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negative Least Squares (NNLS) problem, where the variables are

restricted to take only nonnegative values, often arise in applica-

tions. Motivated by the recent development of the fast Johnson–

Lindestrauss transform, we present a fast random projection type

approximation algorithm for the NNLS problem. Our algorithm

employs a randomized Hadamard transform to construct a much

smallerNNLSproblemand solves this smaller problemusing a stan-

dard NNLS solver. We prove that our approach finds a nonnegative

solution vector that, with high probability, is close to the optimum

nonnegative solution in a relative error approximation sense. We

experimentally evaluate our approach on a large collection of term-

document data and verify that it does offer considerable speedups

without a significant loss in accuracy. Our analysis is based on a

novel random projection type result that might be of indepen-

dent interest. In particular, given a tall and thin matrix Φ ∈ Rn×d

(n � d) and a vector y ∈ Rd , we prove that the Euclidean length
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Φ̃y, where Φ̃ consists of a small subset of (appropriately rescaled)

rows of Φ .
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1. Introduction

The Nonnegative Least Squares (NNLS) problem is a constrained least-squares regression problem

where the variables are allowed to take only nonnegative values. More specifically, the NNLS problem

is defined as follows:

Definition 1 (Nonnegative Least Squares (NNLS)). Given a matrix A ∈ Rn×d and a target vector b ∈ Rn,

find a nonnegative vector xopt ∈ Rd such that

xopt = arg min
x∈Rd , x � 0

‖Ax − b‖2
2 . (1)

NNLS is a quadratic optimization problem with linear inequality constraints. As such, it is a convex

optimizationproblemand thus it is solvable (up to arbitrary accuracy) in polynomial time [4]. Inwords,

NNLS seeks to find the best nonnegative vector xopt in order to approximately express b as a strictly

nonnegative linear combination of the columns of A, i.e., b ≈ Axopt .

The motivation for NNLS problems in data mining and machine learning stems from the fact that

given least-squares regression problems on nonnegative data such as images, text, etc., it is natural

to seek nonnegative solution vectors. (Examples of data applications are described in [6].) NNLS is

also useful in the computation of the Nonnegative Matrix Factorization [16], which has received

considerable attention in the past few years. Finally, NNLS is the core optimization problem and the

computational bottleneck in designing a class of Support VectorMachines [22]. Sincemodern datasets

are often massive, there is continuous need for faster, more efficient algorithms for NNLS.

In this paper we discuss the applicability of random projection algorithms for solving constrained

regression problems, and in particular NNLS problems. Our goal is to provide fast approximation

algorithms as alternatives to the existing exact, albeit expensive, NNLS methods. We focus on input

matrices A that are tall and thin, i.e., n � d, and we present, analyze, and experimentally evaluate a

random projection type algorithm for the nonnegative least-squares problem. Our algorithm utilizes

a novel random projection type result which might be of independent interest. We argue that the

proposed algorithm (described indetail in Section3), provides relative error approximation guarantees

for the NNLS problem. Our work is motivated by recent progress in the design of fast randomized

approximation algorithms for unconstrained �p regression problems [10,7].

The following theorem is the main quality-of-approximation result for our randomized NNLS

algorithm.

Theorem 1. Let ε ∈ (0, 1]. Let A ∈ Rn×d and b ∈ Rn be the inputs of the NNLS problem with n � d. If

the input parameter r of the RandomizedNNLS algorithm of Section 3 satisfies

r

log r
�

342c2o(d + 1) log(n)

ε2
, (2)

(for a sufficiently large constant co)
1 then the RandomizedNNLS algorithm returns a nonnegative vector

x̃opt such that∥∥Ax̃opt − b
∥∥2
2

≤ (1 + ε) min
x∈Rd , x � 0

‖Ax − b‖2
2 (3)

holds with probability at least 0.5.2 The running time of the RandomizedNNLS algorithm is

O(nd log(r)) + TNNLS (r, d) . (4)

The latter term corresponds to the time required to exactly solve an NNLS problem on an input matrix of

dimensions r × d.

1 co is an unspecified constant in [19].
2 Note that a small number of repetitions of the algorithm suffices to boost its success probability.
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One should compare the running time of our method to TNNLS(n, d), which corresponds to the time

required to solve the NNLS problem exactly. We experimentally evaluate our approach on 3000 NNLS

problems constructed from a large and sparse term-document data collection. On average (see Section

4.1), the proposed algorithm achieves a three-fold speedupwhen compared to a state-of-the-art NNLS

solver [15] with a small (approx. 10%) loss in accuracy; a two-fold speedup is achievedwith a 4% loss in

accuracy. Computational savings aremore pronounced for NNLS problemswith denser inputmatrices

A and vectors b (see Section 4.2).

The remainder of the paper is organized as follows. Section 2 reviews basic linear algebraic defini-

tions and discusses relatedwork. In Section 3we present our randomized algorithm for approximating

the NNLS problem, discuss its running time, and give the proof of Theorem 1. Finally, in Section 4 we

provide an experimental evaluation of our method.

2. Background and related work

Let [n] denote the set {1, 2, . . . , n}. For any matrix A ∈ Rn×d with n� d let A(i), i ∈ [n] denote the

i-th row of A as a row vector, and let A(j), j ∈ [d] denote the j-th column of A as a column vector. The

Singular Value Decomposition (SVD) of A can be written as

A = UAΣAV
T
A . (5)

Assuming that A has full rank, UA ∈ Rn×d and VA ∈ Rd×d are orthonormal matrices, while ΣA is a

d × d diagonal matrix. Finally, ‖A‖2
F = ∑n

i=1

∑d
j=1 A

2
ij denotes the square of the Frobenius norm of A

and ‖A‖2 = supx∈Rd , x /=0 ‖Ax‖2 / ‖x‖2 denotes the spectral norm of A.

The (non-normalized) n × n matrix of the Hadamard–Walsh transform Hn is defined recursively

as follows:

Hn =
[
Hn/2 Hn/2

Hn/2 −Hn/2

]
, with H2 =

[+1 +1

+1 −1

]
.

The n × n normalized matrix of the Hadamard–Walsh transform is equal to 1√
n
Hn; hereafter, we will

denote this normalized matrix by Hn (n is a power of 2). For simplicity, throughout this paper we will

assume that n is a power of two; padding A and bwith all-zero rows suffices to remove the assumption.

Finally, all logarithms are base two.

2.1. Random projection algorithms for unconstrained �p problems

The unconstrained least-squares regression problem (�2) takes as input a matrix A ∈ Rn×d and

a vector b ∈ Rn, and returns as output a vector xopt ∈ Rd that minimizes the distance ‖Ax − b‖2
2.

Assuming n � d, various algorithms solve the problem exactly in O(nd2) time [14]. Drineas et al.

[9,10] and Sarlos [21] give randomized algorithms to approximate the solution to such problems. The

basic idea of these algorithms is to select a subset of rows from A and a subset of elements from b, and

solve the induced problem exactly. The fundamental algorithmic challenge is how to form the induced

problem. It turns out that sampling rows of A and elements of bwith probabilities that are proportional

to the �2 norms of the rows of the matrix of the left singular vectors of A suffices [9]. This approach

is not computationally efficient, since computing these probabilities takes O(nd2) time. However, by

leveraging the Fast Johnson–Lindenstrauss Transform of [2], one can design an o(nd2) algorithm for

this problem [10]. The algorithm of this paper applies the same preconditioning step as the main

Algorithm of [10]. The analysis though is very different from the analysis of [10] and is based on a novel

random projection type result that is presented in Section 3. The difficulty of applying the analysis of

[10] here is the fact that the solution of an NNLS problem cannot be written in a closed form. Finally,

it should be noted that similar ideas are discussed in [7], where the authors present sampling-based

approximation algorithms for the �p regression problem for p = [1,∞). The preconditioning step of

the algorithm of this paper is different from the preconditioning step of the algorithm of [7].



C. Boutsidis, P. Drineas / Linear Algebra and its Applications 431 (2009) 760–771 763

2.2. Algorithms for the NNLS problem

We briefly review NNLS algorithms following the extensive review in [6]. Recall that the NNLS

Problem is a quadratic optimization problem. Hence, all quadratic programming algorithms may be

used to solve it. Methods for solving NNLS problems can be divided into three general categories:

(i) active set methods, (ii) iterative methods, and (iii) other methods. The approach of Lawson and

Hanson in [18] seems to be the first technique to solve NNLS problems. It is a typical example of an

active set method and is implemented as the function lsqnonneg in Matlab. Immediate followups to

this work include the technique of Bro and Jong [5] which is suitable for problems with multiple right

hand sides, as well as the combinatorial NNLS approach of Dax [8]. The Projective Quasi-Newton NNLS

algorithm of [15] is an example from the second category. It is an iterative approach based on the

Newton iteration and the efficient approximation of the Hessian matrix. Numerical experiments in

[15] indicate that it is a very fast alternative to the aforementioned active set methods. The sequential

coordinate-wise approach of [12] is another example of an iterative NNLS method. Finally, interior

point methods are suitable for NNLS computations [20]. A different approach appeared in [22]. It

starts with a random nonnegative vector x ∈ Rd and updates it via elementwise multiplicative rules.

Surveys on NNLS algorithms include [4,18,15].

3. A random projection type algorithm for the NNLS problem

This section describes ourmain algorithm for theNNLS problem. Our algorithm employs a random-

ized Hadamard transform to construct a much smaller NNLS problem and solves this smaller problem

exactly using a standard NNLS solver. The approximation accuracy of our algorithm is a function of the

size of the small NNLS problem.

3.1. The RandomizedNNLS algorithm

Algorithm RandomizedNNLS takes as inputs an n × d matrix A (n � d), an n-dimensional target

vector b, and a positive integer r < n. It outputs a nonnegative d-dimensional vector x̃opt that approx-

imately solves the original NNLS problem. Our algorithm starts by premultiplying the matrix A and

the right hand side vector bwith a random n × n diagonal matrix D, whose diagonal entries are set to

+1 or −1 with equal probability. It then multiplies the resulting matrix DA and the vector Db with a

small submatrix of the n × n normalized Hadamard-Walsh matrix Hn (see section 2). This submatrix

of Hn – denoted by H̃ – is constructed as follows: for all i ∈ [n], the ith row of Hn is included in H̃

with probability r/n. Clearly, the expected number of rows of the matrix H̃ is equal to r. Finally, our

algorithm returns the nonnegative vector x̃opt ∈ Rd that satisfies

x̃opt = arg min
x∈Rd ,x � 0

∥∥H̃D (Ax − b)
∥∥2
2 . (6)

In Section 3.3 we will argue that, for any ε ∈ (0, 1], if we set

r � 684c2o(d + 1) log(n) log(342c2(d + 1) log(n)/ε2)/ε2, (7)

then
∥∥Ax̃opt − b

∥∥2
2
is at most (1 + ε) worse than the true optimum

∥∥Axopt − b
∥∥2
2
. This is a sufficient

(but not necessary) condition for r in order to satisfy the relative error guarantees of Eq. (3). Indeed,

in the experiments of Section 4 we will argue that empirically a much smaller value of r, for example

r = d + 20, suffices.
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Algorithm 1. The RandomizedNNLS algorithm.

Inputs: A ∈ Rn×d, b ∈ Rn, positive integer r < n.

Output: a nonnegative vector x̃opt ∈ Rd.

1. Let Hn be the n × n normalized Hadamard–Walsh matrix.

2. Let S be an n × n diagonal matrix such that for all i ∈ [n],
Sii =

{√
n/r, with probability r/n

0, otherwise

3. Let H̃ be thematrix consisting of the non-zero rows of SHn. (Notice that H̃ has – in expectation

– r rows.)

4. Construct the n × n diagonal matrix D such that, for all i ∈ [n], Dii = +1 with probability

1/2; otherwise Dii = −1.

5. Solve

x̃opt = arg min
x∈Rd ,x � 0

∥∥H̃DAx − H̃Db
∥∥2
2 ,

using any standard NNLS solver and return the vector x̃opt .

3.2. The proof of Theorem 1

3.2.1. A random projection type result

In this section we prove a random projection type result based on the so-called subspace sampling

procedure [11] that might be of independent interest. In particular, given a matrix Φ ∈ Rn×d with

n � d (a.k.a., Φ is tall and thin), and any vector y ∈ Rd, we argue that the �2 norm of Φy can be

estimated very accurately by Φ̃y, where Φ̃ consists of small subset of (appropriately rescaled) rows of

Φ .

More specifically, consider the SubspaceSampling algorithm described below. This algorithm se-

lects a small subset of rows of Φ to construct Φ̃; notice that Φ̃ has – in expectation – at most r rows.

Also notice that Φ̃ contains the i-th row of Φ (appropriately rescaled) if and only if Sii is non-zero.

Lemma 1 bounds the approximation error for our subspace sampling algorithm.

Algorithm 2. SubspaceSampling algorithm.

Input: Φ ∈ Rn×d, integer r < n, set of probabilities pi � 0, i ∈ [n] s.t. ∑i∈[n] pi = 1.

Output: Φ̃ ∈ Rr̃×d, with E(r̃) � r.

1. Let S be the n × n diagonal matrix such that for all i ∈ [n],
Sii =

{
1/

√
min{1, rpi} , with probability min{1, rpi}

0 , otherwise

2. Let Φ̃ be the matrix consisting of the non-zero rows of SΦ .

(Notice that Φ̃ has – in expectation – r rows.)
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Lemma 1. Letε ∈ (0, 1]. LetΦ beann × dmatrix (n � d),UΦ be then × dmatrix containing the left sin-

gular vectors ofΦ , and UΦ(i) denote the i-th row of UΦ. Let Φ̃ be constructed using the SubspaceSampling

algorithm with inputs Φ , r, and sampling probabilities pi. If for all i ∈ [n],
pi � β

∥∥UΦ(i)

∥∥2
2

/
d (8)

for some β ∈ (0, 1], and the parameter r satisfies

r

log(r)
�

9c2od

βε2
, (9)

for a sufficiently large constant co, then with probability at least 2/3 all d-dimensional vectors y satisfy,∣∣∣‖Φy‖2
2 − ∥∥Φ̃y

∥∥2
2

∣∣∣ � ε ‖Φy‖2
2 . (10)

Proof. Let Φ = UΦΣΦVT
Φ be the SVD of Φ with UΦ ∈ Rn×d, ΣΦ ∈ Rd×d, and VΦ ∈ Rd×d. Let S

be the n × n diagonal matrix constructed at the first step of algorithm SubspaceSampling, and let

UT
ΦSTSUΦ = I + E, where I is the d × d identity matrix, and E some d × d matrix. Then, using these

two definitions, submultiplicativity, and the orthogonality and unitary invariance of UΦ and VΦ ,∣∣∣∣‖Φy‖2
2 −

∥∥∥Φ̃y
∥∥∥2
2

∣∣∣∣ = ∣∣∣yTΦTΦy − yTΦT STSΦy
∣∣∣

=
∣∣∣yTVΦΣ2

ΦVT
Φy − yTVΦΣΦUT

ΦSTSUΦΣΦVT
Φy

∣∣∣
=

∣∣∣yTVΦΣ2
ΦVT

Φy − yTVΦΣΦ(I + E)ΣΦVT
Φy

∣∣∣
=

∣∣∣yTVΦΣΦEΣΦVT
Φy

∣∣∣
�

∥∥∥yTVΦΣΦ

∥∥∥
2
‖E‖2

∥∥∥ΣΦVT
Φy

∥∥∥
2

= ‖E‖2

∥∥∥ΣΦVT
Φy

∥∥∥2
2

= ‖E‖2

∥∥∥UΦΣΦVT
Φy

∥∥∥2
2

= ‖E‖2 ‖Φy‖2
2 .

Using Theorem 7 of [11] (originally proven by Rudelson and Virshynin in [19]), we see that

E (‖E‖2) � co

√
log(r)

βr
‖UΦ‖2 ‖UΦ‖F = co

√
d log(r)

βr
(11)

for a sufficiently large constant co (co is not specified in [19]). Markov’s inequality implies that

‖E‖2 � 3co

√
d log(r)

βr
, (12)

with probability at least 2/3. Finally, using Eq. (9) concludes the proof of the lemma. �

3.2.2. Another useful result

Results in [2] imply the following lemma.

Lemma 2. Let U be an n × d orthogonal matrix (n� 20 and n� d). Then, for all i ∈ [n],∥∥∥(HnDU)(i)

∥∥∥2
2

�
4.2d log n

n
(13)

holds with probability at least 0.9.
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3.2.3. The proof of Theorem 1

We are now ready to prove Theorem 1. We apply lemma 1 for Φ = [HnDA −HnDb] ∈ Rn×(d+1),

the parameter r of Theorem 1, sampling probabilities pi = 1/n, for all i ∈ [n], β = 1/(4.2 log n), and
ε′ = ε/3 ∈ (0, 1/3], where ε ∈ (0, 1] is the parameter of Theorem1. LetUΦ be then × (d + 1)matrix

of the left singular vectors of Φ . Note that UΦ is exactly equal to UΦ = HnDU[A −b], where U[A −b] is
the n × (d + 1) matrix of the left singular vectors of [A − b]. Lemma 2 for U[A −b] and our choice of

β , guarantee that for all i ∈ [n], with probability at least 0.9

1/n� β
∥∥∥(
HnDU[A−b]

)
(i)

∥∥∥2
2

/
d ⇒ 1/n� β

∥∥∥(UΦ)(i)

∥∥∥2
2

/
d.

The latter inequality implies that assumption (8) of Lemma1holds. Also, our choice of r, which satisfies

inequality (2) in Theorem 1, our choice of β , and our choice of ε, guarantee that assumption (9) of

Lemma1 is also true. Sincealld-dimensional vectorsy satisfyEq. (10),wepicky =
[
xopt
1

]
and ỹ =

[
x̃opt
1

]
,

thus getting that with probability at least 2/3:

(1 − ε′)
∥∥HnDAxopt − HnDb

∥∥2
2

�
∥∥H̃nDAxopt − H̃nDb

∥∥2
2

�(1 + ε′)
∥∥HnDAxopt − HnDb

∥∥2
2
, (14)

and

(1 − ε′)
∥∥HnDAx̃opt − HnDb

∥∥2
2

�
∥∥H̃nDAx̃opt − H̃nDb

∥∥2
2

�(1 + ε′)
∥∥HnDAx̃opt − HnDb

∥∥2
2
. (15)

Manipulating Eqs. (14) and (15) we get

∥∥HnDAx̃opt − HnDb
∥∥2
2

�
1

1 − ε′
∥∥H̃nDAx̃opt − H̃nDb

∥∥2
2

�
1

1 − ε′
∥∥H̃nDAxopt − H̃nDb

∥∥2
2

�
1 + ε′

1 − ε′
∥∥HnDAxopt − HnDb

∥∥2
2

�
(
1 + 3ε′) ∥∥HnDAxopt − HnDb

∥∥2
2

� (1 + ε)
∥∥HnDAxopt − HnDb

∥∥2
2
.

The second inequality follows since x̃opt is the optimal solution of the NNLS problem of Eq. (6), thus

xopt is a sub-optimal solution, and the fourth inequality follows since (1 + ε′)/(1 − ε′) � 1 + 3ε′, for
all ε′ ∈ (0, 1/3]. In the last inequality, we set ε′ = ε/3. To conclude the proof, notice that HnD is an

orthonormal square matrix and can be dropped without changing a unitarilly invariant norm. Finally,

since Lemmas 1 and 2 fail with probability atmost 1/3 and 1/10 respectively, the union bound implies

that Theorem 1 fails with probability at most 0.5.

3.3. What is the minimal value of r?

Toderivevaluesof r forwhich theRandomizedNNLSalgorithmsatisfies the relativeerrorguarantees

of Theorem 1, we need to solve Eq. (2); this is hard since the solution depends on the Lambart W

function. Thus, we identify a range of values of r that are sufficient for our purposes. Using the fact

that for any α � 4, and for any γ � 2α log(α),

γ

log(γ )
� α



C. Boutsidis, P. Drineas / Linear Algebra and its Applications 431 (2009) 760–771 767

and by setting α = 342c2o(d + 1) log(n)/ε2 in Eq. (2) (note that 342c2o(d + 1) log(n)/ε2 � 4), it can

be proved that every r such that

r � 684c2o(d + 1) log(n) log(342c2o(d + 1) log(n)/ε2)/ε2, (16)

satisfies the inequality 2 (co is the constant of Theorem 1).

3.4. Running time analysis

In this subsection we analyze the running time of our algorithm. Let r be the minimal value that

satisfies equation (16). First, computingDA andDb takesO(nd) time. Since H̃ has in expectation r rows,

Ailon and Liberty in [3] argue that the computation of H̃DA and H̃Db takes O(nd log r) time. For our

choice of r, this is

Tprecond = O(nd log(d log(n)/ε2)).

After this preconditioning step, we employ an NNLS solver on the smaller problem. The computational

cost of the NNLS solver on the small problem was denoted as TNNLS(r, d) in Theorem 1. TNNLS(r, d)
cannot be specified exactly since theoretical running times for exact NNLS solvers are unknown. In the

sequel we comment on the computational costs of somewell defined segments of some NNLS solvers.

The NNLS formulation of Definition 1 is a convex quadratic program, and is equivalent to

min
x∈Rd ,x � 0

xTQx − 2qTx,

where Q = ATA ∈ Rd×d and q = ATb ∈ Rd. Computing Q and q takes O(nd2) time, and then the time

required to solve the above formulation of the NNLS problem is independent of n. Using this formula-

tion, our algorithm would necessitate Tprecond time for the computation of H̃DA (the preconditioning

stepdescribed above), and then Q̃ = (H̃DA)T H̃DA and q̃ = (H̃DA)Tb canbe computed in TMM = O(rd2)
time; given our choice of r, this implies

TMM = O(d3 log(n)/ε2).

Overall, the standard approach would take O(nd2) time to compute Q , whereas our method would

need only Tprecond + TMM time for the construction of Q̃ . Note, for example, that when n = O(d2) and

regarding ε as a constant, Q̃ can be computed O(d/ log(d)) times faster than Q .

On the other hand, many standard implementations of NNLS solvers (and in particular those that

are based on active set methods) work directly on the formulation of Definition 1. A typical cost of

these implementations is of the order O(nd2) per iteration. Other approaches, for example the NNLS

method of [15], proceed by computing matrix–vector products of the form Au, for an appropriate d-

dimensional vector u, thus cost typically O(nd) time per iteration. In these cases our algorithm needs

again Tprecond preprocessing time, but costs only O(rd2) orO(rd) time per iteration, respectively. Again,

if given our choice of r, the computational savings per iteration are comparable with the O(d/ log(d))
speedup described above.

4. Experimental evaluation

In this section, we experimentally evaluate our RandomizedNNLS algorithm on (i) large, sparse

matrices from a text-mining application, and (ii) random matrices with varying sparsity. We mainly

focus on employing the state-of-the-art solver of [15] to solve the small NNLS problem.

4.1. The TechTC300 dataset

Our data come from the Open Directory Project (ODP) [1], a multilingual open content directory

of WWW links that is constructed and maintained by a community of volunteer editors. ODP uses a

hierarchical ontology scheme for organizing site listings. Listings on similar topics are grouped into

categories, which can then include smaller subcategories. Gabrilovich and Markovitch constructed a
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Fig. 1. Average results of the RandomizedNNLS algorithm compared to the algorithm of [15] on 3000 NNLS problems con-

structed from the TechTC300 dataset. Relative Error := ∥∥Ax̃opt − b
∥∥
2

/∥∥Axopt − b
∥∥
2
, while Overall Time := 100Tx̃opt /Txopt . xopt

is computed with the method of [15] in Txopt time, and x̃opt with the RandomizedNNLS algorithm (the last step employs

the method of [15]) in Tx̃opt time. Points one through eight on the x-axis of the plots correspond to values of the parameter

r = d + i · 50 for i = 1, . . . , 8, where d is the number of columns of A. On the right panel, Preprocessing time stands for the cost

of the multiplication of A and b with H̃D (multiplied by 100 and divided by Txopt ), and Small-problem time stands for the cost

of solving the small problem using the algorithm of [15] (multiplied by 100 and divided by Txopt ). For each point of the x-axis:

Overall time = Preprocessing time + Small-problem time.

benchmark set of 300 term-document matrices from ODP, called TechTC300 (Technion Repository of

Text Categorization Datasets [13]), which they made publicly available. Each term-document matrix

of the TechTC300 dataset consists of a total of 150–400 documents from two different ODP categories,

and a total of 15,000–35,000 terms. We chose this dataset because we believe that it does represent

an important application area, namely text mining, and we do believe that the results from our

experiments will be representative of the potential usefulness of our randomized NNLS algorithm

in large, sparse, term-document NNLS problems.

Wepresentaverage results from3000NNLSproblems.Morespecifically, foreachof the300matrices

of the TechTC300 dataset, we randomly choose a column from the term-documentmatrix as the vector

b, we assign the remaining columns of the same term-document matrix to the matrix A, and solve the

resulting NNLS problemwith inputs A and b. We repeat this process ten times for each term-document

matrix of the TechTC300 dataset, and thus solve a total of 3000 problems. Whenever an NNLS routine

is called, it is initialized with the all-zeros vector. We evaluate the accuracy and the running time of

our algorithm when compared to two standard NNLS algorithms. The first one is described in [15],3

and the second one is the active set method of [18], implemented as the built-in function lsqnonneg

in Matlab. We would also like to emphasize that in [15] the authors compare their approach to other

NNLS approaches and conclude that their algorithm is significantly faster. Note that the method of

[15] operates on the quadratic programming formulation discussed in Section 3.1,4 while lsqnonneg

operates on the formulation of Definition 1. Finally, we implemented our RandomizedNNLS algorithm

in Matlab. The platform used for the experiments was a 2.0 GHz Pentium IV with 1 GB RAM.

Our (average) results are shown in Fig. 1. We only focus on the algorithm of [15], which was

significantly faster, running (on average) in five seconds, compared to more than one minute for the

lsqnonneg function. We experimented with eight different values of the parameter r, which dictates

the size of the small subproblem (see the RandomizedNNLS algorithm). More specifically, we set r to

d + i · 50, for i = 1, . . . , 8, where d is the number of columns in the matrix A. Our results verify that

(i) the RandomizedNNLS algorithm is very accurate, (ii) that it reduces the running time of the NNLS

method of [15], and (iii) that there exists a natural tradeoff between the approximation accuracy and

3 We would like to thank the authors of [15] for providing us with a Matlab implementation of their algorithm.
4 The actual implementation involves computations of the form t = Au and s = AT t, avoiding the computation and storage of

the matrix ATA.
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Fig. 2. Average results of the RandomizedNNLS algorithm compared to the algorithm of [15] on six sets of 100 NNLS problems

with different density. Relative Error := ∥∥Ax̃opt − b
∥∥
2

/∥∥Axopt − b
∥∥
2
, while Overall Time := 100Tx̃opt /Txopt . xopt is computed

with the method of [15] in Txopt time, and x̃opt with the RandomizedNNLS algorithm (the last step employs the method of

[15]) in Tx̃opt time. For the six density parameters (2%, 4%, 8%, 16%, 32%, 64%), Txopt was on average (0.26 s, 0.40 s, 0.94 s, 2.89 s,

6.27 s, 10.57 s), respectively.

the number of sampled rows. Notice, for example, that the running time of the state-of-the-art NNLS

solver of [15] can be reduced from two to three times, while the residual error is from 4% up to 10%

worse than the optimal residual error.

We briefly comment on the performance of RandomizedNNLS when compared to the lsqnonneg

algorithm. As expected, the accuracy results are essentially identical with the method of [15], since

both methods solve the NNLS problem exactly. Our speedup, however, was much more significant,

ranging from 14-fold to 10-fold for r = d + 50 and r = d + 400, respectively (data not shown).

4.2. Sparse vs. dense NNLS problems

The astute reader might notice that we evaluated the performance of our algorithm in a rather

adversarial setting. The TechTC300 data are quite sparse, hence existing NNLSmethods would operate

on sparse matrices. However, our preprocessing step in the RandomizedNNLS algorithm destroys

the sparsity, and the induced subproblem becomes dense. Thus, we are essentially comparing the

time required to solve a sparse, large NNLS problem to the time required to solve a dense, small NNLS

problem. If the original problemweredense aswell,wewould expectmorepronounced computational

savings. In this section we experiment with random matrices of varying density in order to confirm

this hypothesis.

First, it is worth noting that the sparsity of the inputmatrix A and/or the target vector b do not seem

to affect the approximation accuracy of the RandomizedNNLS algorithm. This should not come as a

surprise since our results in Theorem 1 do not make any assumptions on the inputs A and b. Indeed,

our experiments in Fig. 2 confirm our expectations.

Prior to discussing our experiments on randommatrices of varying density, it is worth noting that

the NNLS solver of [15] has a running time that is a function of the number of non-zero entries of

A. Indeed, the method of [15] is an iterative method where the computational bottleneck in the jth

iteration involves computations of the form ATAu, for a d-dimensional vector u. [15] implemented

their algorithm by computing the two matrix–vector products Au and AT (Au) separately, thus never

forming the matrix ATA and thus taking advantage of the sparsity of A. Indeed, NNLS problems with

sparse coefficient matrices A are solved faster than NNLS problems with similar-size dense coefficient

matrices A by using the method of [15].5

5 The authors of [15] performed extensive numerical experiments to verify that observation; for example see the last row of

Table 4 on page 14 in [15] and notice that the running time of their method increases as the density of A increases.
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In order to measure how the speedup of our RandomizedNNLS algorithm improves as the matrix

A and vector b become denser, we designed the following experiment. First, let the density of an

NNLS problem denote the percentage of non-zero entries in A and b; for example, density(A, b) = 10%

means that approximately 0.9(nd + n) entries in the n × d matrix A and the n × 1 vector b are zero.

We chose six density parameters (2%, 4%, 8%, 16%, 32%, and 64%) and generated 100 NNLS problems

for each density parameter. More specifically, we first constructed ten n × (d + 1) random matrices

with the target density (the non-zero entries are normally distributed in [0, 1]). Then, for eachmatrix,

we randomly selected one column to form the vector b and assigned the remaining d columns to the

matrix A. We repeated this selection process ten times for each of the ten n × (d + 1) matrices, thus

forming a set of 100 NNLS problems with inputs A and b. We fixed the dimensions to n = 10, 000

and d = 300 and we experimented with four values of r = (d, d + 50, d + 100, d + 150). In Fig. 2 we

present average results over the 100 NNLS problems for each choice of the density parameter. Notice

that increasing the density of the inputs A and b, the computational gains increase as well. On top of

that, ourmethodbecomesmore accuratewhile thenumber of the zero entries inA and bbecome fewer.

Notice for example, on the right plot of Fig. 2, when r = 300, the two extreme cases (density = 2%

and density = 64%) correspond to an 18% and a 4% loss in accuracy, respectively. Given these two

observations aswell as the actual times of Txopt (see the caption of Fig. 2), we conclude that the random

projection ideas empirically seem more promising for dense rather than sparse NNLS problems.

5. Conclusions

Wepresented a randomprojection algorithm for theNonnegative Least Squares Problem.Weexper-

imentally evaluated our algorithmon a large, text-mining dataset, and verified that, as promised in our

theoretical findings, practically it does give very accurate approximate solutions, while outperforming

two standard NNLSmethods in terms of computational efficiency. Future work includes the extension

of our theoretical findings of Theorem 1 to NNLS problems with multiple right hand side vectors.

An immediate application of this would be the computation of Nonnegative Matrix Factorizations

based on Alternating Least Squares type approaches [16,17]. Finally, notice that, since our analysis

is independent of the type of constraints on the vector x, our main algorithm can be employed to

approximate a least-squares problem with any type of constraints on x.
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