphs, image processing, etc.
Singular vectors are usually computed via the Singular Value Decomposition
(SVD) of A (see section 2).

There are many algorithms that either exactly compute the SVD of a matrix
in O(mn2 + m2n) time (an excellent reference is [11]) or approximate it faster
(e.g. Lanczos methods [17]). In [10] and [7] randomized SVD algorithms were
proposed: instead of computing the SVD of the entire matrix, pick a subset of its
rows or columns (or both), compute the SVD of this smaller matrix and show
that it is a good approximation to the SVD of the initial matrix; theoretical
error bounds for these Monte-Carlo algorithms were presented. In this paper
we experimentally evaluate the performance of the algorithm proposed in [7]
(which is better suited for practical applications) by demonstrating its accuracy
and speedup over traditional SVD algorithms. Our test set consists of image

? A preliminary version of this work appeared in the 2001 Panhellenic Conference on
Informatics [5].



matrices; we explain our choice below. This randomized SVD algorithm returns
approximations to the top k right (or left) singular vectors of the image matrix.
Our goal is to compare these approximations to the exact singular vectors; we
measure the accuracy of our approximations by computing rank k approxima-
tions to the matrices of our test set, using both sets of vectors, and comparing the
results. We will explore three different schemes for sampling rows (columns) of
the input matrix: uniform sampling with replacement, uniform sampling without
replacement and weighted sampling; in this latter case, “heavier” rows/columns
are included in the sample with higher probability. The most encouraging result
is that the experimental performance of the algorithm is much better than its
theoretical error bounds.

A general family of applications for this algorithm is Principal Component
Analysis applications (e.g. eigenfaces [14] or Latent Semantic Indexing in infor-
mation retrieval), where a database (of documents, images etc.) that exists in
a high dimensional space is projected to a lower dimensional space using SVD.
Then, answering a query (that is searching for an instance in the database that is
close to the query) amounts to projecting the query to the same low-dimensional
space and then finding the nearest neighbor. The projections need not be exact
for two reasons: the values of the elements of the database are usually deter-
mined using inexact methods and the exact projection to the lower dimensional
space is not necessary, since we are only interested in a nearest neighbor search.

The main reason behind picking image matrices in order to demonstrate the
accuracy and speed of our algorithm is that beyond evaluating numerical results
(i.e. the relative error of the approximation), we can also estimate the accuracy
of the approximation visually. Also, by experimenting with image matrices, we
can demonstrate that our methods work well even for relatively small and very
dense matrices (up to 1000 rows and columns, density in general close to 1). We
will see that for these matrices, uniform sampling performs equally well to our
more sophisticated sampling methods. The performance of our algorithm has
also been examined in [13] using a matrix from information retrieval datasets,
but the matrix there was very large (more than 105 rows and columns) and
less than 10% dense. Finally, singular vectors of image matrices are quite useful
in image processing (e.g. eigenfaces, image compression, image restoration, etc.
for details see [19, 15, 2, 20, 4, 3, 12, 16]). With images getting larger and larger,
certain applications might not be able to afford the computational time needed
for computing the SVD. Next we describe just such an application in medical
imaging.

In dynamic Magnetic Resonance Imaging (MRI) a series of time ordered
images is obtained by continually updating image data as changes occur (e.g.
monitoring of surgical procedures). In [23, 22] Zientara et. al. investigated the use
of SVD for creating and encoding these images. Their technique approximates
the top few left or right singular vectors of an initial image and uses them
to define “excitation profiles”. These profiles are in turn used to create SVD
encoded data for the next image in the series. The authors argue that this
process is much faster than fully generating the image using state of the art



MRI equipment. Recreating the image (that is “decoding” SVD) amounts to a
multiplication with the computed singular vectors. One major constraint is the
time required by the SVD computation, which can now be reduced using our
algorithm.

The paper is organized as follows: in section 2 we state some basic Linear
Algebra definitions and theorems related to SVD. In section 3 we present the
algorithm in a different way than it was presented in [7], more suitable for im-
plementation purposes. In section 4.1 we describe our experimental dataset and
in section 4.2 we demonstrate that although the theoretical error bounds are
very weak for relatively small matrices (such as image matrices), in practice the
algorithm is very efficient and accurate. Finally, in section 4.3 we experimentally
compare the speed of our algorithm vs. Lanczos/Arnoldi techniques.

2 Background on SVD

Any m× n matrix A can be expressed as

A =
r∑

t=1

σtu
(t)v(t)T

where r is the rank of A, σ1 ≥ σ2 ≥ . . . ≥ σr are its singular values and u(t) ∈
Rm, v(t) ∈ Rn, t = 1, . . . , r are its left and right singular vectors respectively.
The u(t)’s and the v(t)’s are orthonormal sets of vectors; namely, u(i)T · u(j) is
one if i = j and zero otherwise. We also remind the reader that

‖A‖F =
√∑

i,j

A2
ij and |A|2 = max

x∈Rn:|x|2=1
|Ax|2 = σ1

In matrix notation, SVD is defined as A = UΣV T where U and V are
orthonormal matrices, containing the left and right singular vectors of A. Σ =
diag(σ1, . . . , σr) contains the singular values of A; we remind the reader that
UT U = I and V T V = I.

If we define Ak =
∑k

t=1 σtu
(t)v(t)T

, then Ak is the best rank k approximation
to A with respect to the 2-norm and the Frobenius norm. Thus, for any matrix
D of rank at most k, |A − Ak|2 ≤ |A − D|2 and ‖A − Ak‖F ≤ ‖A − D‖F . A
matrix A has a “good” rank k approximation if A−Ak is small with respect to
the 2-norm and the Frobenius norm. It is well known that

‖A−Ak‖F =

√√√√
r∑

t=k+1

σ2
t (A) and |A−Ak|2 = σk+1(A)

Finally, from basic Linear Algebra, Ak = UkΣkV T
k = AVkV T

k = UkUT
k A,

where Uk and Vk are sub-matrices of U, V containing only the top k left or
right singular vectors respectively; for a detailed treatment of Singular Value



Decomposition see [11]. In the following, A(i) denotes the i-th row of A as a row
vector and A(i) denotes the i-th column of A as a column vector. The length of
a column (or row) will be denoted by |A(i)| (or |A(i)|) and is equal to the square
root of the sum of the squares of its elements.

3 The randomized SVD algorithm

In this section we discuss the SVD algorithm of [7] and, more specifically, an effi-
cient implementation of the algorithm. We also present theoretical error bounds
for three sampling schemes (weighted sampling, uniform sampling with replace-
ment, uniform sampling without replacement) and we comment on the quality
of the bounds in practice.

3.1 The algorithm

Given an m × n matrix A we seek to approximate its top k right singular val-
ues/vectors. Intuitively, our algorithm picks s rows of A, forms an s× n matrix
S and computes its right singular vectors. Assume that we are given a set of
probabilities p1, . . . , pm such that

∑m
i=1 pi = 1.

FastSVD Algorithm
Input: m× n matrix A, integers s ≤ m, k ≤ s.
Output: n× k matrix H, λ1, . . . , λk ∈ R+.

1. for t = 1 to s
– Pick an integer from {1 . . . m}, where Pr(pick i) = pi.
– Include A(i)/

√
spi as a row of S.

2. Compute S · ST and its singular value decomposition. Say

SST =
s∑

t=1

λ2
t w

(t)w(t)T

3. Compute h(t) = ST w(t)/|ST w(t)|, t = 1 . . . k. Return H, a matrix whose
columns are the h(t) and λ1, . . . , λk (our approximations to the top k
singular values of A).

In step 2, λ2
t are the singular values of SST and w(t), t = 1 . . . s its left (and

right3) singular vectors. In step 3, the h(t)’s are the right singular vectors of S
(and our approximations to the right singular vectors of A). It should be obvious
that the SVD of S is S =

∑s
t=1 λtw

(t)h(t)T

. We emphasize here that if we were

3 We remind the reader that for symmetric matrices the left and right singular vectors
are equal.



computing the right singular vectors of S directly after step 1, the running time
would be O(n2), while now it is O(n) (see section 3.3). The algorithm is simple
and intuitive; the only part that requires further attention is the sampling process
(see section 3.3).

3.2 Theoretical analysis

How does one evaluate how close H is to Vk (the top k right singular vectors of
A)? We are usually interested in the space spanned by Vk; this space is invariant
for A: span (AVk) ⊂ span (Vk). A consequence of this property is that Ak =
AVkV T

k is the “best” rank k approximation to A. Thus, to evaluate the quality of
H as an approximation to Vk, we will show that P = AHHT (a rank k matrix)
is almost as “close” to A as Ak is. The “closeness” will be measured using the
standard unitarily invariant norms: the Frobenius norm and the 2-norm (see
section 2). More specifically, our analysis guarantees that ‖A−P‖F,2 is at most
‖A − Ak‖F,2 plus some additional error, which is inversely proportional to the
number of rows that we included in our sample. As the “quality” of H increases,
H and Vk span almost the same space and P is almost the optimal rank k
approximation to A.

In the following theorem E (X) denotes the expectation of X. For detailed
proofs of the theorem see [7, 6].

Theorem 1. If P = AHHT is a rank (at most) k approximation to A, con-
structed using the algorithm of section 3, then, for any s ≤ m,
1. If pi = |A(i)|2/‖A‖2F and sampling is done with replacement,

E
(‖A− P‖2F

) ≤ ‖A−Ak‖2F + 2

√
k

s
‖A‖2F

E
(|A− P |22

) ≤ |A−Ak|22 +
2√
s
‖A‖2F

This sampling minimizes the variance for the error of the approximation.
2. If pi = 1/m and sampling is done with replacement,

E
(‖A− P‖2F

) ≤ ‖A−Ak‖2F + 2

√√√√k
m

s

m∑
t=1

|A(t)|4

E
(|A− P |22

) ≤ |A−Ak|22 + 2

√√√√m

s

m∑
t=1

|A(t)|4

3. If pi = 1/m and sampling is done without replacement,

E
(‖A− P‖2F

) ≤ ‖A−Ak‖2F + 2

√√√√
(

km

m− 1

) (m

s
− 1

) m∑
t=1

|A(t)|4

E
(|A− P |22

) ≤ |A−Ak|22 + 2

√√√√
(

m

m− 1

) (m

s
− 1

) m∑
t=1

|A(t)|4



The first bound is clearly a relative error bound; the relative error of our
approximation is at most the relative error of the optimal rank k approxima-
tion plus an additional error, inversely proportional to the number of rows that
we include in our sample. The other two bounds imply weaker relative error

bounds, depending on how close ‖A‖2F is to
√

m
∑m

t=1 |A(t)|4. Intuitively, these
two quantities are close if the Frobenius norm of A is distributed evenly among
its rows. Indeed, if |A(i)|2 ≥ (γ/m)‖A‖2F for some γ ≤ 1, it is easy to show that

√√√√m

m∑
t=1

|A(t)|4 ≥ γ‖A‖2F

Comparing the above bounds, we see that the first one is, generally, the
tightest. The third one is tighter than the second, since a row can not be included
in the sample twice4 (thus our sample has more useful information). Finally, we
note that weighted sampling without replacement is very difficult to analyze;
indeed, it is not even clear that we can perform such sampling and compute the
scaling factors efficiently.

Theoretically, the above algorithm necessitates the sampling of a significant
number of rows of A in order to achieve reasonable error guarantees. As an
example, if we seek to approximate the top 50 right singular vectors, in order to
achieve 2% expected relative error with respect to the Frobenius norm, we need
to pick at least 5 ·105 rows! The situation is even worse if we seek a probabilistic
statement5 instead of the expected error. Thus, an experimental evaluation of
the algorithm is imperative; indeed, in practice (see section 4.2), the algorithm
achieves small relative errors by sampling only a constant fraction of the rows
of A.

3.3 Implementation details and running time

An important property of our algorithm is that it can be easily implemented.
Its heart is an SVD computation of an s× s matrix (SST ). Any fast algorithm
computing the top k right singular vectors of such a matrix could be used to
speed up our algorithm (e.g. Lanczos methods). One should be cautious though;
since s is usually of O(k), we might end up seeking approximations to almost all
singular vectors of SST . It is well known that in this scenario full SVD of SST is
much more efficient than approximation techniques. Indeed, in our experiments,
we observed that full SVD of SST was faster than Lanczos methods.

The other interesting part of the algorithm is the sampling process. Uniform
sampling (p1 = . . . = pm = 1/m), with or without replacement, is trivial to
implement and can be done in constant time. Sampling with respect to row (or
column) lengths is more interesting; we describe a way of implementing it when
pi = |A(i)|2/‖A‖2F , i = 1 . . . m.

4 Observe that if s = m, the error in this case is zero, unlike 1 and 2.
5 We can use martingale arguments to show that ‖A − P‖F,2 is tightly concentrated

around its mean, see [8, 9, 6].



Preprocessing step:

1. For i = 1 to m compute |A(i)|2.
2. Compute ‖A‖2F =

∑m
i=1 |A(i)|2.

3. Compute zi =
∑i

j=1 |A(j)|2,i = 1 . . . m.

Sampling step:

1. Pick a real number r,uniformly at random from (0, ‖A‖2F ].
2. Find i such that zi < r ≤ zi+1 and include row i in the sample.

It is easy to see that Pr(pick i) = |A(i)|2/‖A‖2F . We can repeat the sampling
step s times to form S. The total running time of the preprocessing step is mn
and of the sampling steps s log m; we use binary search to implement the latter.

We emphasize that our sampling can be viewed as a two-pass algorithm: it
reads the input matrix once to form the zi’s, decides which rows to include in
the sample and, in a second pass, extracts these rows. Observe that once S is
formed, A can be discarded. Thus, we only need O(sn) RAM space to store S
and not O(mn) RAM space to store A.

Theorem 2. After the preprocessing step, the algorithm runs in O(n) time.

Proof: The sampling step needs s log m operations; the scaling of the rows prior
to including them in S needs sn operations. Computing SST takes O(s2n) time
and computing its SVD O(s3) time. Finally, we need to compute H, which can
be done in O(nsk) operations. Thus, the overall running time (excluding the
preprocessing step) is O(s log m + s2n + s3 + nsk). Since s and k are constants,
the total running time of the algorithm is O(n). However, the constant hidden in
this big-Oh notation is large, since it is proportional to the square of the number
of rows that are included in our sample.

¦
Finally, we note that we could modify the algorithm to pick columns of A

instead of rows and compute approximations to the left singular vectors. The
bounds in Theorem 1 remain essentially the same (rows become columns and m
becomes n). P is now equal to RRT A, where R is an m × k matrix containing
our approximations to the top k left singular vectors. The analysis of Theorem
2 holds and the running time of the algorithm is O(m).

4 Experiments

4.1 Setup

We implemented our randomized SVD algorithm using weighted sampling with
replacement, uniform sampling with replacement and uniform sampling without



replacement. We did not use weighted sampling without replacement, since we
have no theoretical bounds for it. These experiments returned approximations
to the top k right singular vectors; we also implemented the same experiments
sampling columns instead of rows, thus approximating the top k left singular
vectors. We ran every experiment 20 times for each image-matrix.

We fixed k for each image so that ‖A−Ak‖2F /‖A‖2F is small (≤ 1%). We varied
s (the number of rows or columns that are included in our sample) between k and
k+160 (in increments of 8). We ran our experiments on all images of the MatLab
ImDemos [21] directory (more than 40 images of different characteristics). We
present a variety of results, both with respect to accuracy and running time.

To measure the error of our approximations to the top k right (or left) singular
vectors, we compute the rank k approximation P to A using H (or R, see section
3.3) and the relative error of the approximation, namely ‖A−P‖2F,2/‖A‖2F,2. We
also compute (for each image) the relative error of the optimal rank k approxi-
mation to A, namely ‖A−Ak‖2F,2/‖A‖2F,2.

The speedup is measured as the ratio of the time spent by the deterministic
SVD algorithm to compute the right singular vectors (which are used to compute
Ak) over the time needed by our randomized SVD algorithm to compute H or
R (which is used to compute P ). In section 4.3 we compare the running time of
our approach with the running time of Lanczos/Arnoldi techniques.

4.2 Accuracy

General observations Our first goal is to demonstrate the accuracy of our
algorithm. In figures 1 through 4 we plot the average loss in accuracy for different
values of s (number of rows sampled) over all images. The loss in accuracy
for a particular image and a specific s is defined as the relative error of our
approximation minus the relative error of the optimal rank k approximation,
namely

‖A− P‖F,2/‖A‖2F,2 − ‖A−Ak‖2F,2/‖A‖2F,2 ≥ 0

We average the above error over all images (for the same value of s) and plot the
results. It should be obvious from the plots that as the number of rows included
in our sample increases the accuracy increases as well.

The most important observation is that our methods seem to return very
reasonable relative error bounds, much better than the ones guaranteed by The-
orem 1. The second observation is that uniform sampling without replacement
-usually- returns the best results! The reason for this phenomenon is twofold:
sampling without replacement guarantees that more rows are included in the
sample (while weighted sampling is biased towards including heavier rows, even
more than once6) and the lengths of the rows in our matrices are -more or less-
in the same range (see section 3.2). We also observe that uniform sampling with
replacement and weighted sampling return almost the same relative error in all

6 This feature of weighted sampling is very useful when dealing with large, sparse
matrices (see i.e. [13])



cases (the distance between the 2 curves is within the standard deviation of the
experiments).

We now examine the speedup of our technique, for various values of s, over
full SVD. The speedups (assuming uniform sampling w/out replacement) are:
827, 230, 95, 70, 56, 45, 35, 30, 25, 21, 18, 15, 13, 11, 10, 8, 7, 6, 6, where each
value corresponds to a sample of size s = k+8·i, i = 1, . . . , 19. The corresponding
values for approximating the left singular vectors (column sampling) are: 643,
341, 170, 104, 76, 54, 44, 37, 29, 25, 21, 18, 15, 13, 11, 9, 8, 7, 6 (again using
uniform sampling w/out replacement). We should emphasize here that the above
comparison is not fair; full SVD returns all singular vectors of a matrix, while
our technique approximates the top k singular vectors. We present a fair running
time comparison in section 4.3; still, we believe that the above numbers illustrate
the power of our technique.
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Fig. 1. F-norm error (row sampling) Fig. 2. 2-norm error (row sampling)

Case-studies on 2 images We present results on 2 images: the well-known
baboon image and a large and more complicated image, the hand_with_sphere
image7. In figures 5 through 8 we plot the error of our approximation with re-
spect to the 2-norm and the Frobenius norm as a function of s. All relative error
values are out of 100%. For the baboon image we set k = 73, thus seeking approx-
imations to the top 73 right singular vectors, while for the hand_with_sphere
image we set k = 191.

Figures 9-12 show the optimal rank k approximation to the image and our
randomized rank k approximation to the image. One can easily observe that our
approximation is quite accurate, even though most of the original image was
discarded while computing the singular vectors!

7 Hand with Reflecting Sphere image (1935), copyright by M.C. Escher, Cordon Art,
Baarn, Netherlands.
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Fig. 3. F-norm error (column sampling) Fig. 4. 2-norm error (column sampling)
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Fig. 5. Baboon (F-norm error, row sam-
pling)

Fig. 6. Baboon (2-norm error, row sam-
pling)
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4.3 Running time

In this section we compare the running times of our algorithms vs. the running
time of the well-known Lanczos/Arnoldi methods. The latter are the dominant
techniques used to approximate singular vectors of matrices. There is an exten-
sive literature exploring the power of Lanczos/Arnoldi methods (see e.g. [17]);
we give a brief, high-level presentation of Lanczos/Arnoldi methods.

Lanczos/Arnoldi methods Consider a symmetric n×n matrix A. The heart
of these techniques is the `-dimensional Krylov subspace of A, defined as

K`(x) = span
(
x,Ax, A2x,A3x, . . . , A`x

)

where x is a -usually random- vector in Rn. Assume that Q is an n×` orthogonal
matrix, such that the columns of Q form an orthogonal basis for K`(x); then,
QT AQ is an `× ` matrix whose singular values are “close” to the singular values
of A. Similarly, if ṽ(i) is the i-th right singular vector of QT AQ, then Qṽ(i)

approximates the i-th right singular vector of A. We note that QT AQ is an `× `
matrix, thus its SVD can be computed in O(`3) = O(1) time. As ` increases, the
accuracy of the approximations increases as well; for theoretical error bounds
see [17].

In practice, computing Q after K`(x) has been formed is very unstable; there
are huge losses in accuracy due to numerical errors. Instead, the following incre-
mental, iterative algorithm is employed.

Basic Lanczos/Arnoldi

1. Pick x ∈ Rn such that |x|2 = 1.
2. Set q(1) = x.
3. For i = 1 to `

– Set t = A · q(i).
– Orthonormalize t with respect to q(1), . . . , q(i−1).
– Set q(i+1) = t.

Now, q(1), . . . , q(`) form an orthogonal basis for K`(x); in practice, it is easy
to modify the above algorithm to compute H` = QT

` AQ` as well. There are
various modifications of the above algorithm to increase its stability, i.e. a second
orthogonalization step might be added etc.

It should be obvious that as ` increases, the above procedure becomes very
expensive; a remedy was suggested by Sorensen [18]: at some point, restart the
algorithm with a starting vector x which is “rich” in the subspace spanned
by the top k eigenvectors. Since we already have some information on the top
k eigenvectors of A (from the iterations done thus far) we can compute such
a starting vector; Sorensen described an elegant solution to this problem. In-
deed, most Lanczos/Arnoldi codes incorporate restarting to reduce their running
time/memory requirements.



Finally, even though the above description was focused on symmetric matri-

ces, one should note that given an arbitrary m × n matrix B, A =
[

0 BT

B 0

]
is

an (m + n)× (m + n) symmetric matrix.

Comparing Lanczos to our technique We remind the reader that, from
Theorem 2, the running time of our algorithm using uniform sampling with-
out replacement is O(n). The running time required for convergence of Lanc-
zos/Arnoldi techniques to machine precision accuracy is usually O(n2k2) for
n × n symmetric matrices (see e.g. [11]). It should be obvious that step 3 of
the Lanczos/Arnoldi algorithm described above takes at least O(n2) time; as
more and more vectors are added in K`(x), the orthogonalization becomes more
and more expensive. Implicit restarting can reduce these costs, by guaranteeing
that a bounded number of orthogonalizations will be performed; still, in order
to create a Krylov subspace of dimension ` we need at least O(`n2) time.

By construction, our algorithm seems faster than Lanczos/Arnoldi tech-
niques; for a fair comparison, we are interested in the accuracy vs. running
time performance of the two approaches; a theoretical comparison of such per-
formances is difficult. Thus, we resort to an experimental evaluation in the next
section.

Finally, we emphasize that our approach works by keeping only a few rows
of the original matrix in RAM; in the case of uniform sampling without replace-
ment, one pass through A is all we need. On the other hand, the Lanczos/Arnoldi
algorithm requires multiple accesses to A; one could easily see that if A were
a large matrix stored in secondary devices the performance penalty would be
significant.

Comparing the accuracy experimentally We used a widely available im-
plementation of the Lanczos/Arnoldi algorithm, the svds command of Mat-
Lab. svds is an interface, calling eigs, which computes the top few eigenval-
ues/eigenvectors of a matrix. eigs is also an interface, calling routines from
ARPACK iteratively to perform the computations.

We ran svds in our image-matrices; we forced an upper bound on the dimen-
sion (denoted by `) of the Krylov subspace computed by svds. Indeed, we tried
different values for `, starting at ` = k; since we seek to approximate the top k
singular vectors, it should be obvious that a Krylov subspace of lesser dimension
could not return approximations to the top k singular vectors.

We emphasize that svds does implement restarting to achieve maximum
speedup and minimize memory usage. svds also offers timing results, which
essentially bypass the inherent inefficiencies of MatLab; e.g. it does not time
for loops. Thus, we believe that the running time that we measured for svds
accurately reflects running time spent in actual computations; we remind that
ARPACK is built in C/Fortran.



Experiments We now present running time vs. accuracy curves on a few im-
ages for svds and our algorithm. In all cases, our technique was faster, usually
significantly so, regardless of the number of vectors (k) that we seek to approx-
imate. In the figures 13–18 we present results on a few images; we chose these
images to represent different values of k.
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We present two tables for the baboon image (a 512×512 image). Table 1 shows
how the accuracy of the approximation increases as the dimension (`) of the
Krylov subspace increases. We also give an estimate of the number of operations
needed to construct K`(x) (5122 · `) as well as the actual running time of svds
in every instance. We note that this running time includes the orthogonalization
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steps as well, which are not included in our estimate since restarting makes such
a prediction impossible. In table 2, we present similar results for our approach;
namely, how the accuracy increases as a function of s, as well as the number of
operations required by our approach to compute the small matrix (see section
3) and its SVD (512 · s2 + s3). Finally, in figures 19 and 20 we show low rank
approximations of the baboon and hand_with_sphere image, by approximating
the top few right singular vectors using Lanczos/Arnoldi techniques.

5 Open problems

The most interesting open problem is to combine our sampling technique with
Lanczos/Arnoldi methods. It is well-known that the speed of convergence of
the Lanczos/Arndoldi algorithm crucially depends on the starting vector (see
section 4.3). Our sampling technique could be used to create starting vectors
for Lanczos/Arnoldi iterations; more specifically, we could use our randomized
SVD algorithm to generate vectors that are rich in the directions of the singular
vectors that we seek to approximate. We experimented with the above idea in
our test set but we did not achieve significant gains; we were only able to save a
few iterations. This essentially means that random starting vectors are actually
quite good for our test set. On the other hand, this hybrid scheme might be
useful for matrices with poorly separated singular values, where random vectors
might be almost orthogonal to the singular vectors that we seek to approximate
with high probability.

A second problem is to theoretically analyze and compare the accuracy vs.
running time tradeoff of Lanczos/Arnoldi techniques and our algorithm; such
analysis seems quite challenging.
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Dimension Computing K`(x) Running time Error
(`) (×106) (in seconds) (out of 100%)

73 19.1365 1.2980 1.5586

77 20.1851 1.3610 1.5299

81 21.2337 1.4580 1.5255

85 22.2822 1.5090 1.5212

89 23.3308 1.5600 1.5198

93 24.3794 1.6350 1.5144

97 25.4280 1.6800 1.5029

101 26.4765 1.7740 1.4990

105 27.5251 1.8520 1.4965

109 28.5737 1.9430 1.4791

113 29.6223 2.0220 1.4570

117 30.6708 2.1260 1.4518

121 31.7194 2.2200 1.4517

125 32.7680 2.3120 1.4381

129 33.8166 2.3940 1.4233

133 34.8652 2.4360 1.4226

137 35.9137 2.5370 1.4036

141 36.9623 2.6300 1.4000

145 38.0109 2.7090 1.3823

149 39.0595 2.8010 1.3764

153 40.1080 2.9040 1.3756

Table 1. Statistics for svds for the baboon image.
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