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ABSTRACT
We consider feature selection for text classification both the-
oretically and empirically. Our main result is an unsuper-
vised feature selection strategy for which we give worst-case
theoretical guarantees on the generalization power of the
resultant classification function f̃ with respect to the classi-
fication function f obtained when keeping all the features.
To the best of our knowledge, this is the first feature selec-
tion method with such guarantees. In addition, the anal-
ysis leads to insights as to when and why this feature se-
lection strategy will perform well in practice. We then use
the TechTC-100, 20-Newsgroups, and Reuters-RCV2 data
sets to evaluate empirically the performance of this and two
simpler but related feature selection strategies against two
commonly-used strategies. Our empirical evaluation shows
that the strategy with provable performance guarantees per-
forms well in comparison with other commonly-used feature
selection strategies. In addition, it performs better on cer-
tain datasets under very aggressive feature selection.

Categories and Subject Descriptors: E.m [Data] : Mis-
cellaneous; H.m [Information Systems] : Miscellaneous
General Terms: Algorithms, Experimentation
Keywords: Feature Selection, Text Classification, Random
Sampling, Regularized Least Squares Classification

1. INTRODUCTION
Automated text classification is a particularly challenging

task in modern data analysis, both from an empirical and
from a theoretical perspective. This problem is of central
interest in many internet applications, and consequently it
has received attention from researchers in such diverse areas
as information retrieval, machine learning, and the theory
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of algorithms. Challenges associated with automated text
categorization come from many fronts: one must choose an
appropriate data structure to represent the documents; one
must choose an appropriate objective function to optimize
in order to avoid overfitting and obtain good generalization;
and one must deal with algorithmic issues arising as a result
of the high formal dimensionality of the data.

Feature selection, i.e., selecting a subset of the features
available for describing the data before applying a learning
algorithm, is a common technique for addressing this last
challenge [4,13,17,20]. It has been widely observed that fea-
ture selection can be a powerful tool for simplifying or speed-
ing up computations, and when employed appropriately it
can lead to little loss in classification quality. Nevertheless,
general theoretical performance guarantees are modest and
it is often difficult to claim more than a vague intuitive un-
derstanding of why a particular feature selection algorithm
performs well when it does. Indeed, selecting an optimal set
of features is in general difficult, both theoretically and em-
pirically; hardness results are known [5–7], and in practice
greedy heuristics are often employed [4,13,17,20].

We address these issues by developing feature selection
strategies that are: sufficiently simple that we can obtain
non-trivial provable worst-case performance bounds that ac-
cord with the practitioners’ intuition; and at the same time
sufficiently rich that they shed light on practical applica-
tions in that they perform well when evaluated against com-
mon feature selection algorithms. Motivated by recent work
in applied data analysis—for example, work on Regularized
Least Squares Classification (RLSC), Support Vector Ma-
chine (SVM) classification, and the Lasso shrinkage and se-
lection method for linear regression and classification—that
has a strongly geometric flavor, we view feature selection
as a problem in dimensionality reduction. But rather than
employing the Singular Value Decomposition (which, upon
truncation, would result in a small number of dimensions,
each of which is a linear combination of up to all of the orig-
inal features), we will attempt to choose a small number of
these features that preserve the relevant geometric structure
in the data (or at least in the data insofar as the particular
classification algorithm is concerned). We will see that this
methodology is sufficiently simple and sufficiently rich so as
to satisfy the dual criteria stated previously.

In somewhat more detail:
• We present a simple unsupervised algorithm for feature
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selection and apply it to the RLSC problem. The algorithm
assigns a univariate “score” or “importance” to every fea-
ture. It then randomly samples a small (independent of the
total number of features, but dependent on the number of
documents and an error parameter) number of features, and
solves the classification problem induced on those features.

• We present a theorem which provides worst-case guar-
antees on the generalization power of the resultant classifi-
cation function f̃ with respect to that of f obtained by using
all the features. To the best of our knowledge, this is the
first feature selection method with such guarantees.

• We provide additive-error approximation guarantees for
any query document and relative-error approximation guar-
antees for query documents that satisfy a somewhat stronger
but reasonable condition with respect to the training docu-
ment corpus. Thus, the proof of our main quality-of-approx-
imation theorem provides an analytical basis for commonly-
held intuition about when such feature selection algorithms
should and should not be expected to perform well.

• We provide an empirical evaluation of this algorithm on
the TechTC-100, 20-Newsgroups, and Reuters-RCV2 data-
sets. In our evaluation, we use: the aforementioned univari-
ate score function for which our main theorem holds—which,
due to its construction, we will refer to as subspace sam-
pling (SS); random sampling based on two other score func-
tions that are simpler to compute—one based on weighted
sampling (WS) and the other based on uniform sampling
(US); as well as two common feature selection strategies—
Information Gain (IG) and Document Frequency (DF)—
that have been shown to perform well empirically (but for
which the worst case analysis we perform would be quite
difficult).

• We show that our main SS algorithm performs similarly
to IG and DF and also to WS (which has a similar flavor to
DF). In certain cases, e.g., under very aggressive feature se-
lection on certain datasets, our main SS algorithm does bet-
ter than the other methods. In other less aggressive cases,
when it does similarly to IG, DF, and WS, we show that the
univariate score that our provable SS algorithm computes
is more closely approximated by the score provided by WS
than it is at more aggressive levels of feature selection.

2. BACKGROUND AND RELATED WORK

2.1 Background
Learning a classification function can be regarded as ap-

proximating a multivariate function from sparse data. This
problem is ill-posed and is solved in classical regularization
theory by finding a function f that simultaneously has small
empirical error and small norm in a Reproducing Kernel
Hilbert Space (RKHS). That is, if the data consist of d exam-
ples (z1, y1), . . . , (zd, yd), where zi ∈ R

d and yi ∈ {−1, +1},
then one solves a Tikhonov regularization problem to find a
function f that minimizes the functional:

min
f∈H

d
X

i=1

V (yi, f(zi)) + λ||f ||2K , (1)

where V (., .) is a loss function, ||f ||K is a norm in a RKHS H
defined by the positive definite function K, d is the number
of data points, and λ is a regularization parameter [12, 34,
35]. Under general conditions [30], any f ∈ H minimizing

(1) admits a representation of the form:

f(q) =
d

X

i=1

xiK(q, zi), (2)

for some set of coefficients xi, i = {1, . . . , d}. Thus, the op-
timization problem (1) can be reduced to finding a set of
coefficients xi, i = {1, . . . , d}. The theory of Vapnik then
justifies the use of regularization functionals of the form ap-
pearing in (1) for learning from finite data sets [35].

If one chooses the square loss function,

V (y, f(z)) = (y − f(z))2, (3)

then, by combining (3) with (1) and (2), we obtain the
following Regularized Least Squares Classification (RLSC)
problem:

min
x∈Rd

||Kx − y||22 + λxT Kx, (4)

where the d × d kernel matrix K is defined over the finite
training data set and y is a d-dimensional {±1} class label
vector [12,26,27].

As is standard, we will represent a document by an n-
dimensional feature vector and thus a corpus of d training
documents (where, generally, n ≫ d) as an n × d matrix
A. Similarly, we will consider an identity mapping to the
feature space, in which case the kernel may be expressed as
K = AT A. If the Singular Value Decomposition (SVD) of
A is A = UΣV T , then the solution and residual of (4) may
be expressed as:

xopt = V (Σ2 + λI)−1V T y. (5)

The vector xopt characterizes a classification function of the
form (2) that generalizes well to new data. Thus, if q ∈ R

n

is a new test or query document, then from (2) it follows
that our binary classification function is:

f(q) = xT
optA

T q. (6)

That is, given a new document q that we wish to classify,
if f(q) > 0 then q is classified as belonging to the class in
question, and not otherwise.

2.2 Related Work
Feature selection is a large area. For excellent reviews,

see [4,13,17,20]. Papers more relevant to the techniques we
employ include [14, 18, 24, 37, 39] and also [19, 22, 31, 36, 38,
40,42]. Of particular interest for us will be the Information
Gain (IG) and Document Frequency (DF) feature selection
methods [39]. Hardness results have been described in [5–7].

RLSC has a long history and has been used for text classi-
fication: see, e.g., Zhang and Peng [41], Poggio and Smale [25],
Rifkin, et. al. [27], Fung and Mangasarian (who call the
procedure a Proximal Support Vector Machine) [15], Agar-
wal [3], Zhang and Oles [42], and Suykens and Vandewalle
(who call the procedure a Least Squares Support Vector
Machine) [33]. In particular, RLSC performs comparable
to the popular Support Vector Machines (SVMs) for text
categorization [15, 27, 33, 42]. Since it can be solved with
vector space operations, RLSC is conceptually and theoreti-
cally simpler than SVMs, which require convex optimization
techniques. In practice, however, RLSC is often slower, in
particular for problems where the mapping to the feature
space is not the identity (which are less common in text cat-
egorization applications). For a nice overview, see [26,27].
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We note in passing that if a hinge loss function is used
instead of the square loss function of (3), i.e., if we set
V (f(x), y) = (1 − yf(x))+, where (ξ)+ = max(ξ, 0), the
classical SVM problem follows from (1). The proof of our
main theorem will make use of matrix perturbation theory
and the robustness of singular subspaces to the sampling
implicit in our feature selection procedure; see [8, 11] and
also [32]. We expect that our methodology will extend to
SVM classification if one can prove analogous robustness re-
sults for the relevant convex sets in the SVM optimization.

3. OUR MAIN ALGORITHM
In this section, we describe our main sampling algorithm

for feature selection and classification. Recall that we have a
corpus of d training documents, each of which is described by
n ≫ d features. Our main goal is to choose a small number r
of features, where d . r ≪ n, such that, by using only those
r features, we can obtain good classification quality, both in
theory and in practice, when compared to using the full set
of n features. In particular, we would like to solve exactly
or approximately a RLSC problem of the form (4) to get a
vector to classify successfully a new document according to
a classification function of the form (6).

In Figure 1, we present our main algorithm for perform-
ing feature selection, the SRLS Algorithm. The algo-
rithm takes as input the n × d term-document (or feature-
document) matrix A, a vector y ∈ R

d of document labels

where sign(yj) labels the class of document A(j) (where A(j)

denotes the jth column of the matrix A and A(i) denotes the

ith row of A), and a query document q ∈ R
n. It also takes

as input a regularization parameter λ ∈ R
+, a probability

distribution {pi}n
i=1 over the features, and a positive integer

r. The algorithm first randomly samples roughly r features
according to the input probability distribution. Let Ã be
the matrix whose rows consist of the chosen feature vectors,
rescaled appropriately, and let q̃ be the vector consisting of
the corresponding elements of the input query document q,
rescaled in the same manner. Then, if we define the d × d
matrix K̃ = ÃT Ã as our approximate kernel, the algorithm
next solves the following RLSC problem:

min
x∈Rd

‚

‚K̃x − y
‚

‚

2

2
+ λxT K̃x, (7)

thereby obtaining an optimal vector x̃opt. Finally, the algo-
rithm classifies the query q by computing,

f̃ = f(q̃) = q̃T Ãx̃opt. (8)

If f̃ ≥ 0, then q is labeled ‘positive’; and otherwise, q is
labeled ‘negative’. Our main theorem (in the next section)
will give sufficient conditions on {pi}n

i=1 and r (as a function

of A and λ) for relating the value of q̃T Ãx̃opt to the value
of qT Axopt from (6) obtained by considering all n features.

An important aspect of our algorithm is the probability
distribution {pi}n

i=1 input to the algorithm. One could per-
form random sampling with respect to any probability dis-
tribution. (Indeed, uniform sampling has often been pre-
sented as a “straw man” for other methods to beat.) On the
other hand, as we show in Sections 4 and 6, more intelligent
sampling can lead to improved classification performance,
both theoretically and empirically. Also, note that rather
than using the probability distribution {pi}n

i=1 over the fea-
tures directly in r i.i.d. sampling trials (which might lead
to the same feature being chosen multiple times), the SRLS

Input: A ∈ R
n×d; y ∈ R

d; q ∈ R
n; λ ∈ R

+; {pi ∈ [0, 1] :
i ∈ [n], pi ≥ 0,

P

i pi = 1}, and a positive integer r ≤ n.

Output: A solution vector x̃opt ∈ R
d; a residual Z̃ ∈ R;

and a classification f̃ .

for i = 1, . . . , n do
Pick i with probability p̃i = min{1, rpi};
if i is picked then

Include A(i)/
√

p̃i as a row of Ã;
Include qi/

√
p̃i as the corresponding element of q̃;

end

Set K̃ = ÃT Ã;

Solve x̃opt = arg minx∈Rd

‚

‚K̃x − y
‚

‚

2

2
+ λxT K̃x;

Set Z̃ =
‚

‚K̃x̃opt − y
‚

‚

2

2
+ λx̃T

optK̃x̃opt;

Compute f̃ = f(q̃) = q̃T Ãx̃opt.

Figure 1: SRLS Algorithm: our main algorithm for
Sampling for Regularized Least Squares classifica-
tion.

Algorithm computes, for every i ∈ {1, . . . , n}, a proba-
bility p̃i = min{1, rpi} ∈ [0, 1], and then the ith row of A
is chosen with probability p̃i. Thus, r actually specifies an
upper bound on the expected number of chosen rows of A:
if Xi is a random variables that indicates whether the ith

row is chosen, then the expected number of chosen rows is
r′ = E [

P

i Xi] =
P

i min{1, rpi} ≤ r
P

i pi = r.

4. OUR MAIN THEOREMS
In this section, we provide our main quality-of-approx-

imation theorems for the SRLS Algorithm. In these the-
orems, we will measure the quality of the classification by
comparing the classification obtained from (6) using the out-
put of an exact RLSC computation with the classification
obtained from (8) using the output of the SRLS Algo-

rithm, which operates on a much smaller set of features.
The proof of these two theorems will be in Section 5.

Before stating these results, we review notation. Recall
that: A is an n×d full-rank matrix, whose d columns corre-
spond to d objects represented in an n-dimensional feature
space; y is a d-dimensional class-indicator vector, i.e., the
ith entry of y denotes the class membership of the ith ob-
ject; λ ≥ 0 is a regularization parameter. If we denote the
SVD of A as A = UΣV T , then: U is the n×d matrix whose
columns consist of the left singular vectors of A; σmax and
σmin denote the largest and smallest, respectively, singular
values of A; κA = σmax/σmin is the condition number of
A; and we will denote by U⊥ any n × (n − d) orthogonal
matrix whose columns span the subspace perpendicular to
that spanned by the columns of U . In this case, a query
document q ∈ R

n may be expressed as:

q = Aα + U⊥β ,

for some vectors α ∈ R
d and β ∈ R

n−d. (Note that the
“scale” of β is different from that of α, which for simplicity
we have defined to account for the singular value informa-
tion in A; this will manifest itself in the coefficients in the
expressions of our main results.) Of course, Ã, q̃, x̃opt are
defined in the SRLS Algorithm of Figure 1, and xopt is an
optimum of (4), as defined in (5).

Our first theorem establishes that if we randomly sam-
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ple roughly Õ(d/ǫ2) features according to a carefully chosen
probability distribution of the form

pi =

‚

‚U(i)

‚

‚

2

2

d
, ∀i ∈ 1 . . . n, (9)

i.e., proportional to the square of the Euclidean norms of
the rows of the left singular vectors of the (n × d with n ≫
d) matrix A, then we have an additive-error approximation

bound for any query vector q. (We will use the common Õ
notation to hide factors that are polylogarithmic in d and ǫ
for ease of exposition.)

Theorem 1. Let ǫ ∈ (0, 1/2] be an accuracy parame-
ter. If the SRLS Algorithm (of Figure 1) is run with

r = Õ
`

d/ǫ2
´

and with sampling probabilities of the form
(9), then, with probability at least 0.98:

• If λ = 0, then
˛

˛

˛q̃
T Ãx̃opt − qT Axopt

˛

˛

˛ ≤ ǫκA

σmax
‖β‖2 ‖y‖2 .

• If λ > 0, then
˛

˛

˛
q̃T Ãx̃opt − qT Axopt

˛

˛

˛

≤ 2ǫκA ‖α‖2 ‖y‖2 +
2ǫκA

σmax
‖β‖2 ‖y‖2 . (10)

Note that (except for the trivial case where λ = 0), our the-
orem provides no guideline for the choice of λ. The second
bound holds regardless of the choice of λ, which we will see
is conveniently eliminated in the proof.

Note that the error bounds provided by Theorem 1 for
the classification accuracy of our feature selection algorithm
depend on: the condition number of A—this is a very com-
mon dependency in least squares problems; the amount of
the query vector q that is “novel” with respect to the train-
ing set documents—‖β‖2 measures how much of q lies out-
side the subspace spanned by the training set documents;
as well as the alignment of the class membership vector y
with the part of the query document q that lies in the sub-
space spanned by the columns of A. In particular, notice,
for example, that if β = 0, namely if there is no “novel”
component in the query vector q (equivalently, if q may be
expressed as a linear combination of the documents that we
have already seen without any information loss), then the
error becomes exactly zero if λ = 0. If λ > 0 and β = 0,
then the second term in (10) is zero.

One important question is whether one can achieve rela-
tive error guarantees. We are particularly interested in the
case where β = 0 (the query vector has no new components),
and λ > 0. The following theorem states that under addi-
tional assumptions we get such relative error guarantees. In
particular, we need to make an assumption about how the
query vector q interacts with the class discrimination vec-
tor y, so that we can replace the product of norms with the
norm of products.

Theorem 2. Let ǫ ∈ (0, 1/2] be an accuracy parame-
ter, and let λ > 0. Assume that the query document q
lies entirely in the subspace spanned by the d training doc-
uments (the columns of A), and that the two vectors V T y

and
`

I + λΣ−2
´−1

V T α are “close” (i.e., almost parallel or

anti-parallel) to each other, in the sense that
‚

‚

‚

`

I + λΣ−2´−1
V T α

‚

‚

‚

2

‚

‚

‚
V T y

‚

‚

‚

2

≤ γ

‚

‚

‚

‚

“

`

I + λΣ−2
´−1

V T α
”T

V T y

‚

‚

‚

‚

2

= γ
˛

˛

˛
qT Axopt

˛

˛

˛
,

for some small constant γ. If the SRLS Algorithm (of

Figure 1) is run with r = Õ
`

d/ǫ2
´

and with sampling prob-
abilities of the form (9), then, with probability at least 0.98,

˛

˛

˛q̃
T Ãx̃opt − qT Axopt

˛

˛

˛ ≤ 2ǫγκA

˛

˛

˛q
T Axopt

˛

˛

˛ .

Recall that the vector α contains the coefficients in the
expression of q as a linear combination of the columns of
A; hence, the assumption of Theorem 2 is related to the
assumption that α is “close” to the classification vector y.

(Notice that V is a full rotation, and
`

I + λΣ−2
´−1

essen-
tially discounts the smaller singular values of A.) Thus, The-
orem 2 quantifies the intuition that query vectors that are
clearly correlated with the class discrimination axis will have
smaller classification error. On the other hand, Theorem 1
indicates that ambiguous query vectors (i.e., vectors that are
nearly perpendicular to the class indicator vector) will have
higher classification errors after sampling since such vectors
depend on almost all their features for accurate classifica-
tion.

5. PROOF OF OUR MAIN THEOREMS

5.1 The sampling matrix formalism
For notational convenience in the proofs in this section,

we define an n×n diagonal sampling matrix S. The diagonal
entries of this matrix are determined by “coin flips” of the
SRLS Algorithm. In particular, for all i = 1, . . . , n, Sii =
1/p̃i with probability p̃i = min{1, rpi}; otherwise, Sii = 0.
Here, the pi are defined in (9). Intuitively, the non-zero
entries on the diagonal of S correspond to the rows of A
that the algorithm selects.

5.2 Matrix perturbation results
Our proof will rely on the following three lemmas from

matrix perturbation theory.

Lemma 3. For any matrix E such that I+E is invertible,
(I + E)−1 = I +

P∞
i=1 (−E)i .

Lemma 4. Let X and X̃ = X + E be invertible matrices.
Then X̃−1 − X−1 = −X−1EX̃−1.

For a proof, see Stewart and Sun [32], pp. 118.

Lemma 5. Let D and X be matrices such that the product
DXD is a symmetric positive definite matrix with Xii = 1.
Let the product DED be a perturbation such that

‖E‖2 = η < λmin(X).

Here λmin(X) corresponds to the smallest eigenvalue of X.

Let λi be the i-th eigenvalue of DXD and let λ̃i be the i-th
eigenvalue of D(X + E)D. Then,

˛

˛

˛

˛

λi − λ̃i

λi

˛

˛

˛

˛

≤ η

λmin(X)
. (11)

For a proof, see Demmel and Veselić [10].
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5.3 Invertibility of matrices
Let A = UΣV T be the SVD of A. Define,

∆ = ΣUT SUΣ = Σ(I + E)Σ . (12)

Here E denotes how far away UT SU is from the identity.
We will apply Lemma 5 on the matrix product ΣUT UΣ,
which is symmetric positive definite. (Notice that the matrix
D of the lemma is Σ and the matrix X of the lemma is
UT U = I , thus Xii = 1 for all i.) Towards that end, we need
to bound the spectral norm of E, which has been provided
by Rudelson and Vershynin in [28].

Lemma 6. Let ǫ ∈ (0, 1/2]. Let p̃i = min{1, rpi}, let pi

be as in (9), and let r = Õ(d/ǫ2). Then, with probability at
least 0.99,

‖E‖2 =
‚

‚

‚
I − UT SU

‚

‚

‚

2
=

‚

‚

‚
UT U − UT SU

‚

‚

‚
≤ ǫ < 1.

We can now immediately apply Lemma 5, since the spectral
norm of the perturbation is strictly less than one, which is
the smallest eigenvalue of UT U = I . Since ∆ is symmetric
positive definite, the i-th eigenvalue of ∆ is equal to the i-th
singular value of ∆; also, the i-th eigenvalue of ΣUT UΣ is
equal to σ2

i , where σi = Σii. Thus Lemma 5 implies

Lemma 7. Let δi be the singular values of ∆. Then, with
probability at least 0.99,

˛

˛ δi − σ2
i

˛

˛ ≤ ǫσ2
i (13)

for all i = 1 . . . d.

The following lemma is the main result of this section and
states that all the matrices of interest are invertible.

Lemma 8. Using the above notation: Σ2 is invertible;
Σ2 + λI is invertible for any λ ≥ 0; ∆ is invertible with
probability at least 0.99; ∆ + λI is invertible for any λ ≥ 0
with probability at least 0.99; and I + E is invertible with
probability at least 0.99.

Proof. The first two statements follow trivially from the
fact that A is full-rank. The third statement follows from
Lemma 7 and the fourth statement follows by an analogous
argument (omitted). The last statement follows from the
fact that the spectral norm of E is at most ǫ, hence the
singular values of I + E are between 1 − ǫ and 1 + ǫ.

5.4 The classification error of q̃T Ãx̃opt

In this subsection, we will bound the difference between
qT Axopt and q̃T Ãx̃opt. This bound provides a margin of
error for the generalization power of Ãx̃opt in classifying an
arbitrary new document q with respect to the generalization
power of qT Axopt. The following lemma provides a nice
expression for x̃opt.

Lemma 9. With probability at least 0.99,

x̃opt = V (∆ + λI)−1V T y .

Sketch of the proof. Writing down the normal equations
for the sampled problem, and using the orthogonality of V
and the invertibility of ∆ + λI and ∆ provides the formula
for x̃opt.

We now expand q into two parts: the part that lies in the
subspace spanned by the columns of A and the part that
lies in the perpendicular subspace, i.e., in the span of U⊥:

q = Aα + U⊥β . (14)

Using A = UΣV T and substituting xopt from (5), we get

qT Axopt = αT AT Axopt + βT U⊥T
(UΣV T )xopt

= αT V Σ2(Σ2 + λI)−1V T y (15)

= αT V (I + λΣ−2)−1V T y . (16)

In the above we used the fact that U⊥T
U = 0 and the in-

vertibility of Σ2 and Σ2 + λI . We now focus on q̃T Ãx̃opt,
which may be rewritten (using our sampling matrix formal-
ism from Section 5.1) as qT SAx̃opt.

˛

˛

˛
qT Axopt − q̃T Ãx̃opt

˛

˛

˛
=

˛

˛

˛
qT Axopt − qT SAx̃opt

˛

˛

˛

≤
˛

˛

˛q
T Axopt − αT AT SAx̃opt

˛

˛

˛ (17)

+
˛

˛

˛
βT U⊥T

SAx̃opt

˛

˛

˛
. (18)

We will bound (17) and (18) separately. Using the formula
for x̃opt from Lemma 9 and ∆ = ΣUT SUΣ = Σ (I + E)Σ
we get

αT AT SAx̃opt = αT V ∆V T x̃opt

= αT V ∆(∆ + λI)−1V T y

= αT V (I + λ∆−1)−1V T y

= αT V (I + λΣ−1 (I + E)−1 Σ−1)−1V T y

= αT V
`

I + λΣ−2 + λΣ−1ΦΣ−1´−1
V T y .

To understand the last derivation notice that, from Lemma
3, (I + E)−1 = I + Φ, where Φ =

P∞
i=1(−E)i. We now

bound the spectral norm of Φ.

‖Φ‖2 =

‚

‚

‚

‚

‚

∞
X

i=1

(−E)i

‚

‚

‚

‚

‚

2

≤
∞

X

i=1

‖E‖i

2 ≤
∞

X

i=1

ǫi =
ǫ

1 − ǫ
, (19)

using Lemma 6 and the fact that ǫ ≤ 1/2. We are now ready
to bound (17).

˛

˛

˛
qT Axopt − αT AT SAx̃opt

˛

˛

˛
=

˛

˛

˛
αT V

h

`

I + λΣ−2 + λΣ−1ΦΣ−1´−1 −
`

I + λΣ−2´−1
i

V T y
˛

˛

˛
.

Using Lemma 4 and noticing that all matrices involved are
invertible, we bound the above quantity by

‚

‚

‚
αT V

`

I + λΣ−2
´−1

‚

‚

‚

2

‚

‚

‚
V T y

‚

‚

‚

2
‖Ψ‖2 ,

where Ψ = λΣ−1ΦΣ−1
`

I + λΣ−2 + λΣ−1ΦΣ−1
´−1

. In or-
der to complete the bound for the term in (17) we bound
the spectral norm of Ψ.

Ψ = λΣ−1ΦΣ−1
`

Σ−1
`

Σ2 + λI + λΦ
´

Σ−1
´−1

= λΣ−1Φ
`

Σ2 + λI + λΦ
´−1

Σ .

Since we already have bounds for the spectral norms of Σ,
Σ−1, and Φ, we only need to bound the spectral norm of
`

Σ2 + λI + λΦ
´−1

. Notice that the spectral norm of this
matrix is equal to the inverse of the smallest singular value of
Σ2 +λI+λΦ. Standard perturbation theory of matrices [32]
and (19) imply that,

˛

˛σi

`

Σ2 + λI + λΦ
´

− σi

`

Σ2 + λI
´˛

˛ ≤ ‖λΦ‖2 ≤ ǫλ.

Research Track Paper

234



Here σi(X) denotes the ith singular value of the matrix X.
Since σi

`

Σ2 + λI
´

= σ2
i +λ, where σi are the singular values

of A,

σ2
i + (1 − ǫ)λ ≤ σi

`

Σ2 + λI + λΦ
´

≤ σ2
i + (1 + ǫ)λ.

Thus,
‚

‚

‚

`

Σ2 + λI + λΦ
´−1

‚

‚

‚
= 1/σmin

`

Σ2 + λI + λΦ
´

≤ 1/
`

σ2
min + (1 − ǫ)λ

´

.

Here we let σmin be the smallest singular value of A, and
σmax be the largest singular value of A. Combining all the
above and using the fact that ‖Σ‖2 ‖Σ‖−1

2 = σmax/σmin ≤
κA (the condition number of A), we bound (17):

˛

˛

˛
qT Axopt − αT AT SAx̃opt

˛

˛

˛

≤ ǫλκA

σ2
min + (1 − ǫ)λ

‚

‚

‚
αT V

`

I + λΣ−2
´−1

‚

‚

‚

2

‚

‚

‚
V T y

‚

‚

‚

2
. (20)

We now proceed to bound the term in (18).
˛

˛

˛
βT U⊥T

SUΣ(∆ + λI)−1V T y
˛

˛

˛

≤
‚

‚

‚
qT U⊥U⊥T

SU
‚

‚

‚

2

‚

‚Σ(∆ + λI)−1
‚

‚

2

‚

‚

‚
V T y

‚

‚

‚

2

≤ ǫ
‚

‚

‚U⊥U⊥T
q
‚

‚

‚

2

‚

‚

‚V T y
‚

‚

‚

2

‚

‚Σ(∆ + λI)−1
‚

‚

2

≤ ǫ ‖β‖2 ‖y‖2

‚

‚Σ(∆ + λI)−1
‚

‚

2
,

where the first inequality follows from β = U⊥T
q; and

the second inequality follows from the lemma below (whose
proof is omitted—it is similar to Lemma 4.3 from [11]).

Lemma 10. Let ǫ ∈ (0, 1/2]. Given our notation, and our
choices for p̃i, pi, and r, with probability at least 0.99,

‚

‚

‚qT U⊥U⊥T
SU

‚

‚

‚

2
≤ ǫ

‚

‚

‚U⊥U⊥T
q
‚

‚

‚

2
.

To conclude the proof, we will bound the spectral norm of

Σ (∆ + λI)−1 =
`

Σ−1∆Σ + λΣ−2´−1
Σ−1

=
`

I + λΣ−2 + E
´−1

Σ−1.

It is now enough to get a lower bound for the smallest sin-
gular value of I + λΣ−2 + E. We will compare the singular
values of this matrix to the singular values of I + λΣ−2.
From standard perturbation theory,

(1 − ǫ) +
λ

σ2
i

≤ σi

`

I + λΣ−2 + E
´

≤ (1 + ǫ) +
λ

σ2
i

,

and hence using σmax/σmin = κA,

‚

‚

‚

`

I + λΣ−2 + E
´−1

Σ−1
‚

‚

‚

2
≤ σ2

max

((1 − ǫ)σ2
max + λ) σmin

=
κAσmax

(1 − ǫ)σ2
max + λ

≤ 2κA

σmax
.

In the above we used the fact that ǫ ≤ 1/2, which implies
that (1 − ǫ) + λ/σ2

max ≥ 1/2. Combining the above, we get
a bound for (18).

˛

˛

˛β
T U⊥T

SUΣ(∆ + λI)−1V T y
˛

˛

˛ ≤ 2ǫκA

σmax
‖β‖2 ‖y‖2 . (21)

In order to prove Theorem 1 for the case λ = 0, notice
that equation (20) becomes zero. For the case λ > 0, notice
that the denominator σ2

min +(1− ǫ)λ in (20) is always larger
than (1−ǫ)λ, and thus we can upper bound the prefactor in
(20) by 2ǫκA (since ǫ ≤ 1/2). Additionally, using

‚

‚αT V
‚

‚

2
=

‖α‖2 (since V is a full-rank orthonormal matrix),
‚

‚

‚
αT V

`

I + λΣ−2
´−1

‚

‚

‚

2
≤ ‖α‖2

‚

‚

‚

`

I + λΣ−2
´−1

‚

‚

‚

2
≤ ‖α‖2 .

The last inequality follows from the fact that the singular
values of I + λΣ−2 are equal to 1 + λ/σ2

i ; thus, the spectral
norm of its inverse is at most one. Combining the above
with (20) and using

‚

‚V T y
‚

‚

2
= ‖y‖2 concludes the proof of

Theorem 1.
The proof of Theorem 2 follows by noticing that if β is all-

zeros the right-hand side of (21) is zero. Since λ > 0, we can
use the aforementioned argument to bound the prefactor in
(20) by 2ǫκA, which concludes the proof.

6. EMPIRICAL RESULTS
In this section, we describe our empirical evaluations on

three datasets: TechTC-100 [9]; 20-Newsgroups [1,2,21]; and
Reuters RCV2 [23]. We compare several sampling-based fea-
ture selection strategies to feature selection methods com-
monly used in Information Retrieval (IR). Our aim is to
compare classification results after performing feature selec-
tion with classification results from the original problem.

6.1 The Datasets
Table 1 summarizes the structure of the three datasets.

The TechTC-100 family [9,16] consists of 100 datasets, each

Table 1: Datasets
Name Classes Terms Train Test
TechTC-100 2 20K 100×120 100×30
20-Newsgroups 20 62k 15k 4k
Reuters-rcv2 103 47k 23k 10k

having roughly 150 documents evenly spread across two
classes. The categorization difficulty of these datasets, as
measured in [9] (using the baseline SVM accuracy), is uni-
formly distributed between 0.6 and 1.0. Each dataset is
stemmed, normalized according to SMART-ltc [29], and then
split into four different test-train splits. The ratio of test to
train documents we used is 1 : 4.

The 20-Newsgroups dataset [1, 2, 21], which consists of
postings from 20 Usenet newsgroups, is well used in the IR
literature. The dataset consists of 20 classes, each corre-
sponding to a newsgroup, containing almost an equal num-
ber of documents. We used the document vectors provided
by Rennie et al. [1], who applied the usual stemming and ltc
normalization to this dataset, and split it into ten test-train
splits. We employ only the first five splits for our empirical
evaluations.

The last dataset is a subset of Reuters-RCV2 [23], that
contains news-feeds from Reuters. We considered only the
103 topic codes as the classes. The class structure in Reuters
is hierarchical, and as a result the sizes of the classes are
highly skewed, with the 21 non-leaf classes accounting for
79% of the total number of documents. We considered
all 103 topics as separate classes. We use both the ltc-
normalized term-document matrix and the one test-train
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split provided by Lewis et al. [23] for this dataset. For ef-
ficiency purposes, instead of using all 800K test documents
for classification, we randomly select 10K test documents
and report results on these.

Finally, for each of these datasets, we used our SRLS clas-
sifier with feature selection in a simple one-vs-all format.

6.2 Feature Selection Strategies
We investigate the following three sampling-based feature

selection strategies. Since these strategies are randomized,
we need only specify the probability distribution {pi}n

i=1

that is passed to the SRLS Algorithm.
• Subspace Sampling (SS). The probability of choosing
each feature is proportional to the length squared of the
corresponding row of the matrix Uk consisting of the top k
left singular vectors of A, i.e.,

pi =
‚

‚Uk(i)

‚

‚

2

2
/k. (22)

(Thus, for our empirical evaluation we generalize Equation
(9) to permit k to be a parameter.)
• Weight-based Sampling (WS). The probability of choos-
ing each feature is proportional to the length squared of the
corresponding row of the matrix A, i.e.,

pi =
‚

‚A(i)

‚

‚

2

2
/ ‖A‖2

F
. (23)

• Uniform Sampling (US). The probability of choosing
each feature is equal, i.e., pi = 1/n, for all i = 1, . . . , n.

We compare the performance of these three strategies
with that of the following two deterministic feature selec-
tion methods that are well-known in the IR literature.
• Document Frequency (DF). The document frequency
of a term is the number of training documents in which it
appears.
• Information Gain (IG). The IG feature selection method
is based on a notion of the amount of information the pres-
ence or absence of a particular term contains about the class
of the document [39]. It is measured as follows:

IG(t) =
X

c∈{ck,c̄k}

X

t∈{ti,t̄i}

P (t, c) · log P (t, c)

P (t)P (c)
(24)

From its definition, it is clear that the IG strategy is a su-
pervised strategy. That is, it uses the document labels in its
choice of features to retain. In contrast, our sampling-based
strategies, as well as the DF strategy, are unsupervised.

6.3 Results

6.3.1 Aggregation of Results
We investigate precision, recall, and the micro- and macro-

averaged F1 measures aggregated over all classes. We are
interested in comparing the performance of the classifier on
the subsampled instance to the performance on the instance
with the full feature set. Thus, we mainly report relative
performances of the subsampled instances to the original in-
stance. We first describe how the aggregation of the relative
performances were done, taking the 20-Newsgroups dataset
as an example.

We considered five test-train splits for the 20-Newsgroups
dataset. For each split, i = 1, . . . , 5, we obtained the op-
timal (micro-averaged F1) performance MIFmax(i) of the
classifier on the full feature set by varying the regulariza-
tion parameter λ. This procedure essentially determined
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0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

lambda

Micro F1
Macro F1
Precision
Recall

Figure 2: Performance of various values of λ for the
first split of the 20-Newsgroup dataset. The opti-
mal Micro-averaged and Macro-averaged F1 values
occur at λ = 0.4 for this split.

both the baseline performance MIFmax(i) and the optimal
value of the regularization parameter λmax(i) for split i.
Figure 2 plots the micro- and macro-averaged F1, average
precision and average recall as a function of λ for one of
the splits and shows the choice of the optimal value λmax

for this split. Next, for each of the randomized sampling
strategies; subspace, weighted, and uniform, and for each
expected sample size r, we collected the aggregated perfor-
mances over five different samples in MIFs(i, r), MIFw(i, r)
and MIFu(i, r), respectively. For the deterministic feature
selection strategies of IG and DF, the performance values
MIFig(i, r) and MIFdf (i, r) were obtained using one run for
each sample size, as the sample size r is the actual num-
ber of features chosen. We then computed the relative per-
formances for each feature selection strategy for this split;
e.g., RelMIFs(i, r) = MIFs(i, r)/MIFmax(i). The relative
performance RelMIF(r) curves for each strategy were then
obtained by averaging over all the splits. We followed the
same strategy of averaging the relative performance RelMIF
for the TechTC family, using four test-train splits for each
dataset. For ease of exposition, we also average the RelMIF
curves across the 100 different datasets. For the Reuters
dataset, we used only one test-train split (that of Lewis et
al. [23]).

6.3.2 Results for TechTC-100
For the TechTC-100 family, Figures 3(a), 3(b) and 3(c)

demonstrate the performances of the various feature selec-
tion strategies. As mentioned earlier, we aggregated the
RelMIF and the relative precision and recall values over all
100 of the datasets in the family. Figure 3(a) presents the
RelMIF performance of all the feature selection strategies.
All the selection strategies except document frequency (DF)
and uniform sampling (US) achieve 85% of the original (in-
volving no sampling) micro-averaged F1 performance with
only 500 out of the (roughly) 20K original features. In gen-
eral, the subspace sampling (SS) and information gain (IG)
strategies perform best, followed closely by weighted sam-
pling (WS). For very aggressive feature selection (choosing
less than 0.1% of the original features), SS based on k = 10
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Figure 3: Performance of various sampling methods on the TechTC-100 dataset.

singular vectors actually dominates both IG and the full-
rank SS (k = rank(A)). Figures 3(b) and 3(c) present the
precision and recall ratios averaged over all 100 datasets.
The precision plot closely follows the micro-averaged per-
formance. The recall performance is very different, with DF
scoring much higher than all the other strategies.

In order to understand better the behavior of SS, e.g., why
it does relatively well at very aggressive levels of feature
selection and why other methods perform similar to it at
less aggressive levels, we considered its behavior in more
detail. Figure 4(a) demonstrates the variability of the IG
and SS strategies across the 100 datasets of the TechTC
family. We set the expected sample size parameter r to
1000, and sorted the 100 datasets according to the RelMIF
performance of the IG strategy. The two curves show the
performance of the IG and the SS strategies according to
this ordering. The performance of the SS strategy seems
uncorrelated with the performance of the IG-based feature
selection. Also, the relative performance of the IG strategy
varies from 0.6 to 1.1 whereas that of SS varies only from
0.8 to 1. The two horizontal lines represent the aggregated
performances for the two methods over all the 100 datasets,
and they correspond to the points plotted on Figure 3(a) at
r = 1000. The aggregated performance of the SS method is
marginally better than that of IG at this sample size. Since
roughly half of the datasets have worse IG perfomance than
the average, it follows from the figure that on roughly half
of these 100 datasets, SS performs better than IG.

We also investigate the effect of the choice of the number
of singular vectors k used by SS. Figure 4(b) plots the rel-
ative micro-averaged F1 of SS for various values of k. At
aggressive levels of feature selection, smaller values of k give
a better performance whereas for higher number of features,
choosing k to be equal to the rank of the training matrix A
seems to be the optimal strategy. As expected, using all the
singular vectors (i.e. k equals the rank of the training ma-
trix) and using the top singular vectors that capture 90% of
the Frobenius norm behave similarly.

The performance plots in Figure 3(a) show that both of
the weight-based strategies WS and DF perform similarly
to SS when k is chosen to be close to the rank of the matrix
A. Insight into why this may be the case can be obtained
by examining the distance between the probability distribu-
tions as a function of k. Given two probability distributions
p̄ = {p1 . . . pn} and q̄ = {q1, . . . , qn}, a useful notion of dis-

tance between them is the Hellinger distance H(p̄, q̄):

H(p̄, q̄) =

v

u

u

t

n
X

i=1

(
√

pi −
√

qi)
2.

Figure 4(c) plots the Hellinger distance between the proba-
bility distribution of the WS (weighted sampling) strategy
and the probability distribution of SS for various k, rang-
ing from 1 to 100. In terms of Hellinger distance, WS is
closer to SS for higher values of k. Thus, for less aggressive
levels of feature selection, i.e., when the optimal strategy
is to choose k to be as close to the rank of A as possible,
the weight-based selection methods (WS, which has a simi-
lar flavor to DF) can serve as an efficient substitute for the
SS strategy. This observation is in fact corroborated by the
performance plots in Figure 4(c).

6.3.3 Results for 20-Newsgroups
Figure 5(a) plots the relative micro-averaged F1 perfor-

mances RelMIF against the expected number of features
chosen by each selection strategy for the 20-Newsgroups
dataset.

For the SS strategy, we employed either k = 1500 singular
vectors, which captures 35% of the total Frobenius norm, or
k = 100, which captures 15%. Both the SS (for k = 1500)
and IG strategies achieve about 90% of the micro-averaged
F1 performance of the full feature-set with roughly 5K of
the total 60K features. However, the classification perfor-
mance of this dataset seems to degrade rapidly at aggres-
sive levels of sampling. The IG-based strategy dominates
the performance, being particulary better than the others
at the aggressive levels. We see the same effect of SS with
k = 100 being better among all unsupervised methods for
aggressive selection. For this dataset, though, the effect is
much less pronounced than it is for TechTC. In general, SS
with k = 1500 strategy outperforms the other unsupervised
feature selection strategies; however, it is only marginally
better than the WS and DF methods. As expected, uni-
formly random feature selection falls far behind rest.

The relative precision and recall plots (not presented)
show that the precision does not increase after selecting
ca. 3000 features, while the recall steadily increases with
increase in the number of selected features. This is presum-
ably because although the terms chosen at this point are
discriminative amongst the classes, there are documents in
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Figure 4: Performance analysis for the TechTC-100 dataset.

the test set that do not contain these terms and thus affect
the average recall performance.

6.3.4 Results for Reuters
Lastly, Figures 5(b) and 5(c) summarize the performance

on the Reuters dataset. For SS strategy, we use either
k = 1500, capturing 30% of the Frobenius norm, or k = 100
capturing only 12%. Under feature selection, the perfor-
mance of this dataset actually improves marginally over the
full set of features. Since the Reuters dataset has a wide
skew in the sizes of different classes, we present the relative
performance both for the micro-averaged and the macro-
averaged F1 measures. As with 20-Newsgroups, the IG-
based feature selection strategy performs marginally better
than the others. In fact, for this dataset, the DF selection
strategy also slightly outperforms the subspace-based meth-
ods.

7. CONCLUSIONS
Several directions present themselves for future work. First,

we expect that our analysis is not tight in that we have per-
mitted ourselves to sample enough such that ∆ has an in-
verse. One might expect that we only need to sample enough
to “capture” the part of the space that is not “cut off” by
the regularization parameter λ, and a more refined analysis
might demonstrate this. Second, we have based our analysis
on recent work in the theory of algorithms for approximat-
ing the ℓ2 regression problem [11], but similar methods also
apply to the ℓp regression problem, for all p ∈ [1,∞) [8].
One might expect that by considering p = 1 we can apply
our methods to the SVMs, which would be of interest due
to the ubiquity of SVM-based classifiers in large-scale text
analysis. For example, although we use matrix perturbation
theory [32] to establish the robustness of certain subspaces
to the feature selection process, if one can show that the rel-
evant convex sets are similarly robust then our methodology
should apply to SVM classification.
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