
Linear Algebra and its Applications 533 (2017) 95–117
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

A randomized algorithm for approximating the log

determinant of a symmetric positive definite matrix

Christos Boutsidis, Petros Drineas a,∗, Prabhanjan Kambadur b,
Eugenia-Maria Kontopoulou a,∗, Anastasios Zouzias
a Purdue University, West Lafayette, IN, United States
b Bloomberg L.P. New York, NY, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 June 2016
Accepted 5 July 2017
Available online 24 July 2017
Submitted by H. Rauhut

MSC:
15A15
65F99
68W20
68W25

Keywords:
Logdeterminant approximation
SPD matrix
Randomized algorithm
Power method
Trace estimation

We introduce a novel algorithm for approximating the
logarithm of the determinant of a symmetric positive definite
(SPD) matrix. The algorithm is randomized and approximates
the traces of a small number of matrix powers of a specially
constructed matrix, using the method of Avron and Toledo [1].
From a theoretical perspective, we present additive and
relative error bounds for our algorithm. Our additive error
bound works for any SPD matrix, whereas our relative
error bound works for SPD matrices whose eigenvalues lie
in the interval (θ1, 1), with 0 < θ1 < 1; the latter setting
was proposed in [16]. From an empirical perspective, we
demonstrate that a C++ implementation of our algorithm
can approximate the logarithm of the determinant of large
matrices very accurately in a matter of seconds.

© 2017 Elsevier Inc. All rights reserved.

* Corresponding authors.
E-mail addresses: christos.boutsidis@gmail.com (C. Boutsidis), pdrineas@purdue.edu (P. Drineas),

pkambadur@bloomberg.net (P. Kambadur), ekontopo@purdue.edu (E.-M. Kontopoulou),
zouzias@gmail.com (A. Zouzias).
http://dx.doi.org/10.1016/j.laa.2017.07.004
0024-3795/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.laa.2017.07.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:christos.boutsidis@gmail.com
mailto:pdrineas@purdue.edu
mailto:pkambadur@bloomberg.net
mailto:ekontopo@purdue.edu
mailto:zouzias@gmail.com
http://dx.doi.org/10.1016/j.laa.2017.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2017.07.004&domain=pdf

96 C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117
1. Introduction

Given a matrix A ∈ Rn×n, the determinant of A, denoted by det(A), is one of the
most important quantities associated with A. Since its invention by Cardano and Leibniz
in the late 16th century, the determinant has been a fundamental mathematical concept
with countless applications in numerical linear algebra and scientific computing. The
advent of Big Data, which are often represented by matrices, increased the applicabil-
ity of algorithms that compute, exactly or approximately, matrix determinants; see, for
example, [20,32,31,6,17] for machine learning applications (e.g., gaussian process regres-
sion) and [19,18,9,22,23] for several data mining applications (e.g., spatial-temporal time
series analysis).

Formal definitions of the determinant include the well-known formulas derived by
Leibniz and Laplace; however, neither the Laplace nor the Leibniz formula can be used
to design an efficient, polynomial-time, algorithm to compute the determinant of A. To
achieve this goal, one should rely on other properties of the determinant. For example,
a standard approach would be to leverage the so-called LU matrix decomposition or the
Cholesky decomposition for symmetric positive definite matrices (SPD) to get an O(n3)
deterministic algorithm to compute the determinant of A. (Recall that an SPD matrix
is a symmetric matrix with strictly positive eigenvalues.)

In this paper, we are interested in approximating the logarithm of the determinant of a
symmetric positive definite (SPD) matrix A. The logarithm of the determinant, instead
of the determinant itself, is important in several settings [20,32,31,6,17,19,18,9,22,23].

Definition 1. [LogDet problem definition] Given an SPD matrix A ∈ Rn×n, com-
pute, exactly or approximately, logdet (A).

Note that since all the eigenvalues of A are strictly positive, the determinant of A is
strictly positive. The best exact algorithm for the above problem simply computes the
determinant of A in cubic time and takes its logarithm. Few approximation algorithms
have appeared in the literature, but they either lack a proper theoretical convergence
analysis or do not work for all SPD matrices. We will discuss prior work in detail in
Section 1.2.

1.1. Our contributions

We present a fast approximation algorithm for the problem of Definition 1. Our main
algorithm (Algorithm 3) is randomized and its running time is

O
(
nnz(A)

(
mε−2 + logn

)
log(1/δ)

)
,

where nnz(A) denotes the number of non-zero elements in A, 0 < δ < 1 denotes the fail-
ure probability of our algorithm, and (integer) m > 0 and (real) ε > 0 are user-controlled

C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117 97
accuracy parameters that are specified in the input of the algorithm. The first step of
our approximation algorithm uses the power method to compute an approximation to
the dominant eigenvalue of A. This value will be used in a normalization (precondition-
ing) step in order to compute a convergent matrix-Taylor expansion. The second step of
our algorithm leverages a truncated matrix-Taylor expansion of a suitably constructed
matrix in order to compute an approximation of the log determinant. This second step
leverages a randomized trace estimation algorithm from [1].

Let l̂ogdet (A) be the value returned by our approximation algorithm (Algorithm 3);
let logdet (A) be the true log determinant of A; let λi (A) denote the i-th eigenvalue
of A for all i = 1, . . . , n with λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) > 0; and let κ (A) =
λ1(A)/λn(A) be the condition number of A. Our main result, proven in Lemma 6, is
that if

m ≥
⌈
7κ (A) log

(
1
ε

)⌉
, (1)

then, with probability at least 1 − 2δ,
∣∣∣l̂ogdet (A) − logdet (A)

∣∣∣ ≤ 2εΓ, (2)

where

Γ =
n∑

i=1
log

(
7 · λ1(A)

λi(A)

)
.

We now take a careful look at the above approximation bound. First, given our choice
of m in eqn. (1), the running time of the algorithm becomes

O
(
nnz(A)

(
κ (A) log (1/ε) ε−2 + log n

)
log(1/δ)

)
. (3)

Thus, the running time of our algorithm increases linearly with the condition number
of A. The error of our algorithm scales with Γ, a quantity that is not immediately
comparable to logdet (A). It is worth noting that the Γ term increases logarithmically
with respect to the ratios λ1(A)/λi(A) ≥ 1. An obvious, but potentially loose upper
bound for the sum of those ratios, is

Γ =
n∑

i=1
log

(
7 · λ1(A)

λi(A)

)
≤ n · log (7κ(A)) . (4)

Our second result handles the family of SPD matrices whose eigenvalues all lie in the
interval (θ1, 1), with 0 < θ1 < 1; this setting was proposed in [16]. In this case, a simplified
version of Algorithm 3 returns a relative error approximation to the log-determinant of
the input matrix. Indeed, Lemma 8 proves that, with probability at least 1 − δ,

98 C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117
∣∣∣l̂ogdet (A) − logdet (A)
∣∣∣ ≤ 2ε|logdet (A) |.

The running time of the simplified algorithm is

O
(

log(1/ε) log(1/δ)
ε2θ1

nnz(A)
)
. (5)

Finally, we implemented our algorithm in C++ and tested it on several large dense and
sparse matrices. Our dense implementation runs on top of Elemental [25], a linear
algebra library for distributed matrix computations with dense matrices. Our sparse
implementation runs on top of Eigen,1 a software library for sparse matrix computations.
Our code is available to download on Github (see Section 5 for details and a link to our
code).

1.2. Related work

The most relevant result to ours is the work in [2]. Barry and Pace [2] described a
randomized algorithm for approximating the logarithm of the determinant of a matrix
with special structure that we will describe below. They show that in order to approx-
imate the logarithm of the determinant of a matrix A, it suffices to approximate the
traces of Dk, for k = 1, 2, 3... for a suitably constructed matrix D. Specifically, [2] deals
with approximations to SPD matrices A of the form A = In − αD, where 0 < α < 1
and all eigenvalues of D are in the interval [−1, 1]. Given such a matrix A, the authors
of [2] seek to derive an estimator l̂ogdet (A) that is close to logdet (A). [2] proved (using
the so-called Martin expansion [21]) that

log(det(A)) = −
m∑

k=1

αk

k
tr
(
Dk

)
−

∞∑
k=m

αk

k
tr
(
Dk

)
.

They considered the following estimator:

l̂ogdet (A) = 1
p

p∑
i=1

⎛
⎜⎜⎜⎜⎝−n

m∑
k=1

(
αk

k

zT

i Dkzi
zT

i zi

)
︸ ︷︷ ︸

Vi

⎞
⎟⎟⎟⎟⎠ .

All Vi for i = 1 . . . p are random variables and the value of p controls the variance of the
estimator. The algorithm in [2] constructs vectors zi ∈ Rn whose entries are independent
identically distributed standard Gaussian random variables. The above estimator ignores
the trailing terms of the Martin expansion and only tries to approximate the first m
terms. [2] presented the following approximation bound:

1 http :/ /eigen .tuxfamily.org/.

http://eigen.tuxfamily.org/

C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117 99
∣∣∣l̂ogdet (A) − logdet (A)
∣∣∣ ≤ n · αm−1

(m + 1)(1 − α)
+ 1.96 ·

√
σ2

p
,

where σ2 is the variance of the random variable Vi. The above bound fails with probability
at most 0.05.

We now compare the results in [2] with ours. First, the idea of using the Martin ex-
pansion [21] to relate the logarithm of the determinant and traces of matrix powers is
present in both approaches. Second, the algorithm of [2] is applicable to SPD matrices
that have special structure, while our algorithm is applicable to any SPD matrix. Intu-
itively, we overcome this limitation of [2] by estimating the top eigenvalue of the matrix
in the first step of our algorithm. Third, our error bound is much better that the error
bound of [2]. To analyze our algorithm, we used the theory of randomized trace estima-
tors of Avron and Toledo [1], which relies on stronger measure-concentration inequalities
than [2], which uses the weaker Chebyshev’s inequality.

A similar idea using Chebyshev polynomials appeared in the paper [24]; to the best
of our understanding, there are no theoretical convergence properties of the proposed
algorithm. Applications to Gaussian process regression appeared in [20,32,31]. The work
of [26] uses an approximate matrix inverse to compute the n-th root of the determinant
of A for large sparse SPD matrices. The error bounds in this work are a posteriori and
thus not directly comparable to our bounds.

[14] provides a strong worst-case theoretical result which is, however, only applicable
to Symmetric Diagonally Dominant (SDD) matrices. The algorithm is randomized and

guarantees that, with high probability,
∣∣∣l̂ogdet (A) − logdet (A)

∣∣∣ ≤ ε · n, for a user spec-
ified error parameter ε > 0. This approach also uses the Martin expansion [21] as well
as ideas from preconditioning systems of linear equations with Laplacian matrices [29].
The algorithm of [14] runs in time O

(
nnz(A)ε−2 log3 (n) log2 (nκ(A)/ε)

)
. To compare

to our approach, we need to combine the suboptimal upper bound for Γ from eqn. (4)
with the bound of eqn. (2). Then, we can run Algorithm 3 with input

ε′ = ε

log(7κ(A)) ,

instead of ε to guarantee that the final error of our approximation will be bounded
by ε′n. Then, we can observe that the running time of [14] depends logarithmically
on the condition number of the input matrix A, whereas our algorithm has a linear
dependency on the condition number. Notice, however, that our method is applicable
to any SPD matrix while the method in [14] is applicable only to SDD matrices; given
current state-of-the-art on Laplacian preconditioners it looks hard to extend the approach
of [14] to general SPD matrices.

Independently and in parallel with our work, [16] presented an algorithm using
Stochastic Chebyshev Expansions for the log-determinant problem. The algorithm is
very similar in spirit to our approach, using the Chebyshev instead of the Taylor expan-
sion and achieves relative-error guarantees for a special class of SPD matrices, namely

100 C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117
matrices whose eigenvalues all lie in the interval (θ1, 1 − θ1) for some 0 < θ1 < 1/2.
As we already discussed, our algorithm also achieves a relative error bound under such
an assumption; the only difference is that the running time of [16] is proportional to √

1
θ1

log 1
θ1

, whereas the running time of our approach (see eqn. (5)) is proportional
to 1

θ1
. This slightly improved running time might be due to the use of the Stochastic

Chebyshev Expansions. However, importantly, our algorithm works for any SPD matrix,
with arbitrary eigenvalues. Not surprisingly, the added generality comes with a loss in
accuracy and the relative error bound becomes an additive error bound.

Finally, two very recent papers [15,27]2 presented algorithms to approximate the
logdet of a matrix, highlighting the renewed importance of the topic. The work of [27]
presents a very novel approach to approximate the logdet of a positive semi-definite ma-
trix, using a randomized subspace iteration approach. To the best of our understanding,
the relevant bounds in their work (Theorem 2 in [27]) are not directly comparable to
our bounds. The work of [15] follows the lines of [16] and leverages the use of Chebyshev
approximations to propose novel estimators for the trace of a matrix function. Among
the many exciting applications of the proposed approach is an additive-error approach
to approximate the logdet of any square non-singular matrix; the algorithm needs as
inputs upper and lower bounds for all the singular values of the input matrix. Similar
to the running time of our additive error algorithm in eqn. (3), the time complexity
of the proposed algorithm depends on the condition number of the input matrix (see
Corollary 7 of [15]).

We conclude by noting that common algorithms for the determinant computation
assume floating point arithmetic and do not measure bit operations. If the computational
cost is to be measured in bit operations, the situation is much more complicated and an
exact computation of the determinant, even for integer matrices, is not trivial. We refer
the interested reader to [8] for more details.

2. Preliminaries

2.1. Notation

Let A, B, . . . denote matrices and let a, b, . . . denote column vectors. In is the n × n

identity matrix; 0m×n is the m × n matrix of zeros; tr (A) is the trace of a square
matrix A; the Frobenius and the spectral matrix-norms are: ‖A‖2

F =
∑

i,j A2
ij and

‖A‖2 = max‖x‖2=1 ‖Ax‖2. We denote the determinant of a matrix A by det(A) and
the (natural) logarithm of the determinant of A by logdet (A). We use log x to denote
the natural logarithm of x. Finally, given an event E , P [E] denotes the probability of the
event.

2 Both papers appeared after an earlier version of this paper was posted on ArXiv on March 2015 and
cite this earlier version of our work.

C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117 101
For an SPD matrix A ∈ Rn×n, log [A] is an n ×n matrix defined as: log [A] = UDUT,
where U ∈ Rn×n contains the eigenvectors of A and D ∈ Rn×n is diagonal with entries
being

log(λ1(A)), log(λ2(A)), . . . , log(λn(A)).

Let x be a scalar variable that satisfies |x| < 1. Then, using the Taylor expansion,

log(1 − x) = −
∞∑
k=1

xk

k
.

A matrix-valued generalization of this identity is the following statement.

Lemma 1. Let A ∈ Rn×n be a symmetric matrix whose eigenvalues all lie in the interval
(−1, 1). Then,

log(In − A) = −
∞∑
k=1

Ak

k
.

2.2. Power method

The first step in our algorithm for approximating the determinant of an SPD matrix
is to obtain an estimate for the largest eigenvalue of the matrix. Given an SPD matrix
A ∈ Rn×n we will use the power-method (Algorithm 1) to obtain an accurate estimate
of its largest eigenvalue. This estimated eigenvalue is denoted by λ̃1(A).

Algorithm 1 Power method, repeated q times.
• Input: SPD matrix A ∈ R

n×n, integers q, t > 0
• For j = 1, . . . , q

1. Pick uniformly at random a vector xj
0 ∈ {+1, −1}n

2. For i = 1, . . . , t
• xj

i = A · xj
i−1

3. Compute: λ̃j
1(A) = x

j
t

T

Ax
j
t

x
j
t

T

x
j
t

• Return: λ̃1(A) = maxj=1...q λj
1 (and the corresponding vector xt = xj

t)

Algorithm 1 requires O(qt(n + nnz(A))) arithmetic operations to compute λ̃1(A).
Lemma 2 (see [30] for a proof) argues that any λ̃j

1(A) is close to λ1(A).

Lemma 2. For any fixed j = 1 . . . q, and for any t > 0, ε > 0, with probability at least
3/16,

(1 − ε)
1 + 4n(1 − ε)2tλ1(A) ≤ xj

t

T

Axj
t

xj
t

T

xj
t

= λ̃j
1(A).

102 C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117
Let e = 2.718 . . . and let ε = 1 − (1/e) and t =
⌈
log

√
4n

⌉
; then, with probability at

least 3/16, for any fixed j = 1 . . . q,

1
6λ1(A) ≤ 1

2eλ1(A) ≤ λ̃j
1(A).

It is now easy to see that the largest value λ̃1(A) (and the corresponding vector xt) fails
to satisfy the inequality (1/6)λ1(A) ≤ λ̃1(A) with probability at most

(
1 − 3

16

)q

=
(

13
16

)q

≤ δ,

where the last inequality follows by setting q = �4.82 log(1/δ)� ≥ log(1/δ)/ log(16/13).
Finally, we note that, from the min-max principle, λ̃1(A) ≤ λ1(A). We summarize the
above discussion in the following lemma.

Lemma 3. Let λ̃1(A) be the output of Algorithm 1 with q = �4.82 log(1/δ)� and t =⌈
log

√
4n

⌉
. Then, with probability at least 1 − δ,

1
6λ1(A) ≤ λ̃1(A) ≤ λ1(A).

The running time of Algorithm 1 is O
(
(n + nnz(A)) log(n) log

(1
δ

))
.

2.3. Trace estimation

Even though computing the trace of a square n × n matrix requires only O(n) arith-
metic operations, the situation is more complicated when A is given through a matrix
function, e.g., A = X2, for some matrix X and the user only observes X. For situations
such as these, Avron and Toledo [1] analyzed several algorithms to estimate the trace
of A. Algorithm 2 and Lemma 4 present the relevant results from their paper.

Algorithm 2 Randomized trace estimation.
• Input: SPD matrix A ∈ R

n×n, accuracy 0 < ε < 1, and failure probability 0 < δ < 1.
1. Let p =

⌈
20 log(2/δ)/ε2⌉

2. Let g1, g2, . . . , gp be a set of independent Gaussian vectors in Rn

3. Let γ = 0
4. For i = 1, . . . , p

• γ = γ + g�
i Agi

5. γ = γ/p
• Return: γ

Lemma 4. Let A ∈ Rn×n be an SPD matrix, let 0 < ε < 1 be an accuracy parameter,
and let 0 < δ < 1 be a failure probability. If g1, g2, . . . , gp ∈ Rn are independent random

C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117 103
standard Gaussian vectors, then, for p =
⌈
20 log(2/δ)/ε2⌉, with probability at least 1 −δ,

∣∣∣∣∣tr (A) − 1
p

p∑
i=1

g�
i Agi

∣∣∣∣∣ ≤ ε · tr (A) .

The above lemma is immediate from Theorem 5.2 in [1].

3. Additive error approximation for general SPD matrices

Lemma 5 is the starting point of our main algorithm for approximating the determi-
nant of a symmetric positive definite matrix. The message in the lemma is that computing
the log determinant of an SPD matrix A reduces to the task of computing the largest
eigenvalue of A and the trace of all the powers of a matrix C related to A.

Lemma 5. Let A ∈ Rn×n be an SPD matrix. For any α with λ1(A) < α, define B := A/α

and C := In − B. Then,

logdet (A) = n log(α) −
∞∑
k=1

tr
(
Ck

)
k

.

Proof. Observe that B is an SPD matrix with ‖B‖2 < 1. It follows that

logdet (A) = log(αn det(A/α))

= n log(α) + log
(

n∏
i=1

λi(B)
)

= n log(α) +
n∑

i=1
log(λi(B))

= n log(α) + tr (log [B]) .

Here, we used standard properties of the determinant, standard properties of the loga-
rithm function, and the fact that (recall that B is an SPD matrix),

tr (log [B]) =
n∑

i=1
λi(log [B]) =

n∑
i=1

log(λi(B)).

Now,

tr (log [B]) = tr (log [In − (In − B)]) = tr
(
−

∞∑ (In − B)k

k

)
= −

∞∑ tr
(
Ck

)
k

. (6)

k=1 k=1

104 C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117
The second equality follows by the Taylor expansion because all the eigenvalues of C =
In −B are contained3 in (0, 1) and the last equality follows by the linearity of the trace
operator. �
3.1. Algorithm

Lemma 5 indicates the following high-level procedure for computing the logdet of an
SPD matrix A:

1. Compute some α with λ1(A) < α.
2. Compute C = In − A/α.
3. Compute the trace of all the powers of C.

To implement the first step in this procedure we use the power iteration from the nu-
merical linear algebra literature (see Section 2.2). The second step is straightforward.
To implement the third step, we keep a finite number of summands in the expansion ∑∞

k=1 tr
(
Ck

)
. This step is important since the quality of the approximation, both the-

oretically and empirically, depends on the number of summands (denoted with m) that
will be kept. On the other hand, the running time of the algorithm increases with m.
Finally, to estimate the traces of the powers of C, we use the randomized algorithm of
Section 2.3. Our approach is described in detail in Algorithm 3; notice that step 7 in
Algorithm 3 is an efficient way of computing

l̂ogdet (A) := n log(α) −
m∑

k=1

(
1
p

p∑
i=1

g�
i Ckgi

)
/k.

Algorithm 3 Randomized log determinant estimation.
1: INPUT: A ∈ R

n×n, accuracy parameter ε > 0, and integer m > 0.
2: Compute λ̃1(A) using Algorithm 1 with (integers)t = O (logn) and q = O (log(1/δ))
3: Pick α = 7λ̃1(A)
4: Set C = In − A/α
5: Set p =

⌈
20 log(2/δ)/ε2⌉

6: Let g1, g2, . . . , gp ∈ R
n be i.i.d. random Gaussian vectors.

7: For i = 1, 2 . . . , p
• v(i)

1 = Cgi and γ(i)
1 = g�

i v(i)
1

• For k = 2, . . . , m
1. v(i)

k := Cv(i)
k−1.

2. γ
(i)
k = g�

i v(i)
k (Inductively γ

(i)
k = g�

i Ckgi)
• EndFor

8: EndFor
9: OUTPUT: l̂ogdet (A) = n log(α) − ∑m

k=1

(
1
p

∑p
i=1 γ

(i)
k

)
/k

3 Indeed, λi(C) = 1 − λi(B) and 0 < λi(B) < 1 for all i = 1 . . . n.

C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117 105
3.2. Error bound

The following lemma proves that Algorithm 3 returns an accurate approximation to
the logdet of A.

Lemma 6. Let l̂ogdet (A) be the output of Algorithm 3 on inputs A, m, and ε. Then,
with probability at least 1 − 2δ,

∣∣∣l̂ogdet (A) − logdet (A)
∣∣∣ ≤ (

ε +
(

1 − 1
7κ (A)

)m)
· Γ,

where Γ =
∑n

i=1 log
(
7 · λ1(A)

λi(A)

)
. If m ≥

⌈
7κ (A) log

(1
ε

)⌉
, then

∣∣∣l̂ogdet (A) − logdet (A)
∣∣∣ ≤ 2εΓ.

Proof. First, note that using our choice for α in Step 3 of Algorithm 3 and applying
Lemma 3, we get that, with probability at least 1 − δ,

λ1(A) < 7
6λ1(A) ≤ α ≤ 7λ1(A). (7)

The strict inequality at the leftmost side of the above equation follows since all eigen-
values of A are strictly positive. Let’s call the event that the above inequality holds E1;
obviously, P [E1] ≥ 1 − δ (and thus P

[
Ē1
]
≤ δ). We condition all further derivations on

E1 holding and we manipulate Δ =
∣∣∣l̂ogdet (A) − logdet (A)

∣∣∣ as follows:

Δ =

∣∣∣∣∣
m∑

k=1

(
1
p

p∑
i=1

g�
i Ckgi

)
/k −

∞∑
k=1

tr
(
Ck

)
/k

∣∣∣∣∣
≤

∣∣∣∣∣
m∑

k=1

(
1
p

p∑
i=1

g�
i Ckgi

)
/k −

m∑
k=1

tr
(
Ck

)
/k

∣∣∣∣∣ +

∣∣∣∣∣
∞∑

k=m+1

tr
(
Ck

)
/k

∣∣∣∣∣
=

∣∣∣∣∣1p
p∑

i=1
g�
i

(
m∑

k=1

Ck/k

)
gi − tr

(
m∑

k=1

Ck/k

)∣∣∣∣∣︸ ︷︷ ︸
Δ1

+

∣∣∣∣∣
∞∑

k=m+1

tr
(
Ck

)
/k

∣∣∣∣∣︸ ︷︷ ︸
Δ2

.

Below, we bound the two terms Δ1 and Δ2 separately. We start with Δ1: the idea is to
apply Lemma 4 on the matrix

∑m
k=1 Ck/k with p =

⌈
20 log(2/δ)/ε2⌉. Let E2 denote the

probability that Lemma 4 holds; obviously, P [E2] ≥ 1 − δ (and thus P
[
Ē2
]
≤ δ) given

our choice of p. We condition all further derivations on E2 holding as well to get

Δ1 ≤ ε · tr
(

m∑
Ck/k

)
≤ ε · tr

(∞∑
Ck/k

)
.

k=1 k=1

106 C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117
In the last inequality we used the fact that C is a positive matrix, hence for all k,
tr
(
Ck

)
> 0. The second term Δ2 is bounded as follows:

Δ2 =

∣∣∣∣∣
∞∑

k=m+1

tr
(
Ck

)
/k

∣∣∣∣∣ ≤
∞∑

k=m+1

tr
(
Ck

)
/k

=
∞∑

k=m+1

tr
(
Cm · Ck−m

)
/k ≤

∞∑
k=m+1

‖Cm‖2 · tr
(
Ck−m

)
/k

= ‖Cm‖2 ·
∞∑

k=m+1

tr
(
Ck−m

)
/k ≤ ‖Cm‖2 ·

∞∑
k=1

tr
(
Ck

)
/k

≤
(

1 − λn (A)
α

)m

·
∞∑
k=1

tr
(
Ck

)
/k.

In the first inequality, we used the triangle inequality and the fact that C is a positive
matrix. In the second inequality, we used the following fact4: given two positive semidef-
inite matrices A, B of the same size, tr (AB) ≤ ‖A‖2 · tr (B). In the last inequality, we
used the fact that

λ1(C) = 1 − λn(B) = 1 − λn(A)/α.

Combining the bounds for Δ1 and Δ2 gives

∣∣∣l̂ogdet (A) − logdet (A)
∣∣∣ ≤ (

ε +
(

1 − λn (A)
α

)m)
·

∞∑
k=1

tr
(
Ck

)
k

.

We have already proven in Lemma 5 that

∞∑
k=1

tr
(
Ck

)
k

= −tr (log [B]) = n log(a) − logdet (A) .

Notice that the assumption of Lemma 5 (namely, λ1(A) < α) is satisfied from the
inequality of eqn. (7). We further manipulate the last term as follows:

n log(a) − logdet (A) = n log(α) − log(
n∏

i=1
λi(A))

= n log(α) −
n∑

i=1
log(λi(A))

4 This follows from Von Neumann’s trace inequality.

C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117 107
=
n∑

i=1
(log (α) − log (λi(A)))

=
n∑

i=1
log

(
α

λi(A)

)
.

Collecting our results together, we get:

∣∣∣l̂ogdet (A) − logdet (A)
∣∣∣ ≤ (

ε +
(

1 − λn (A)
α

)m)
·

n∑
i=1

log
(

α

λi(A)

)
.

Using the inequality of eqn. (7) (only the upper bound on α is needed here) proves the
first inequality of the lemma. To prove the second inequality, we use the well-known fact
that

(
1 − x−1)x ≤ e−1 (where e = 2.718 . . . and x > 0) and our choice for m.

Finally, recall that we conditioned all derivations on events E1 and E2 both holding,
which can be bounded as follows:

P [E1 ∩ E2] = 1 − P
[
Ē1 ∪ Ē2

]
≥ 1 − P

[
Ē1
]
− P

[
Ē1
]
≥ 1 − 2δ.

The first inequality in the above derivation follows from the union bound. �
3.3. Running time

Step 2 takes O(nnz(A) log(n) log(1/δ)) time; we assume that nnz(A) ≥ n, since oth-
erwise the determinant of A would be trivially equal to zero. For each k > 0, vk = Ckgi.
The algorithm inductively computes vk and g�

i Ckgi = g�
i vk for all k = 1, 2, . . . , m.

Given vk−1, vk and g�
i Ckgi can be computed in nnz(C) and O(n) time, respectively.

Notice that nnz(C) ≤ n + nnz(A). Therefore, step 7 requires O(p · m · nnz(A)) time.
Since p = O(ε−2 log(1/δ)), the total cost is

O
(

nnz(A) ·
(m
ε2 + logn

)
· log

(
1
δ

))
.

4. Relative error approximation for SPD matrices with bounded eigenvalues

In this section, we argue that a simplified version of Algorithm 3 achieves a relative
error approximation to the logdet of the SPD matrix A, under the assumption that
all the eigenvalues of A lie in the interval (θ1, 1), where 0 < θ1 < 1. This is a mild
generalization of the setting introduced in [16].

Given the upper bound on the largest eigenvalue of A, the proof of the following
lemma (which is the analog of Lemma 5) is straightforward.

108 C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117
Lemma 7. Let A ∈ Rn×n be an SPD matrix whose eigenvalues lie in the interval (θ1, 1),
for some 0 < θ1 < 1. Let C := In − A; then,

logdet (A) = −
∞∑
k=1

tr
(
Ck

)
k

.

Proof. Similarly to the proof of Lemma 5,

logdet (A) = log
(

n∏
i=1

λi(A)
)

=
n∑

i=1
log(λi(A)) = tr (log [A]) .

Now,

tr (log [A]) = tr (log [In − (In − A)]) = tr
(
−

∞∑
k=1

(In − A)k

k

)
= −

∞∑
k=1

tr
(
Ck

)
k

.

The second equality follows by the Taylor expansion since all the eigenvalues of C =
In − A are contained in the interval (0, 1). �
4.1. The algorithm and the relative error bound

We simplify Algorithm 3 as follows: we skip steps 2 and 3 and in step 4 we set
C = In−A. The following lemma proves that in this special case the modified algorithm
returns a relative error approximation to the log determinant of the input matrix A.

Lemma 8. Let l̂ogdet (A) be the output of the (modified) Algorithm 3 on inputs A and ε.
Then, with probability at least 1 − δ,∣∣∣l̂ogdet (A) − logdet (A)

∣∣∣ ≤ 2ε · |logdet (A)| .

Proof. Similarly to the proof of Lemma 6, we manipulate Δ =
∣∣∣l̂ogdet (A) − logdet (A)

∣∣∣
as follows:

Δ =

∣∣∣∣∣
m∑

k=1

(
1
p

p∑
i=1

g�
i Ckgi

)
/k −

∞∑
k=1

tr
(
Ck

)
/k

∣∣∣∣∣
≤

∣∣∣∣∣
m∑

k=1

(
1
p

p∑
i=1

g�
i Ckgi

)
/k −

m∑
k=1

tr
(
Ck

)
/k

∣∣∣∣∣ +

∣∣∣∣∣
∞∑

k=m+1

tr
(
Ck

)
/k

∣∣∣∣∣
=

∣∣∣∣∣1p
p∑

i=1
g�
i

(
m∑

k=1

Ck/k

)
gi − tr

(
m∑

k=1

Ck/k

)∣∣∣∣∣︸ ︷︷ ︸
Δ1

+

∣∣∣∣∣
∞∑

k=m+1

tr
(
Ck

)
/k

∣∣∣∣∣︸ ︷︷ ︸
Δ2

.

C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117 109
We now bound the two terms Δ1 and Δ2 separately. We start with Δ1: the idea is
to apply Lemma 4 on the matrix

∑m
k=1 Ck/k with p =

⌈
20 log(2/δ)/ε2⌉. Hence, with

probability at least 1 − δ (this is the only probabilistic event in this lemma and hence
1 − δ is a lower bound on the success probability of the lemma):

Δ1 ≤ ε · tr
(

m∑
k=1

Ck/k

)
≤ ε · tr

(∞∑
k=1

Ck/k

)
.

In the last inequality we used the fact that C is positive definite, hence for all k,
tr
(
Ck

)
> 0. Bounding Δ2 follows the lines of the proof of Lemma 6:

Δ2 =

∣∣∣∣∣
∞∑

k=m+1

tr
(
Ck

)
/k

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=m+1

tr
(
Cm · Ck−m

)
/k

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑

k=m+1

‖Cm‖2 · tr
(
Ck−m

)
/k

∣∣∣∣∣ = ‖Cm‖2 ·
∣∣∣∣∣

∞∑
k=m+1

tr
(
Ck−m

)
/k

∣∣∣∣∣
≤ ‖Cm‖2 ·

∣∣∣∣∣
∞∑
k=1

tr
(
Ck

)
/k

∣∣∣∣∣ ≤ (1 − λn (A))m
∣∣∣∣∣
∞∑
k=1

tr
(
Ck

)
/k

∣∣∣∣∣ .
In the last inequality, we used the fact that λ1(C) = 1 − λn(A). Combining the bounds
for Δ1 and Δ2 gives

∣∣∣l̂ogdet (A) − logdet (A)
∣∣∣ ≤ (ε + (1 − λn (A))m) ·

∞∑
k=1

tr
(
Ck

)
k

.

We have already proven in Lemma 7 that

∞∑
k=1

tr
(
Ck

)
k

= −tr (log [A]) = −logdet (A) .

Collecting our results, we get:∣∣∣l̂ogdet (A) − logdet (A)
∣∣∣ ≤ (ε + (1 − λn (A))m) · |logdet (A)| .

Using 1 − λn(A) < 1 − θ1, we conclude that∣∣∣l̂ogdet (A) − logdet (A)
∣∣∣ ≤ (ε + (1 − θ1)m) · |logdet (A)| .

Setting

m =
⌈

1 · log
(

1
)⌉
θ1 ε

110 C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117
and using
(
1 − x−1)x ≤ e−1 (where e = 2.718 . . . and x > 0), guarantees that (1 −θ1)m ≤

ε and concludes the proof of the lemma. �
We conclude by discussing the running time of the simplified Algorithm 3, which is

equal to O(p · m · nnz(A)). Since p = O
(

log(1/δ)
ε2

)
and m = O

(
log(1/ε)

θ1

)
, the running

time becomes

O
(

log(1/ε) log(1/δ)
ε2θ1

nnz(A)
)
.

5. Experiments

The goal of our experimental section is to establish that our approximation to
logdet (A) (as computed by Algorithm 3) is both accurate and fast for both dense
and sparse matrices. The accuracy of Algorithm 3 is measured by comparing its re-
sult against the exact logdet (A) computed via the Cholesky factorization. The rest of
this section is organized as follows: in Section 5.1, we describe our software for approx-
imating logdet (A); in Section 5.2 we describe the computational environment that we
used; and in Sections 5.3 and 5.4 we discuss experimental results for dense and sparse
SPD matrices, respectively.

5.1. Software

We developed high-quality, shared- and distributed-memory parallel C++ code for
the algorithms listed in this paper. All of the code that was developed for this paper
is hosted at http :/ /web .ics .purdue .edu /~ekontopo /software .html. In it’s current state,
our software supports: (1) ingesting dense (binary and text format) and sparse (binary,
text, and matrix market format) matrices, (2) generating large random SPD matrices,
(3) computing both approximate and exact spectral norms of matrices, (4) computing
both approximate and exact traces of matrices, and (5) computing both approximate and
exact log determinants of matrices. Currently, we support both Eigen [10] and Elemen-
tal [25] matrices. The Eigen software package supports both dense and sparse matrices,
while the Elemental software package mostly supports dense matrices and only recently
added support for sparse matrices (pre-release). As we wanted the random SPD genera-
tion to be fast, we have used parallel random number generators from Random123 [28]
in conjunction with Boost.Random.

5.2. Environment

All our experiments were run on “Nadal”, a 60-core machine, where each core is an
Intel® Xeon® E7-4890 machine running at 2.8 Ghz. Nadal has 1 TB of RAM and runs
Linux kernel version 2.6-32. For compilation, we used GCC 4.9.2. We used Eigen 3.2.4,
OpenMPI 1.8.4, Boost 1.55.7, and the latest version of Elemental at https :/ /github .com /
elemental. For experiments with Elemental, we used OpenBlas, which is an extension

http://web.ics.purdue.edu/~ekontopo/software.html
https://github.com/elemental
https://github.com/elemental

C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117 111
of GotoBlas [13], for its parallel prowess; Eigen has built-in the BLAS and LAPACK
packages.

5.3. Dense matrices

Data generation. In our experiments, we used two types of synthetic SPD matrices. The
first type were diagonally dominant SPD matrices and were generated as follows. First,
we created X ∈ Rn×n by drawing n2 entries from a uniform sphere with center 0.5 and
radius 0.25. Then, we generated a symmetric matrix Y by setting

Y = 0.5 ∗ (X + X�).

Finally, we ensured that the desired matrix A is positive definite by adding the value n
to each diagonal entry [3] of Y: A = Y + nIn. We call this method randSPDDenseDD.

The second approach generates SPD matrices that are not diagonally dominant. We
created X, D ∈ Rn×n by drawing n2 and n entries, respectively, from a uniform sphere
with center 0.5 and radius 0.25; D is a diagonal matrix with small entries. Next, we gen-
erated an orthogonal random matrix Q = qr (X). Thus, Q is an orthonormal basis for X.
Finally, we generated A = QDQT . We call this method randSPDDense. randSPDDense is
more expensive than randSPDDenseDD, as it requires an additional O(n3) computations
for the QR factorization and the matrix-matrix product.
Evaluation. To evaluate the runtime of Algorithm 3 against a baseline, we used the
Cholesky decomposition to compute the logdet (A). More specifically, we computed A =
LLT and returned logdet (A) = 2 · logdet (L). Since Elemental provides distributed
and shared memory parallelism, we restricted ourselves to experiments with Elemental
matrices throughout this section. Note that we measured the accuracy of the approximate
algorithm in terms of the relative error to ensure that we have numbers of the same scale
for matrices with vastly different values for logdet (A); we defined the relative error e as
e = 100(x − x̃)/x, where x is the true value and x̃ is the approximation. Similarly, we
defined the speedup s as s = tx/tx̃, where tx is the time needed to compute x and tx̃ is
the time needed to compute the approximation x̃.
Results. For dense matrices, we first used synthetic matrices generated using
randSPDDense; these are relatively ill-conditioned matrices. We experimented with val-
ues of n (number of rows and columns of A) in the set {5, 000, 7, 500, 10, 000, 12, 500,
15, 000}. The three key points pertaining to these matrices are shown in Fig. 1. First,
we discuss the effect of m, the number of terms in the Taylor series used to approx-
imate logdet (A); Fig. 1(a) depicts our results for the sequential case. On the y-axis,
we see the relative error, which is measured against the exact logdet (A) as computed
via the Cholesky factorization. We observe that for these ill-conditioned matrices, for
small values of m (less than four) the relative error is high. However, for all values of
m ≥ 4, we observe that the error drops significantly and stabilizes. We note that in
each iteration, all random processes were re-seeded with new values; we have plotted the

112 C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117
Fig. 1. Panels 1(a) and 1(b) depict the effect of m (see Algorithm 3) on the accuracy of the approximation
and the time to completion, respectively, for dense matrices generated by randSPDDense. For all the panels,
p = 60 and t = 2 log

√
4n. The baseline for all experiments was the Cholesky factorization, which was used

to compute the exact value of logdet (A). For panels 1(a) and 1(b), the number of cores, np, was set to
one. The last panel 1(c) depicts the relative speedup of the approximate algorithm when compared to the
baseline solver (at m = 4). Elemental was used as the backend for these experiments. For the approximate
algorithm, we report the mean and standard deviation of ten iterations.

Table 1
Accuracy and sequential running times (at p = 60, m = 4 and t = log

√
4n) for dense ran-

dom matrices generated using randSPDDense. Baselines were computed using the Cholesky
factorization; mean and standard deviation are reported over ten iterations.

n logdet (A) Time (secs)
Exact Mean std Exact Mean std

5000 −3717.89 −3546.920 8.10 2.56 1.15 0.0005
7500 −5474.49 −5225.152 8.73 7.98 2.53 0.0015
10000 −7347.33 −7003.086 7.79 18.07 4.47 0.0006
12500 −9167.47 −8734.956 17.43 34.39 7.00 0.0030
15000 −11100.9 −10575.16 15.09 58.28 10.39 0.0102

error bars throughout Fig. 1. The standard deviation for both accuracy and time was
consistently small; indeed, it is not visible to the naked eye at scale. To see the benefit
of approximation, we look at Fig. 1(b) together with Fig. 1(a). For example, at m = 4,
for all matrices, we get at least a factor of two speedup. As n gets larger, the speedups
of the approximation also increase. For example, for n = 15, 000, the speedup at m = 4
is nearly six-fold. In terms of accuracy, Fig. 1(a) shows that at m = 4, the relative error
is approximately 4%. This speedup is expected as the Cholesky factorization requires
O(n3) operations; Algorithm 3 only relies on matrix-matrix products where one of the
matrices has a small number of columns (equal to p), which is independent of n.

Finally, we discuss the parallel speedup in Fig. 1(c), which shows the relative speedup
of the approximate algorithm with respect to the baseline Cholesky algorithm. For this
evaluation, we set m = 4 and varied the number of processes, denoted by np, from 1 to
60. The main take away from Fig. 1(c) is that the approximate algorithm provides nearly
the same or increasingly better speedups relative to a parallelized version of the exact
(Cholesky) algorithm. For example, for n = 15, 000, the speedups for using the approxi-
mate algorithm are consistently better that 6.5x. The absolute values for logdet (A) and
timing along with the baseline numbers for this experiment are given in Table 1. We
report the numbers in Table 1 at m = 4 at which point, we have low relative error.

C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117 113
Fig. 2. Panels 2(a) and 2(b) depict the effect of m (see Algorithm 3) on the accuracy of the approximation
and the time to completion, respectively, for diagonally dominant dense random matrices generated by
randSPDDenseDD. For all the panels, p = 60 and t = 2 log

√
4n. The baseline for all experiments was the

Cholesky factorization, which was used to compute the exact value of logdet (A). For panels 2(a) and 2(b),
the number of cores, np, was set to one. The last panel 2(c) depicts the relative speedup of the approximate
algorithm when compared to the baseline solver (at m = 2). Elemental was used as the backend for these
experiments. For the approximate algorithm, we report the mean and standard deviation over ten iterations.

Table 2
Accuracy and sequential running times (at p = 60, m = 2, and t = 2 log

√
4n) for diag-

onally dominant dense random matrices generated using randSPDDenseDD. Baselines were
computed using the Cholesky factorization; mean and standard deviation are reported
over ten iterations.

n logdet (A) Time (secs)
Exact Mean std Exact Mean std

10000 92103.1 92269.5 5.51 18.09 2.87 0.01
20000 198069.0 198397.4 9.60 135.92 12.41 0.02
30000 309268.0 309763.8 20.04 448.02 30.00 0.12
40000 423865.0 424522.4 14.80 1043.74 58.05 0.05

For the second set of dense experiments, we generated diagonally dominant matrices
using randSPDDenseDD; we were able to quickly generate and run benchmarks on matrices
of sizes n × n with n in the set {10, 000, 20, 000, 30, 000, 40, 000} due to the relatively
simpler procedure involved in matrix generation. In this set of experiments, due to the
diagonal dominance, all matrices were well-conditioned. The results of our experiments
on these well-conditioned matrices are presented in Fig. 2 and show a marked improved
over the results presented in Fig. 1. First, notice that very few terms of the Taylor series
(i.e., small m) are sufficient to get high accuracy approximations; this is apparent in
Fig. 2(a). In fact, we see that even at m = 2, we are near convergence and at m = 3,
for most of the matrices, we have near-zero relative error. This experimental result,
combined with Fig. 2(b) is particularly encouraging; at m = 2, we seem to not only
have a nearly lossless approximation of logdet (A), but also have at least a five-fold
speedup. Similarly to Fig. 1, the speedups are better for larger matrices. For example,
for n = 40, 000, the speedup at m = 2 is nearly twenty-fold. We conclude our analysis
by presenting Fig. 2(c), which similarly to Fig. 1(c), points out that at any level of
parallelism, Algorithm 3 maintains its relative performance over the exact (Cholesky)
factorization. The absolute values for logdet (A) and the corresponding running times,
along with the baseline for this experiment are presented in Table 2. We report the
numbers in Table 2 at m = 2, at which point we have a low relative error.

114 C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117
Table 3
Description of the SPD matrices from the University of Florida sparse matrix collection [7] that were used
in our experiments. All experiments were run sequentially (np = 1) using Eigen. Accuracy results for
Algorithm 3 are reported using both the mean and the standard deviation over ten iterations at (with t = 5
and p = 5); we only report the mean for the running times, since the standard deviation is negligible. The
exact logdet (A) was computed using the Cholesky factorization.

Name n nnz Area of
origin

logdet (A) Time (sec) m

Exact Approx Exact Approx
Mean std Mean

thermal2 1228045 8580313 Thermal 1.3869e6 1.3928e6 964.79 31.28 31.24 149
ecology2 999999 4995991 2D/3D 3.3943e6 3.403e6 1212.8 18.5 10.47 125
ldoor 952203 42493817 Structural 1.4429e7 1.4445e7 1683.5 117.91 17.60 33
thermomech_TC 102158 711558 Thermal −546787 −546829.4 553.12 57.84 2.58 77
boneS01 127224 5516602 Model

reduction
1.1093e6 1.106e6 247.14 130.4 8.48 125

5.4. Sparse matrices

Data synthesis. To generate a sparse, synthetic matrix A ∈ Rn×n, with nnz non-zeros,
we use a Bernoulli distribution to determine the location of the non-zero entries and
a uniform distribution to generate the values. First, we completely fill the n principle
diagonal entries. Next, we generate (nnz−n)/2 index positions in the upper triangle for
the non-zero entries by sampling from a Bernoulli distribution with probability (nnz −
n)/(n2 − n). We reflect each entry across the principle diagonal to ensure that A is
symmetric and we add n to each diagonal entry to ensure that A is SPD (actually, A is
also diagonally dominant).
Real data. To demonstrate the prowess of Algorithm 3 on real-world data, we used SPD
matrices from the University of Florida’s sparse matrix collection [7]. The complete list
of matrices from this collection used in our experiments, as well as a brief description of
each matrix, is given in columns 1–4 of Table 3.
Evaluation. It is tricky to pick any single method as the “exact method” to compute the
logdet (A) for a sparse SPD matrix A. One approach would be to use direct methods
such as Cholesky decomposition of A [5,12]. For direct methods, it is difficult to derive
an analytical solution for the number of operations required for the factorization as a
function of the number of non-zero entries of the matrix, as this is highly dependent on
the structure of the matrix [11]. In the distributed setting, one also needs to consider
the volume of communication involved, which is often the bottleneck. Alternately, we
can use iterative methods to compute the eigenvalues of A [4] and use the eigenvalues to
compute logdet (A). It is clear that the worst case performance of both the direct and
iterative methods is O(n3). However, iterative methods are typically used to compute a
few eigenvalues and eigenvectors: therefore, we chose to use the Cholesky factorization
based on matrix reordering to compute the exact value of logdet (A). It is important
to note that both the direct and iterative methods are notoriously hard to implement,
which comes to stark contrast with the almost trivial implementation of Algorithm 3,
which is also readily parallelizable.

C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117 115
Fig. 3. Panels 3(a) and 3(b) depict the effect of the number of terms in the Taylor expansion, m, (see
Algorithm 3) on the convergence to the final solution and the time to completion of the approximation. The
matrix size was fixed at n = 106 and sparsity was varied as 0.1%, 0.25%, 0.5%, 0.75%, and 1%. Experiments
were run sequentially (np = 1) and we set p = 60, t = 2 log

√
4n. For panel 3(a), the baseline is the final

value of logdet (A) at m = 25. For panel 3(b), the baseline is the time to completion of the approximation
algorithm with m = 1. Eigen was used as the backend for these experiments.

Results. The true power of Algorithm 3 lies in its ability to approximate logdet (A) for
sparse A. The Cholesky factorization can introduce O(n2) non-zeros during factoriza-
tion due to fill-in; for many problems, there is insufficient memory to factorize a large,
sparse matrix. In our first set of experiments, we wanted to show the effect of m on:
(1) convergence of logdet (A), and (2) cost of the solution. To this end, we generated
sparse, diagonally dominant SPD matrices of size n = 106 and varied the sparsity from
0.1% to 1% in increments of 0.25%. We did not attempt to compute the exact logdet (A)
for these synthetic matrices — our aim was to merely study the speedup with m for
different sparsities, while t and p were held constant at 2 log

√
4n and 60 respectively.

The results are shown in Fig. 3. Fig. 3(a) depicts the convergence of logdet (A) mea-
sured as a relative error of the current estimate over the final estimate. As can be seen
— for well conditioned matrices – convergence is quick. Fig. 3(b) shows the relative cost
of increasing m; here the baseline is m = 1. Therefore, the additional cost incurred by
increasing m is linear when all other parameters are held constant.

The results of running Algorithm 3 on the UFL matrices are shown in Table 3. The
numbers reported for the approximation are the mean and standard deviation over ten
iterations, t = 5, and p = 5.5 The value of m was varied between one and 150 in incre-
ments of five to select the best average accuracy. The matrices shown in Table 3 have
a nice structure, which lends itself to nice reorderings and therefore an efficient compu-
tation of the Cholesky factorization. We see that even in such cases, the performance

5 We experimented with different p, t and settled on the smallest values that did not result in loss in
accuracy.

116 C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117
of Algorithm 3 is commendable due to its lower algorithmic complexity. In the case of
thermomech_TC, we achieve good accuracy while achieving a 22x speedup.

6. Conclusions

Prior work has presented approximation algorithms for the logarithm of the determi-
nant of a symmetric positive definite matrix; those algorithms either do not work for all
SPD matrices, or do not admit a worst-case theoretical analysis, or both. In this work,
we presented an approximation algorithm to compute the logarithm of the determinant
of a SPD matrix that comes with strong theoretical worst-case analysis bounds and can
be applied to any SPD matrix. A simplification of our algorithm delivers relative-error
approximation guarantees for a popular special case of SPD matrices. Using state-of-the-
art C++ numerical linear algebra software packages for both dense and sparse matrices,
we demonstrated that the proposed approximation algorithm performs remarkably well
in practice in serial and parallel environments.

References

[1] H. Avron, S. Toledo, Randomized algorithms for estimating the trace of an implicit symmetric
positive semi-definite matrix, J. ACM 58 (2) (2011) 8.

[2] Ronald Paul Barry, R. Kelley Pace, Monte Carlo estimates of the log determinant of large sparse
matrices, Linear Algebra Appl. 289 (1) (1999) 41–54.

[3] Paul F. Curran, On a variation of the Gershgorin circle theorem with applications to stability theory,
in: IET Irish Signals and Systems Conference, ISSC 2009, 2009.

[4] Ernest R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding
eigenvectors of large real-symmetric matrices, J. Comput. Phys. 17 (1) (1975) 87–94.

[5] Timothy A. Davis, Direct Methods for Sparse Linear Systems, vol. 2, SIAM, 2006.
[6] Alexandre d’Aspremont, Onureena Banerjee, Laurent El Ghaoui, First-order methods for sparse

covariance selection, SIAM J. Matrix Anal. Appl. 30 (1) (2008) 56–66.
[7] Timothy A. Davis, Yifan Hu, The university of Florida sparse matrix collection, ACM Trans. Math.

Software 38 (1) (2011) 1.
[8] Wayne Eberly, Mark Giesbrecht, Gilles Villard, On computing the determinant and smith form of

an integer matrix, in: Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium
on, IEEE, 2000, pp. 675–685.

[9] Jerome Friedman, Trevor Hastie, Robert Tibshirani, Sparse inverse covariance estimation with the
graphical lasso, Biostatistics 9 (3) (2008) 432–441.

[10] Gaël Guennebaud, Benoît Jacob, et al., Eigen v3, http://eigen.tuxfamily.org, 2010.
[11] Anshul Gupta, George Karypis, Vipin Kumar, Highly scalable parallel algorithms for sparse matrix

factorization, IEEE Trans. Parallel Distrib. Syst. 8 (5) (1997) 502–520.
[12] Anshul Gupta, Wsmp: Watson sparse matrix package (part-i: direct solution of symmetric sparse

systems), Tech. Rep. RC, 21886, IBM TJ Watson Research Center, Yorktown Heights, NY, 2000.
[13] Kazushige Goto, Robert Van De Geijn, High-performance implementation of the level-3 blas, ACM

Trans. Math. Software 35 (1) (2008) 4.
[14] Timothy Hunter, Ahmed El Alaoui, Alexandre Bayen, Computing the log-determinant of symmetric,

diagonally dominant matrices in near-linear time, arXiv preprint, arXiv:1408.1693, 2014.
[15] Insu Han, Dmitry Malioutov, Haim Avron, Jinwoo Shin, Approximating the spectral sums of large-

scale matrices using Chebyshev approximations, arXiv preprint, arXiv:1606.00942, 2016.
[16] Insu Han, Dmitry Malioutov, Jinwoo Shin, Large-scale log-determinant computation through

stochastic Chebyshev expansions, in: David Blei, Francis Bach (Eds.), Proceedings of the 32nd
International Conference on Machine Learning, ICML-15, JMLR Workshop and Conference Pro-
ceedings, 2015, pp. 908–917.

http://refhub.elsevier.com/S0024-3795(17)30414-7/bib41543131s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib41543131s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib42503939s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib42503939s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib63757272616E32303039766172696174696F6Es1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib63757272616E32303039766172696174696F6Es1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib6461766964736F6E31393735697465726174697665s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib6461766964736F6E31393735697465726174697665s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib646176697332303036646972656374s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib64323030386669727374s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib64323030386669727374s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib646176697332303131756E6976657273697479s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib646176697332303131756E6976657273697479s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib656265726C7932303030636F6D707574696E67s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib656265726C7932303030636F6D707574696E67s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib656265726C7932303030636F6D707574696E67s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib66726965646D616E32303038737061727365s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib66726965646D616E32303038737061727365s1
http://eigen.tuxfamily.org
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib677570746131393937686967686C79s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib677570746131393937686967686C79s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib67757074613230303077736D70s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib67757074613230303077736D70s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib676F746F3230303868696768s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib676F746F3230303868696768s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib68756E74657232303134636F6D707574696E67s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib68756E74657232303134636F6D707574696E67s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib48616E32303136s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib48616E32303136s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib69636D6C323031355F68616E613135s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib69636D6C323031355F68616E613135s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib69636D6C323031355F68616E613135s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib69636D6C323031355F68616E613135s1

C. Boutsidis et al. / Linear Algebra and its Applications 533 (2017) 95–117 117
[17] Cho-Jui Hsieh, Mátyás A. Sustik, Inderjit S. Dhillon, Pradeep K. Ravikumar, Russell Poldrack,
Big & quic: sparse inverse covariance estimation for a million variables, in: Advances in Neural
Information Processing Systems, 2013, pp. 3165–3173.

[18] Prabhanjan Kambadur, Aurelie Lozano, A parallel, block greedy method for sparse inverse covari-
ance estimation for ultra-high dimensions, in: Proceedings of the Sixteenth International Conference
on Artificial Intelligence and Statistics, 2013, pp. 351–359.

[19] James P. LeSage, R. Kelley Pace, Spatial dependence in data mining, in: Data Mining for Scientific
and Engineering Applications, Springer, 2001, pp. 439–460.

[20] W.E. Leithead, Yunong Zhang, D.J. Leith, Efficient gaussian process based on bfgs updating and
logdet approximation, in: The 16th IFAC World Congress, 2005.

[21] R.J. Martin, Approximations to the determinant term in gaussian maximum likelihood estimation
of some spatial models, Comm. Statist. Theory Methods 22 (1) (1992) 189–205.

[22] R. Kelley Pace, Ronald Barry, Quick computation of spatial autoregressive estimators, Geogr. Anal.
29 (3) (1997) 232–247.

[23] R. Kelley Pace, Ronald Barry, Otis W. Gilley, C.F. Sirmans, A method for spatial–temporal fore-
casting with an application to real estate prices, Int. J. Forecast. 16 (2) (2000) 229–246.

[24] R. Kelley Pace, James P. LeSage, Chebyshev approximation of log-determinants of spatial weight
matrices, Comput. Statist. Data Anal. 45 (2) (2004) 179–196.

[25] Jack Poulson, Bryan Marker, Robert A. Van de Geijn, Jeff R. Hammond, Nichols A. Romero,
Elemental: a new framework for distributed memory dense matrix computations, ACM Trans. Math.
Software 39 (2) (2013) 13.

[26] Arnold Reusken, Approximation of the determinant of large sparse symmetric positive definite
matrices, SIAM J. Matrix Anal. Appl. 23 (3) (2002) 799–818.

[27] Arvind K. Saibaba, Alen Alexanderian, Ilse C.F. Ipsen, Randomized matrix-free trace and log-
determinant estimators, Numer. Math. (2017), http://dx.doi.org/10.1007/s00211-017-0880-z.

[28] John K. Salmon, Mark A. Moraes, Ron O. Dror, David E. Shaw, Parallel random numbers: as
easy as 1, 2, 3, in: High Performance Computing, Networking, Storage and Analysis (SC), 2011
International Conference for, IEEE, 2011, pp. 1–12.

[29] Daniel A. Spielman, Shang-Hua Teng, Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems, in: Proceedings of the Thirty-Sixth Annual ACM Sym-
posium on Theory of Computing, ACM, 2004, pp. 81–90.

[30] Luca Trevisan, Graph partitioning and expanders, Handout 7 (2011).
[31] Yunong Zhang, William E. Leithead, Approximate implementation of the logarithm of the matrix

determinant in gaussian process regression, J. Stat. Comput. Simul. 77 (4) (2007) 329–348.
[32] Yunong Zhang, W.E. Leithead, D.J. Leith, L. Walshe, Log-det approximation based on uniformly

distributed seeds and its application to gaussian process regression, J. Comput. Appl. Math. 220 (1)
(2008) 198–214.

http://refhub.elsevier.com/S0024-3795(17)30414-7/bib687369656832303133626967s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib687369656832303133626967s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib687369656832303133626967s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib6B616D626164757232303133706172616C6C656Cs1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib6B616D626164757232303133706172616C6C656Cs1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib6B616D626164757232303133706172616C6C656Cs1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib6C6573616765323030317370617469616Cs1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib6C6573616765323030317370617469616Cs1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib6C6569746865616432303035656666696369656E74s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib6C6569746865616432303035656666696369656E74s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib4D61723932s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib4D61723932s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib7061636531393937717569636Bs1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib7061636531393937717569636Bs1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib70616365323030306D6574686F64s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib70616365323030306D6574686F64s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib7061636532303034636865627973686576s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib7061636532303034636865627973686576s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib706F756C736F6E32303133656C656D656E74616Cs1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib706F756C736F6E32303133656C656D656E74616Cs1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib706F756C736F6E32303133656C656D656E74616Cs1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib526575736B656E32303032s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib526575736B656E32303032s1
http://dx.doi.org/10.1007/s00211-017-0880-z
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib73616C6D6F6E32303131706172616C6C656Cs1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib73616C6D6F6E32303131706172616C6C656Cs1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib73616C6D6F6E32303131706172616C6C656Cs1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib737069656C6D616E323030346E6561726C79s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib737069656C6D616E323030346E6561726C79s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib737069656C6D616E323030346E6561726C79s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib4C545F4C656374757265s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib7A68616E6732303037617070726F78696D617465s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib7A68616E6732303037617070726F78696D617465s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib7A68616E67323030386C6F67s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib7A68616E67323030386C6F67s1
http://refhub.elsevier.com/S0024-3795(17)30414-7/bib7A68616E67323030386C6F67s1

	A randomized algorithm for approximating the log determinant of a symmetric positive deﬁnite matrix
	1 Introduction
	1.1 Our contributions
	1.2 Related work

	2 Preliminaries
	2.1 Notation
	2.2 Power method
	2.3 Trace estimation

	3 Additive error approximation for general SPD matrices
	3.1 Algorithm
	3.2 Error bound
	3.3 Running time

	4 Relative error approximation for SPD matrices with bounded eigenvalues
	4.1 The algorithm and the relative error bound

	5 Experiments
	5.1 Software
	5.2 Environment
	5.3 Dense matrices
	5.4 Sparse matrices

	6 Conclusions
	References

