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ABSTRACT
Motivated by numerous applications in which the data may
be modeled by a variable subscripted by three or more in-
dices, we develop a tensor-based extension of the matrix
CUR decomposition. The tensor-CUR decomposition is most
relevant as a data analysis tool when the data consist of
one mode that is qualitatively different than the others. In
this case, the tensor-CUR decomposition approximately ex-
presses the original data tensor in terms of a basis consist-
ing of underlying subtensors that are actual data elements
and thus that have natural interpretation in terms of the
processes generating the data. In order to demonstrate the
general applicability of this tensor decomposition, we ap-
ply it to problems in two diverse domains of data analysis:
hyperspectral medical image analysis and consumer recom-
mendation system analysis. In the hyperspectral data appli-
cation, the tensor-CUR decomposition is used to compress
the data, and we show that classification quality is not sub-
stantially reduced even after substantial data compression.
In the recommendation system application, the tensor-CUR
decomposition is used to reconstruct missing entries in a
user-product-product preference tensor, and we show that
high quality recommendations can be made on the basis of
a small number of basis users and a small number of product-
product comparisons from a new user.

Categories and Subject Descriptors: E.m [Data] : Mis-
cellaneous; H.m [Information Systems] : Miscellaneous

General Terms: Algorithms, Experimentation

Keywords: CUR Decomposition, Tensor CUR, Hyperspec-
tral Image Analysis, Recommendation System Analysis

1. INTRODUCTION
Novel algorithmic methods to structure large data sets

are of continuing interest. A particular challenge is pre-
sented by tensor-based data, i.e., data which are modeled
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by a variable subscripted by three or more indices [28, 19,
30, 39, 6]. Numerous examples suggest themselves, but to
guide the discussion consider the following three. First, in
internet data applications, if one is studying the properties
of a large time-evolving graph, the data may consist of a
graph or its adjacency matrix sampled at a large number of
sequential time steps, in which case Aijk may represent the
weight of the edge between nodes i and j at time step k.
Second, in biomedical data applications, if one is studying
cancer diagnosis, the data may consist of a large number of
hyperspectrally-resolved biopsy images, in which case Aijk

may represent the absorbed or transmitted light intensity of
a biopsy sample at pixel ij at frequency k. Third, in con-
sumer data applications, if one is studying recommendation
systems, the data may consist of product-product preference
data for a large number of users, in which case Aijk may be
±1, depending on whether product i or j is preferred by
user k. Tensor-based data are particularly challenging due
to their size and since many data analysis tools based on
graph theory and linear algebra do not easily generalize.

When compared with algorithmic results for data mod-
eled by either matrices or graphs, algorithmic results for
data modeled by multi-mode tensors are modest. For exam-
ple, even computing the rank of a general tensor A (defined
as the minimum number of rank-one tensors into which A
can be decomposed) is an NP-hard problem [20]. On the
other hand, the model proposed by Tucker [39], as well as
the related the “canonical decomposition” [6] or the “paral-
lel factors” model [19], have a long history in applied data
analysis [24, 25, 26, 28]. They provide exact or approximate
decompositions for higher-order tensors. Recent research
has focused on the relationship between these data tensor
models and efforts to extend linear algebraic notions such
as the Singular Value Decomposition to multi-mode data
tensors [28, 29, 30, 31].

A seemingly unrelated line of work has focused on matrix
CUR decompositions [10, 13, 12]. As discussed in more de-
tail in Section 2.2, a matrix CUR decomposition provides a
low-rank approximation of the form A ≈ Ã = CUR, where
C is a matrix consisting of a small number of columns of
A, R is a matrix consisting of a small number of rows of A,
and U is an appropriately-defined low-dimensional encoding
matrix [10]. Thus, a CUR matrix decomposition provides a
dimensionally-reduced low-rank approximation to the origi-
nal data matrix A that is expressed in terms of a small num-
ber of actual columns and a small number of actual rows of
the original data matrix, rather than, e.g., orthogonal linear
combinations of those columns and rows.



In this paper, we extend a recently-developed and prov-
ably accurate matrix CUR decomposition to tensor-based
data sets in which there is a “distinguished” mode, and we
apply it to problems in two of the three data set domains
mentioned previously. When applied to hyperspectral image
data, we use tensor-CUR to perform compression in order
to run a classification on a more concise input, and when
applied to recommendation system data we use tensor-CUR
to perform reconstruction in the absence of the full input.

By a “distinguished” mode, we mean a mode that is qual-
itatively different than the other modes in an application-
dependent manner. The most appropriate data structure for
a data set consisting of, e.g., a time-evolving internet graph
or a set of hyperspectrally-resolved biopsy images or user-
product-product preference data for consumers, depends on
the application and is a matter of debate. Nevertheless, we
will view such a data set as a tensor, albeit one in which one
of the modes is “distinguished.” For example, in these three
applications, the distinguished mode would be the mode de-
scribing, respectively, the temporal evolution of the graph,
the frequency or spectral variation in the images, and the
users. The tensor-CUR decomposition computes an approx-
imation to the original data tensor that is expressed as a
linear combination of subtensors of the original data tensor.
As we shall see, since these subtensors are actual data el-
ements, rather than, e.g., more complex functions of data
elements, in many cases they lend themselves more readily
to application-specific interpretation.

2. REVIEW OF RELEVANT LINEAR AND
MULTILINEAR ALGEBRA

2.1 Singular Value Decomposition (SVD)
The following theorem is a fundamental result from linear

algebra that is widely-used (often via the related Principal
Components Analysis) in data analysis.

Theorem 1. If A ∈ R
m×n, then there exist orthogonal

matrices U = [u1u2 . . . um] ∈ R
m×m and V = [v1v2 . . . vn] ∈

R
n×n, where

˘

ut
¯m

t=1
∈ R

m and
˘

vt
¯n

t=1
∈ R

n are such that

UT AV = Σ = diag(σ1, . . . , σρ), (1)

where Σ ∈ R
m×n, ρ = min{m, n} and σ1 ≥ σ2 ≥ . . . ≥ σρ ≥

0. Equivalently,

A = UΣV T . (2)

The three matrices U , V , and Σ constitute the Singular
Value Decomposition (SVD) of A. If we define r by σ1 ≥
σ2 ≥ . . . ≥ σr > σr+1 = . . . = σρ = 0, then rank(A) = r. In
addition, if k ≤ r and we define

Ak = UkΣkV T
k =

k
X

t=1

σtu
tvtT

, (3)

then the distance (as measured, e.g., by the Frobenius norm
‖·‖F , where ‖A‖2

F =
P

ij A2
ij) between A and any rank k

approximation to A is minimized by Ak. More formally, we
have the following theorem.

Theorem 2. If A ∈ R
m×n and Ak ∈ R

m×n is defined by
(3), then

‖A − Ak‖
2
F = min

D∈Rm×n:rank(D)≤k

‖A − D‖2
F . (4)

For more details about these results, see [16].

2.2 Matrix CUR Decomposition
Recent work in theoretical computer science, numerical

linear algebra, and statistical learning theory [10, 12, 37, 38,
3, 18, 17, 40, 13] has focused on low-rank matrix decompo-
sitions with structural properties that satisfy the following
definition:

Definition 1. Let A be an m × n matrix. In addition,
let C be an m × c matrix whose columns consist of a small
number c of columns of the matrix A, let R be an r × n
matrix whose rows consist of a small number r of rows of
the original matrix A, and let U be a c × r matrix. Then Ã
is a column-row-based low-rank approximation, or a CUR
approximation, to A if it may be explicitly written as

Ã = CUR. (5)

Several things should be noted about this definition. First,
for data applications, we prefer not to provide too precise a
characterization of what we mean by a “small” number of
columns and/or rows, but one should think of r, c ≪ m, n.
For example, they could be constant, independent of m and
n, logarithmic in the size of m and n, or simply a large con-
stant factor less than m, n. Second, since the approximation
is expressed in terms of a small number of columns and rows
of the original data matrix, it will provide a low-rank approx-
imation to the original matrix, although one with structural
properties that are quite different than those provided by
truncating the SVD. Third, a CUR approximation approxi-
mately expresses all of the columns of A in terms of a linear
combination of a small number of “basis columns,” and sim-
ilarly for the rows.

Finally, and most relevant for the present paper, note that
a CUR matrix decomposition has structural properties that
are auspicious for its use as a tool in the analysis of large
data sets. For example, if the data matrix A is large and
sparse but well-approximated by a low-rank matrix, then C
and R (consisting of actual columns and rows) are sparse,
whereas the matrices consisting of the top left and right sin-
gular vectors will not in general be sparse. In addition, in
many applications, interpretability is important; practition-
ers often have an intuition about the actual columns and
rows that they fail to have about linear combinations of (up
to) all the columns or rows.

The following algorithmic result regarding a matrix CUR
approximation was recently proven [10].

Theorem 3. There exists a randomized algorithm (see
the LinearTimeCUR algorithm of [10]) that takes as input
an m × n matrix A and a fixed rank parameter k, and that
returns as output an m×c matrix C consisting of c columns
of A, an r × n matrix R consisting of r rows of A, and an
c × r matrix U . The columns/rows are randomly sampled
in c/r independent trials according to a judiciously-chosen
probability distribution depending on the Euclidean norm of
the corresponding column/row. If c = O(k log(1/δ)/ǫ4) and
r = O(k/δ2ǫ2), then

‖A − CUR‖F ≤ ‖A − Ak‖F + ǫ ‖A‖F (6)

holds with probability at least 1 − δ. The algorithm requires
O(m+n) additional time and scratch space after reading the
matrix A twice from external storage.

Our two tensor-CUR algorithms are tensor-based extensions
of this matrix algorithm. For more details about these re-
sults, see [8, 9, 10, 13].



2.3 Tensor-Based Extension on the SVD
Tensors are a natural generalization of matrices. We shall

use calligraphic letters to denote higher-order or multi-mode
tensors with d > 2 modes. For example, let A ∈ R

n1×n2×···×nd

be a d-mode tensor of size n1×n2×· · ·×nd. In addition, let
α ∈ {1, . . . , d} be a particular mode and let Nα =

Q

i6=α ni.
Consider the following definitions: Define the matrix A[α] ∈

R
nα×Nα , where the columns of the matrix consist of varying

the αth coordinate of A while leaving the rest fixed. We refer
to the (usually implicit) construction of A[α] as matricizing
or unfolding A along mode α and define the α-rank of the
tensor A to be the rank of the matrix A[α]. Given any nα×cα

matrix B, define the α-mode tensor-matrix product to be the
d-mode tensor of size n1 × · · ·×nα−1 × cα ×nα+1 × · · ·×nd

whose i1 · · · id element is

(A⊗α B)i1···id
=

nα
X

i=1

Ai1···iα−1iiα+1···id
Biiα . (7)

Denote the SVD of A[α] by

A[α] = UA[α]
ΣA[α]

V T
A[α]

= U[α]Σ[α]V
T
[α], (8)

where, e.g., U[α] is an nα × rank(A[α]) matrix and U[α],kα

is a nα × kα matrix consisting of the left singular vectors
corresponding to the top kα singular values of A[α]. Define
the (square of the) Frobenius norm to be

‖A‖2
F =

n1
X

i1=1

· · ·

nd
X

id=1

A2
i1···id

. (9)

Let us refer to as slabs each of the nα d− 1-mode tensors of
size n1×· · ·×nα−1×nα+1×· · ·×nd constructed by fixing the
αth coordinate to some particular value iα ∈ {1, . . . , nα}.
Similarly, let us refer to as fibers each of the Nα vectors
(mode-one tensors) of size nα constructed by fixing each of
the other coordinates to a particular value.

For more details about these results, see [28, 29, 12].

3. A TENSOR-BASED EXTENSION OF THE
CUR MATRIX DECOMPOSITION

3.1 A Tensor-CUR Decomposition for(2 + 1)-
Data Tensors

In this subsection, for simplicity of exposition and in light
of the two applications we will consider, we restrict ourselves
to tensors that are subscripted by three indices, i.e., so-called
three-mode tensors.

Consider an n1×n2×n3 tensor A, defined as the collection
of elements

{Aijk|i = 1, . . . , n1; j = 1, . . . , n2; k = 1, . . . , n3}.

The elements may be thought of as a data cube, i.e, a three-
dimensional block such that index i runs along the vertical
axis, index j runs along the horizontal axis, and index k
runs along the “depth” axis. Since by assumption there is
a “distinguished” mode, we are considering the special case
of a (2+1)-tensor, i.e., an n1 × n2 × n3 tensor in which
two modes (without loss of generality, we will assume they
are the first two) are similar in some application-dependent
manner and the third is qualitatively different. See Figure
1 for a pictorial description of a (2 + 1)-data tensor. In this

Figure 1: Pictorial representation of a (2 + 1)-data
tensor.

case, we refer to each of the n3 different n1 ×n2 matrices as
“slabs” and each of the n1n2 different n3-vectors as “fibers.”

With this in mind, consider the (2 + 1)-Tensor-CUR

algorithm, described in Figure 2. This algorithm takes as
input an n1 × n2 × n3 tensor A, a probability distribution
{pi}

n3
i=1 over the slabs, a probability distribution {qi}

n1n2
i=1

over the fibers, a number c of slabs to choose, and a num-
ber r of fibers to choose. (Without loss of generality, we
have assumed that the preferred mode α ∈ {1, 2, 3} is the
third mode.) The tensor A is decomposed along this mode
in a manner analogous to the original CUR matrix decom-
position [10]. More precisely, this algorithm computes the
approximation by performing the following: first, choose c
slabs (2-mode subtensors, i.e., matrices) in independent ran-
dom trials and choose r fibers (1-mode subtensors, i.e., vec-
tors) in independent random trials according to the input
probability distributions; second, define the n1 ×n2 × c ten-
sor C to consist of the c chosen slabs and also define the
r × n3 matrix R to consist of the chosen fibers; third, let U
be an an appropriately-defined and easily-computed (given
C and R) c × r matrix.

Clearly, Ã = C ⊗3 UR, where ⊗3 is a tensor-matrix mul-
tiplication, is a n1 × n2 × n3 tensor. Thus, by using the
(2 + 1)-Tensor-CUR algorithm, we make the following ap-
proximation:

A ≈ Ã = C ⊗3 UR. (10)

Thus, in particular, if i ∈ 1, . . . , n3 is one of the slabs that is
not randomly selected, then by using the (2 + 1)-Tensor-

CUR algorithm, we make the following approximation:

A(:, :, i) ≈
X

ξ∈C

A(:, :, ξ)X(ξ, i), (11)

where A(:, :, i) is the n1×n2 matrix formed from A by fixing
the value of the third mode to be i, C is a set indicating
which c indices were randomly chosen, and X(:, i) is a vector
consisting of the ith column of the matrix UR.

See Figure 3 for a pictorial description of the action of the
algorithm and this approximation. In particular, note that
a small number of slabs are sampled, and every other slab is
approximately reconstructed using the information in those
slabs as a basis and the information in a small number of
fibers (depicted as the dashed lines). The extent to which
(10) or (11) is a good approximation has to do with the
selection of slabs and fibers. In Sections 4 and 5, we show
that (10) holds empirically for our two applications if the
slabs and fibers are chosen uniformly and/or nonuniformly



Input: An n1×n2×n3 tensor A, a probability distribution
{pi}

n3
i=1, a probability distribution {qi}

n1n2
i=1 , and positive in-

tegers c and r.
Output: An n1 × n2 × c tensor C, a c × r matrix U , and
a r × n3 matrix R.

1. Select c slabs in c i.i.d. trials according to {pi}
n3
i=1.

(a) Let C be the n1 × n2 × c tensor consisting of the
chosen slabs.

(b) Let DC be the c× c diagonal scaling matrix with
(DC)tt = 1√

cpit

if the it-th slab is chosen in the

t-th independent trial.

2. Select r fibers in r i.i.d. trials according to {qi}
n1n2
i=1 .

(a) Let R be the r×n3 matrix consisting of the chosen
fibers.

(b) Let DR be the r× r diagonal scaling matrix with
(DR)tt = 1√

rqjt

if the jt-th slab is chosen in the

t-th independent trial.

3. Let the r × c matrix W be the matricized intersection
between C and R.

4. Define the c × r matrix U = DC (DRWDC)+ DR.

Figure 2: The (2 + 1)-Tensor-CUR Algorithm

with probabilities that depend on the Frobenius norms of
slabs and Euclidean norms of fibers, respectively. See the
proof of Theorem 4 in Section 3.2 and also [8, 9, 10] for a
discussion of the algorithmic justification for this sampling.

We emphasize that, as with the matrix CUR decompo-
sition, when this tensor-CUR decomposition is applied to
data there is a natural interpretation in terms of underlying
data elements. For our imaging application, a “slab” corre-
sponds to an image at a given frequency step and a “fiber”
corresponds to a time- or frequency-resolved pixel. Simi-
larly, for our recommendation system application, a “slab”
corresponds to a product-product preference matrix for a
single user and a “fiber” corresponds to preference informa-
tion from every user about a single product-product pair.

3.2 A General Tensor-CUR Decomposition for
Very Large Data Tensors

In this subsection, to provide a theoretical justification for
the tensor-CUR decomposition of Section 3.1, we present
our main algorithmic result. Our main algorithmic result is
a generalization the (2+1)-Tensor-CUR algorithm and an
associated provable quality-of-approximation bound for the
Frobenius norm of the error tensor A− C ⊗3 UR.

The Tensor-CUR algorithm, described in Figure 4, takes
as input a d-mode tensor A ∈ R

n1×···×nd , a “distinguished”
mode α ∈ {1, . . . , d}, a rank parameter kα, an error param-
eter ǫ > 0, and a failure probability δ ∈ (0, 1). The algo-
rithm returns as output three carefully constructed subten-
sors that, when multiplied together, are an approximation
Ã to A. Both the number of slabs cα and the number of
fibers rα that are randomly sampled depend on the rank
parameter kα, an error parameter ǫ, and a failure proba-
bility δ. The subtensors C and R are chosen by sampling
according to a carefully-constructed nonuniform probabil-

Input: An n1×n2×. . . nd tensor A, a mode α ∈ {1, . . . , d},
a rank parameter kα, an error parameter ǫ > 0, and a failure
probability δ ∈ (0, 1).
Output: An n1 × · · ·×nα−1 × cα ×nα+1 × . . .×nd tensor
C, a cα × rα matrix U , and a rα × nα matrix R.

1. Let cα = 4kα

“

1 +
p

8 log(2/δ)
”2

/ǫ4, rα = 4kα/δ2ǫ2,

and Nα =
Q

i6=α ni.

2. Define {pi}
nα
i=1 to be pi =

|(Aα)(i)|
2

‖A‖2
F

.

3. Define {qj}
Nα
j=1 to be qj =

|(Aα)(j)|
2

‖A‖2
F

.

4. Select cα slabs in cα i.i.d. trials according to the prob-
ability distribution {pi}

nα
i=1.

(a) Let C be the n1×· · ·×nα−1×cα×nα+1× . . .×nd

tensor consisting of the chosen slabs.

(b) Let DC be the cα × cα diagonal scaling matrix
with (DC)tt = 1√

cpit

if the it-th slab is chosen in

the t-th independent trial.

5. Select rα fibers in rα i.i.d. trials according to the prob-
ability distribution {qi}

Nα
i=1.

(a) Let R be the rα × nα matrix consisting of the
chosen fibers (from all the slabs).

(b) Let Ψ be the rα × cα matrix consisting of the
chosen fibers (from the chosen slabs).

(c) Let DR be the rα × rα diagonal scaling matrix
with (DR)tt = 1√

rqjt

if the jt-th slab is chosen in

the t-th independent trial.

6. Let Φ be the best rank-k approximation
to the Moore-Penrose generalized inverse of
(C ⊗α DC)T

[α] (C ⊗α DC)[α].

7. Define the cα × rα matrix U = Φ (DRΨ)T .

Figure 4: The Tensor-CUR Algorithm

ity distribution. In order to obtain the provable quality-of-
approximation bounds of Theorem 4, the probability distri-
bution depends on the Frobenius norms of the slabs and the
Euclidean norms of the fibers, respectively. Intuitively, this
biases the random sampling toward the subtensors that are
of most interest; see [8, 9, 10] for details.

In more detail, the approximation Ã is computed by per-
forming the following: first, form (implicitly) each of the
nα subtensors (slabs of mode d − 1) defined by fixing i ∈
{1, . . . , nα} and also form (implicitly) each of the Nα =
Q

i6=α ni subtensors (fibers of mode 1, i.e., vectors) defined
by fixing a value for each of the modes i 6= α; second, con-
struct nonuniform probability distributions with respect to
which to sample the slabs and the fibers; third, choose cα of
the d− 1-mode slabs in independent random trials and also
choose rα of the 1-mode fibers in independent random trials;
fourth, define the tensor C ∈ R

n1×···×nα−1×cα×nα+1×···×nd

to consist of the cα chosen d − 1-mode slabs, and also de-
fine the tensor R ∈ R

rα×nα to consist of the rα chosen 1-
mode fibers; and finally, let U ∈ R

cα×rα be an appropriately-



Figure 3: Pictorial representation of the action of the tensor-CUR decomposition.

defined and easily-computed (given C and R) tensor of mode
2 (i.e., matrix). Then, we may define

Ã = C ⊗α UR, (12)

where C⊗αUR is the α-mode tensor-matrix product between
C and UR to be an n1×· · ·×nα−1×nα×nα+1×· · ·×nd ten-
sor that is an approximation to the original tensor A. (The
awkward form of U is currently necessary for our provable
results. Nevertheless, U is a subspace-perturbation of the
Moore-Penrose generalized inverse of matricized intersection
between C and R. Thus, for the (2+1)-Tensor-CUR algo-
rithm and for the applications described in Sections 4 and 5
we have taken it to be exactly this quantity.)

Our main quality-of-approximation bound for the Tensor-

CUR algorithm is given by the following theorem, in which
we bound the Frobenius norm of the error tensor A − Ã.
Note that in (13), the

‚

‚A[α] − (A[α])kα

‚

‚

F
term is a mea-

sure of the extent to which the “unfolded” matrix A[α] is
not well-approximated by a rank-kα matrix, and the ǫ ‖A‖F

term is a measure of the loss in approximation quality due
to the choice of slabs and fibers (rather than, e.g., the top
kα eigen-slabs and eigen-fibers along the α mode).

Theorem 4. Let A be an n1 ×n2 × . . . nd tensor, and let
α ∈ {1, . . . , d} be a particular mode, kα be a rank parameter,
ǫ > 0 be an error parameter, and δ ∈ (0, 1) be a failure prob-
ability. Construct a tensor-CUR approximate decomposition
to A with the output of the Tensor-CUR algorithm. Then,
with probability at least 1 − δ,

‖A − C ⊗α UR‖F ≤
‚

‚

‚
A[α] −

`

A[α]

´

kα

‚

‚

‚

F
+ ǫ ‖A‖F . (13)

Proof: Since “unfolding” A along any mode does not change
the value of its Frobenius norm (since it is simply a reorder-
ing of indices in a summation) it follows that

‖A − C ⊗α UR‖F =
‚

‚

‚
A[α] − (C ⊗α UR)[α]

‚

‚

‚

F
. (14)

Note that the Frobenius norm on the left hand side of (14)
is a tensor norm and that the Frobenius norm on the right
hand side of (14) is a matrix norm. Due to the form of the
sampling probabilities used in the Tensor-CUR algorithm,
it is this latter quantity that Theorem 5 of [10] bounds. By
applying this result [10], the theorem follows.

⋄
With regard to complexity considerations, assume, for

simplicity, that the tensor A is stored externally and as-
sume that ki = O(1) and that ni = n for every i = 1, . . . , d.
Then the matrices C[i] each occupy only O(n) additional

scratch space. In general, O(nd−1) additional scratch space

will be needed to compute the probabilities of the form used
by the Tensor-CUR Algorithm, and this will be compara-
ble to the overall memory requirements if d is large. On the
other hand, if the uniform probabilities are approximately
optimal for each of the d nodes, then only O(n) additional
scratch space and computation time are needed, resulting in
a substantial scratch memory and time savings [8].

4. APPLICATION TO HYPERSPECTRAL
IMAGE DATA

In hyperspectral imagery, an object or scene is imaged
at a large number of contiguous wavelengths [33, 34]. Al-
though hyperspectral imagery originated in astronomy and
geosensing, it has been employed more recently in numerous
other application areas, including agriculture, manufactur-
ing, forensics, and medicine. In many of these applications,
target resolution is limited by available spatial resolution.
By considering the spectral variation of light intensity, one
obtains rich information about the object or scene being im-
aged that complements traditional spatial information. One
also obtains data sets that are very large and contain much
redundancy. For example, if a single scene is imaged at 200
frequency bands, where at each frequency a 256×256 image
is generated, then the data cube generated for this single
object consists of 13 million values.

When applied to medical samples, a variety of hyperspec-
tral devices have been used to discriminate among, e.g.,
cell types, tissue patterns, and endogenous and exogenous
pigments. Although the increasing power of these meth-
ods holds the promise for developing automatic diagnostics,
the increased volume and formal dimensionality of the data
make the development of more efficient algorithms necessary
in order to extract statistically useful and reliable informa-
tion about the data.

4.1 Description of Data and Data Generation
The hyperspectral image data set we consider consists of

59 data cubes derived from 59 biopsies (20 normal, 19 be-
nign adenoma, and 20 malignant carcinoma colon biopsies,
one per patient). Each data cube consists of 128 grey-scale
images at 400X magnification over the frequency range ca.
440 nm to 700 nm, where each image is 495 × 656 pixels in
size (for a total of ca. 40 million pixels). Each image is gen-
erated using a prototype tuned light source by measuring
the modulated light transmitted through the sample. For
details about the data and its generation, see [33, 34].

Figure 5 illustrates one of the 128 images, i.e., a hyper-
spectral image at a single frequency, in a typical (very ma-
lignant) sample, and Figure 6 illustrates a typical frequency-
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Figure 5: A very malignant sample at a single fre-
quency in one hyperspectral data cube.
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Figure 6: Average normalized spectrum and a
single typical spectrum in one hyperspectral data
cube. Vertical axis represents normalized energy-
per-frequency in the spectra. Horizontal axis is the
slab index.

resolved pixel and the average spectrum of the ca. 324, 000
frequency-resolved pixels in this data cube. Although not
illustrated, both successive images and also pixels from dif-
ferent spatial regions are strongly correlated with one an-
other.

In this imaging application, the tensor C consists of a
small number of dictionary or basis images (which are ac-
tual and not eigen-images) with respect to which the re-
maining images are expressed in an approximately-optimal
least-squares manner. Similarly, the matrix R consists of
the spectral variation of a small number of dictionary or ba-
sis pixels with respect to which the spectral variation of the
remaining pixels are expressed.

In the next two subsections, we will see that the tensor-
CUR decomposition can be applied to this hyperspectral
image data in order to compress the data and to perform
two classification tasks of interest on the data. Slabs will
be chosen randomly with a probability proportional to the
average normalized spectrum of Figure 6 and fibers will be
chosen uniformly at random. The data-dependent motiva-
tion for this is that the intensity of transmitted light cap-
tures a meaningful notion of information as a function of
varying frequency, but not as a function of varying spatial
coordinates due to the particular staining technology.
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Figure 8: Reconstruction error. Caption indicates
how many slabs (S) and fibers (F) were sampled.
Vertical axis is the relative reconstruction error (for
the Frobenius norm). Horizontal axis is the slab
index. Average and standard deviation are over 4
slab draws and 3 fiber draws.

4.2 Reconstruction of Hyperspectral Data
For each slab we did not randomly sample, we use the

tensor-CUR decomposition to reconstruct that slab in an
approximately-optimal least-squares sense in the basis pro-
vided by the sampled slabs, and we do so using only a small
number of pixels in that slab. In Figure 7 we present a
representative example of the reconstruction of one spectral
slice in a normal biopsy. The redundancy in the data is ev-
ident by the quality of the reconstruction under very heavy
downsampling. For example, it suffices to judiciously choose
as few as 8 or even 2 of the original 128 slabs, and to recon-
struct the remaining slabs it suffices to choose ca. 1000 (or
fewer) of the original ca. 324, 000 fibers.

In Figure 8, we present the approximation error as a func-
tion of downsampling to different number of slabs and then
to different number of fibers. Clearly, due to the form of the
slab sampling probabilities, slabs between ca. 30 and ca. 60
tend to be reproduced much better than those toward the
tails of the spectrum. Slabs below ca. 20 and above ca. 70
tend to have a lower signal-to-noise ratio and are less im-
portant for the problem of approximate data reconstruction
(but not necessarily for other problems).

A close examination of images such as those presented
in Figure 7 reveals a subtle interplay between sampling-
induced error and denoising due to the low-dimensionality
of the sample. Note that by permitting our algorithm to
sample different numbers of slabs and fibers, we can, e.g.,
sample slabs to a level appropriate for structure identifica-
tion and sample more fibers for denoising purposes.

4.3 Classification of Hyperspectral Data
In medical applications, one is interested in the classifica-

tion of an entire data cube, i.e., a medical sample, as normal
or malignant. Since nuclei are the most discriminative struc-
tures for this task, as an intermediate step, one is interested
in classifying the pixels in a single data cube into different
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Figure 7: Typical reconstruction of the hyperspectral data for one spectral slice in a normal biopsy. (Slab
60, when ordered with respect to frequency as in Figure 6, is shown.) From left to right: original data,
reconstruction from 8 slabs and 1200 fibers, and reconstruction from 2 slabs and 1200 fibers.

Table 1: Confusion matrix of predictions of normal
and malignant nuclei (patches of size 64 by 64, with
averaged 10-fold cross-validated error). TN, TM
stand for True Normal and True Malignant, and PN,
PM stand for the corresponding predictions. Clas-
sification is based on using all 128 slabs, 16, 8, or 2
slabs, as indicated.

all slabs PN PM
TN 79% 21%
TM 26% 74%

16 slabs PN PM
TN 77% 23%
TM 30% 70%

8 slabs PN PM
TN 78% 22%
TM 29% 71%

2 slabs PN PM
TN 68% 32%
TM 33% 67%

tissue types, e.g., nuclei, cytoplasm, or lamina propria. For
details on the classification procedures, see [33, 34]. We sim-
ply note that for the normal versus malignant classification
task, we have access to a label (assumed correct) provided
by a pathologist [33, 34], while no such ground truth is avail-
able for the tissue classification.

In Figure 9, we present typical results for the tissue clas-
sification task in the exact data cube and in two downsam-
pled and reconstructed data cubes. The two examples pre-
sented involve sampling 16 and 8 slabs, respectively, and
as with the reconstruction problem, in both cases there is
little quality loss until the number of fibers samples is less
than ca. 1000. As before, a careful analysis reveals a com-
plex interplay between sampling-induced information loss
and sampling-induced denoising. If the nuclei identified by
this tissue classification are then used to classify data cubes
as normal or malignant, the results can be compared with
the true value. Results of the confusion matrix for this clas-
sification task are presented in Table 1 [33, 34]. High qual-
ity results are obtained using samples of 16 and 8 slabs, but
quality degrades if only 2 slabs are used. Similar results are
seen when we classify into normal, abnormal, and malignant.

5. APPLICATION TO RECOMMENDATION
SYSTEM ANALYSIS

In recommendation system analysis, one is typically in-
terested in making purchase recommendations to a user at

an electronic commerce web site. Collaborative methods (as
opposed to content-based or hybrid) involve recommending
to the user items that people with similar tastes or prefer-
ences liked in the past. Probably the most well-known exam-
ple of a collaborative filtering system is that of Amazon.com,
which is based on rules of the form “users who are inter-
ested in item X are also likely to be interested in item Y”
[32]. Many collaborative filtering algorithms represent a user
as an n dimensional vector, where n is the number of dis-
tinct products, and where the components of the vector are a
measure of the rating provided by that user for that product.
Thus, for a set of m users, the user-product ratings matrix
is an m × n matrix A, where Aij is the rating by user i for
product j (or is null if the rating is not provided). A recom-
mendation algorithm generates recommendations for a new
user based on a few user who are most similar to the user,
after querying the new user about his (or her) rating on a
small number of products. For details, see [35, 5, 1].

A matrix CUR decomposition has been used to obtain
competitive recommendation performance by judiciously sam-
pling O(m+n) entries of the user-product ratings matrix and
reconstructing missing entries [11]. In more detail, assuming
access to a matrix C consisting of the ratings of every user
for a small number of products and a matrix R consisting
of the ratings of a small number of users for every product,
then under assumptions CUR is a provably good approxi-
mation to the user-product matrix A [11]. Other theoretical
work includes [27, 2, 23], and other applications of linear
algebra have used the SVD for dimensionality reduction [4,
36, 15].

Although the ratings in the user-product matrix A are
often interpreted in terms of the utility of product j for
user i, utility in neoclassical economics is an ordinal and
not a cardinal concept. This is since utility functions are
constructs that encode preference information and since the
same preferences are described when the utility function is
subject to a wide class of monotonic transformations. This
observation motivates the definition of an m × n × n user-
product-product (2 + 1)-tensor A, where Aijk is +1 or −1
depending on whether product j or product k is preferred by
user i. Similar preference-based models have appeared [7,
14, 22, 21], and have been motivated by such observations as
that two users with very similar preferences over items may
have very different rating schemes. When faced with a new
user, this preference model depends on obtaining pairwise
preference information such as that the user bought product
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Figure 9: Segmentation into 3 tissue types in a normal biopsy: red for nuclei (the only class that we are
interested in for the next classification task), green for cytoplasm, and blue for lamina propria and other
regions. From left to right: classification on original data; on compressed data (16 slabs and 1200 fibers); and
on compressed data (8 slabs and 1200 fibers).

A when he could have bought product B, or that the user
clicked on link A when he could have clicked on link B.

5.1 Description of Data and the Model
Under this preference model for recommendation system

analysis, the tensor C consists of a small number of dictio-
nary or basis elements from a small number of users, where
each element corresponds to the full n×n pairwise preference
matrix for a single user. Similarly, the matrix R consists of a
dictionary or basis set of preference information from every
user about a small number of product-product pairs.

In the next subsection, we will see that the tensor-CUR
decomposition can be applied to recommendation system
data under this model to reconstruct missing entries in the
user-product-product preference tensor in order to make high-
quality recommendations. Since most recommendation sys-
tem databases do not provide data in this preference-based
format, the data set we will consider will be derived from
the ratings in the well-studied Jester data [15]. As an ini-
tial application, we consider the m = 14, 116 (out of ca.
73, 421) users who rated all of the n = 100 products (i.e.,
jokes). From this m × n user-product ratings matrix, we
define an m × n × n user-product-product preference ten-
sor by performing the following for each user: convert the
n dimensional rating vector into an n×n preference matrix
in which the ij entry is +1 or −1 depending on whether
or not the user prefers product i to product j. (Although
this results in ordered and fully-consistent preferences, this
is not required by our decomposition.) In this application,
in the absence of a better model, both slabs and fibers will
be chosen uniformly at random.

5.2 Recommendation Quality Results
For each slab (i.e., user) we did not randomly sample, we

use the tensor-CUR decomposition to reconstruct that slab
in an approximately-optimal least-squares sense in the ba-
sis provided by the sampled slabs, and we do so using only
a small number of product-product preference queries from
that slab. Then we will use this reconstruction to make rec-
ommendations by approximating the reconstructed matrix
of preferences, and picking the 10 products with the largest
row sums. We will make 10 recommendations, and we will
evaluate the quality of our recommendation with the Top-
N procedure [36], i.e., by the number of products out of the
exact top 10 that we correctly recommend.
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Figure 10: Average number of successful recommen-
dations out of the top 10 for a basis consisting of a
varaible number of users but using complete pair-
wise product-product preference information.

In order to determine an upper bound on the quality of
recommendations based on using a small number of basis
slabs, consider Figure 10, which shows the average number
of recommendations out of the top 10 that can be captured
using a small number of basis slabs. In this figure, we use
full fiber information, and thus we are considering the exact
least-squares fit of a new slab on the space spanned by the
basis slabs. For example, using 128 basis slabs, we can hope
to predict up to 4.5, 6, or 8 of the top 10 items by sampling
64, 128, or 256 fibers, respectively. As a lower bound on
quality, we expect that we will make ca. 1 prediction cor-
rectly since we are making 10 predictions and there are 100
products.

In Figure 11, we show that by using a basis of preference
information from 128 users and performing a small num-
ber of product-product preference queries on a new user, we
can make a large number of high-quality recommendations.
Similar results are seen with 64 and 256 basis slabs. Since
we are sampling a small number of fibers in this case, we are
performing an approximate least-squares fit using just the
information about a new user contained in a small number
of fibers. The number of top-10 recommendations is com-
petitive with the best possible using the small basis and is
well-above the random level. Note the nonmonotonicity near
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dations out of the top 10 for a basis consisting of
128 users versus the number of pairwise product-
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Figure 12: Distribution of number of users making a
given number of successful top 10 recommendations
for a basis consisting of 128 users.

ca. 64 queries; this may be a fitting issue and is the subject
of further exploration. Finally, in Figure 12, we present the
distribution of correct predictions for the 14, 116 users by
using 128 slabs and a variable number of fiber queries.

In evaluating performance, we distinguish between pre-
diction and reconstruction. In the former, we want to know
how much user i will like product j (in a ratings model)
or whether user i will prefer product j or product k (in a
preference model). In the latter, which is of interest to us,
we want to give a list of, e.g., the top 10 products for user
i. We use tensor reconstruction as an intermediate step to
making high-quality recommendations.

6. CONCLUSION
We conclude with several related extensions of the present

work. First, it would be worth examining how these meth-
ods can be coupled with more traditional methods of image
analysis and recommendation system analysis. This could
be performed either by choosing slabs and fibers and then
analyzing each slab or fiber with more traditional methods,
or by using structural insights from more traditional meth-
ods to construct the sample of slabs and fibers. Second,
it would be worth determining whether the sample of slabs

and/or fibers could be chosen to preserve some interesting
multilinear structure in the data tensors that is damaged by
the sampling techniques we have used. Third, it would be
worth determining the extent to which it would be possible
to combine fibers from several data cubes into a “dictio-
nary” that could be used, along with a few slabs in a new
data cube, to describe the entire new data cube.
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