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Abstract

The statistical leverage scores of a matrix A are the squared row-norms of the matrix containing

its (top) left singular vectors and the coherence is the largest leverage score. These quantities are

of interest in recently-popular problems such as matrix completion and Nyström-based low-rank

matrix approximation as well as in large-scale statistical data analysis applications more gener-

ally; moreover, they are of interest since they define the key structural nonuniformity that must

be dealt with in developing fast randomized matrix algorithms. Our main result is a randomized

algorithm that takes as input an arbitrary n× d matrix A, with n≫ d, and that returns as output

relative-error approximations to all n of the statistical leverage scores. The proposed algorithm

runs (under assumptions on the precise values of n and d) in O(nd logn) time, as opposed to the

O(nd2) time required by the naı̈ve algorithm that involves computing an orthogonal basis for the

range of A. Our analysis may be viewed in terms of computing a relative-error approximation to

an underconstrained least-squares approximation problem, or, relatedly, it may be viewed as an

application of Johnson-Lindenstrauss type ideas. Several practically-important extensions of our

basic result are also described, including the approximation of so-called cross-leverage scores, the

extension of these ideas to matrices with n≈ d, and the extension to streaming environments.

Keywords: matrix coherence, statistical leverage, randomized algorithm

1. Introduction

The concept of statistical leverage measures the extent to which the singular vectors of a matrix are

correlated with the standard basis and as such it has found usefulness recently in large-scale data

analysis and in the analysis of randomized matrix algorithms (Velleman and Welsch, 1981; Mahoney

and Drineas, 2009; Drineas et al., 2008). A related notion is that of matrix coherence, which has

been of interest in recently popular problems such as matrix completion and Nyström-based low-

rank matrix approximation (Candes and Recht, 2008; Talwalkar and Rostamizadeh, 2010). Defined
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more precisely below, the statistical leverage scores may be computed as the squared Euclidean

norms of the rows of the matrix containing the top left singular vectors and the coherence of the

matrix is the largest statistical leverage score. Statistical leverage scores have a long history in

statistical data analysis, where they have been used for outlier detection in regression diagnostics

(Hoaglin and Welsch, 1978; Chatterjee and Hadi, 1986). Statistical leverage scores have also proved

crucial recently in the development of improved worst-case randomized matrix algorithms that are

also amenable to high-quality numerical implementation and that are useful to domain scientists

(Drineas et al., 2008; Mahoney and Drineas, 2009; Boutsidis et al., 2009; Drineas et al., 2006b;

Sarlós, 2006; Drineas et al., 2010b); see Mahoney (2011) for a detailed discussion. The naı̈ve and

best previously existing algorithm to compute these scores would compute an orthogonal basis for

the dominant part of the spectrum of A, for example, the basis provided by the Singular Value

Decomposition (SVD) or a basis provided by a QR decomposition (Golub and Loan, 1996), and

then use that basis to compute diagonal elements of the projection matrix onto the span of that

basis.

We present a randomized algorithm to compute relative-error approximations to every statistical

leverage score in time qualitatively faster than the time required to compute an orthogonal basis. For

the case of an arbitrary n× d matrix A, with n≫ d, our main algorithm runs (under assumptions

on the precise values of n and d, see Theorem 2 for an exact statement) in O(nd logn/ε2) time, as

opposed to the Θ(nd2) time required by the naı̈ve algorithm. As a corollary, our algorithm provides

a relative-error approximation to the coherence of an arbitrary matrix in the same time. In addition,

several practically-important extensions of the basic idea underlying our main algorithm are also

described in this paper.

1.1 Overview and Definitions

We start with the following definition of the statistical leverage scores of a matrix.

Definition 1 Given an arbitrary n×d matrix A, with n > d, let U denote the n×d matrix consisting

of the d left singular vectors of A, and let U(i) denote the i-th row of the matrix U as a row vector.

Then, the statistical leverage scores of the rows of A are given by

ℓi =
∥

∥U(i)

∥

∥

2

2
,

for i ∈ {1, . . . ,n}; the coherence γ of the rows of A is

γ = max
i∈{1,...,n}

ℓi,

that is, it is the largest statistical leverage score of A; and the (i, j)-cross-leverage scores ci j are

ci j =
〈

U(i),U( j)

〉

,

that is, they are the dot products between the ith row and the jth row of U.

Although we have defined these quantities in terms of a particular basis, they clearly do not depend

on that particular basis, but only on the space spanned by that basis. To see this, let PA denote the

projection matrix onto the span of the columns of A. Then,

ℓi =
∥

∥U(i)

∥

∥

2

2
=
(

UUT
)

ii
= (PA)ii . (1)
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That is, the statistical leverage scores of a matrix A are equal to the diagonal elements of the projec-

tion matrix onto the span of its columns.1 Similarly, the (i, j)-cross-leverage scores are equal to the

off-diagonal elements of this projection matrix, that is,

ci j = (PA)i j =
〈

U(i),U( j)

〉

. (2)

Clearly, O(nd2) time suffices to compute all the statistical leverage scores exactly: simply perform

the SVD or compute a QR decomposition of A in order to obtain any orthogonal basis for the range

of A and then compute the Euclidean norm of the rows of the resulting matrix. Thus, in this paper,

we are interested in algorithms that run in o(nd2) time.

Several additional comments are worth making regarding this definition. First, since ∑n
i=1 ℓi =

‖U‖2
F = d, we can define a probability distribution over the rows of A as pi = ℓi/d. As discussed

below, these probabilities have played an important role in recent work on randomized matrix al-

gorithms and an important algorithmic question is the degree to which they are uniform or nonuni-

form.2 Second, one could also define leverage scores for the columns of a “tall” matrix A, but

clearly those are all equal to one unless n < d or A is rank-deficient. Third, and more generally,

given a rank parameter k, one can define the statistical leverage scores relative to the best rank-k

approximation to A to be the n diagonal elements of the projection matrix onto the span of Ak, the

best rank-k approximation to A.

1.2 Our Main Result

Our main result is a randomized algorithm for computing relative-error approximations to every

statistical leverage score, as well as an additive-error approximation to all of the large cross-leverage

scores, of an arbitrary n× d matrix, with n≫ d, in time qualitatively faster than the time required

to compute an orthogonal basis for the range of that matrix. Our main algorithm for computing

approximations to the statistical leverage scores (see Algorithm 1 in Section 3) will amount to

constructing a “randomized sketch” of the input matrix and then computing the Euclidean norms

of the rows of that sketch. This sketch can also be used to compute approximations to the large

cross-leverage scores (see Algorithm 2 of Section 3).

The following theorem provides our main quality-of-approximation and running time result for

Algorithm 1.

Theorem 2 Let A be a full-rank n× d matrix, with n≫ d; let ε ∈ (0,1/2] be an error parameter;

and recall the definition of the statistical leverage scores ℓi from Definition 1. Then, there exists a

randomized algorithm (Algorithm 1 of Section 3 below) that returns values ℓ̃i, for all i ∈ {1, . . . ,n},
such that with probability at least 0.8,

∣

∣ℓi− ℓ̃i

∣

∣≤ εℓi

1. In this paper, for simplicity of exposition, we consider the case that the matrix A has rank equal to d, that is, has full

column rank. Theoretically, the extension to rank-deficient matrices A is straightforward—simply modify Definition 1

and thus Equations (1) and (2) to let U be any orthogonal matrix (clearly, with fewer than d columns) spanning the

column space of A. From a numerical perspective, things are substantially more subtle, and we leave this for future

work that considers numerical implementations of our algorithms.

2. Observe that if U consists of d columns from the identity, then the leverage scores are extremely nonuniform: d of

them are equal to one and the remainder are equal to zero. On the other hand, if U consists of d columns from a

normalized Hadamard transform (see Section 2.3 for a definition), then the leverage scores are very uniform: all n of

them are equal to d/n.
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holds for all i ∈ {1, . . . ,n}. Assuming d ≤ n≤ ed , the running time of the algorithm is

O
(

nd ln
(

dε−1
)

+ndε−2 lnn+d3ε−2 (lnn)
(

ln
(

dε−1
)))

.

Algorithm 1 provides a relative-error approximation to all of the statistical leverage scores ℓi of A

and, assuming d lnd = o
(

n
lnn

)

, lnn = o(d), and treating ε as a constant, its running time is o(nd2),
as desired. As a corollary, the largest leverage score (and thus the coherence) is approximated to

relative-error in o(nd2) time.

The following theorem provides our main quality-of-approximation and running time result for

Algorithm 2.

Theorem 3 Let A be a full-rank n× d matrix, with n≫ d; let ε ∈ (0,1/2] be an error parameter;

let κ be a parameter; and recall the definition of the cross-leverage scores ci j from Definition 1.

Then, there exists a randomized algorithm (Algorithm 2 of Section 3 below) that returns the pairs

{(i, j)} together with estimates {c̃i j} such that, with probability at least 0.8,

i. If c2
i j ≥

d

κ
+12εℓiℓ j, then (i, j) is returned; if (i, j) is returned, then c2

i j ≥
d

κ
−30εℓiℓ j.

ii. For all pairs (i, j) that are returned, c̃2
i j−30εℓiℓ j ≤ c2

i j ≤ c̃2
i j +12εℓiℓ j.

This algorithm runs in O(ε−2n lnn+ ε−3κd ln2 n) time.

Note that by setting κ = n lnn, we can compute all the “large” cross-leverage scores, that is, those

satisfying c2
i j ≥ d

n lnn
, to within additive-error in O

(

nd ln3 n
)

time (treating ε as a constant). If ln3 n =

o(d) the overall running time is o(nd2), as desired.

1.3 Significance and Related Work

Our results are important for their applications to fast randomized matrix algorithms, as well as their

applications in numerical linear algebra and large-scale data analysis more generally.

Significance in theoretical computer science. The statistical leverage scores define the key struc-

tural nonuniformity that must be dealt with (i.e., either rapidly approximated or rapidly uniformized

at the preprocessing step) in developing fast randomized algorithms for matrix problems such as

least-squares regression (Sarlós, 2006; Drineas et al., 2010b) and low-rank matrix approximation

(Papadimitriou et al., 2000; Sarlós, 2006; Drineas et al., 2008; Mahoney and Drineas, 2009; Bout-

sidis et al., 2009). Roughly, the best random sampling algorithms use these scores (or the gener-

alized leverage scores relative to the best rank-k approximation to A) as an importance sampling

distribution to sample with respect to. On the other hand, the best random projection algorithms

rotate to a basis where these scores are approximately uniform and thus in which uniform sampling

is appropriate. See Mahoney (2011) for a detailed discussion.

As an example, the CUR decomposition of Drineas et al. (2008) and Mahoney and Drineas

(2009) essentially computes pi = ℓi/k, for all i ∈ {1, . . . ,n} and for a rank parameter k, and it

uses these as an importance sampling distribution. The computational bottleneck for these and

related random sampling algorithms is the computation of the importance sampling probabilities.

On the other hand, the computational bottleneck for random projection algorithms is the application

of the random projection, which is sped up by using variants of the Fast Johnson-Lindenstrauss

Transform (Ailon and Chazelle, 2006, 2009). By our main result, the leverage scores (and thus
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these probabilities) can be approximated in time that depends on an application of a Fast Johnson-

Lindenstrauss Transform. In particular, the random sampling algorithms of Drineas et al. (2006b),

Drineas et al. (2008) and Mahoney and Drineas (2009) for least-squares approximation and low-

rank matrix approximation now run in time that is essentially the same as the best corresponding

random projection algorithm for those problems (Sarlós, 2006).

Applications to numerical linear algebra. Recently, high-quality numerical implementations of

variants of the basic randomized matrix algorithms have proven superior to traditional determinis-

tic algorithms (Rokhlin and Tygert, 2008; Rokhlin et al., 2009; Avron et al., 2010). An important

question raised by our main results is how these will compare with an implementation of our main

algorithm. More generally, density functional theory (Bekas et al., 2007) and uncertainty quantifica-

tion (Bekas et al., 2009) are two scientific computing areas where computing the diagonal elements

of functions (such as a projection or inverse) of very large input matrices is common. For example,

in the former case, “heuristic” methods based on using Chebychev polynomials have been used in

numerical linear algebra to compute the diagonal elements of the projector (Bekas et al., 2007). Our

main algorithm should have implications in both of these areas.

Applications in large-scale data analysis. The statistical leverage scores and the scores rela-

tive to the best rank-k approximation to A are equal to the diagonal elements of the so-called “hat

matrix” (Hoaglin and Welsch, 1978; Chatterjee and Hadi, 1988). As such, they have a natural statis-

tical interpretation in terms of the “leverage” or “influence” associated with each of the data points

(Hoaglin and Welsch, 1978; Chatterjee and Hadi, 1986, 1988). In the context of regression prob-

lems, the ith leverage score quantifies the leverage or influence of the ith constraint/row of A on the

solution of the overconstrained least squares optimization problem minx ‖Ax−b‖2 and the (i, j)-th
cross leverage score quantifies how much influence or leverage the ith data point has on the jth least-

squares fit (see Hoaglin and Welsch, 1978; Chatterjee and Hadi, 1986, 1988, for details). When

applied to low-rank matrix approximation problems, the leverage score ℓ j quantifies the amount of

leverage or influence exerted by the jth column of A on its optimal low-rank approximation. His-

torically, these quantities have been widely-used for outlier identification in diagnostic regression

analysis (Velleman and Welsch, 1981; Chatterjee et al., 2000).

More recently, these scores (usually the largest scores) often have an interpretation in terms of

the data and processes generating the data that can be exploited. For example, depending on the

setting, they can have an interpretation in terms of high-degree nodes in data graphs, very small

clusters in noisy data, coherence of information, articulation points between clusters, the value of

a customer in a network, space localization in sensor networks, etc. (Bonacich, 1987; Richardson

and Domingos, 2002; Newman, 2005; Jonckheere et al., 2007; Mahoney, 2011). In genetics, dense

matrices of size thousands by hundreds of thousands (a size scale at which even traditional deter-

ministic QR algorithms fail to run) constructed from DNA Single Nucleotide Polymorphisms (SNP)

data are increasingly common, and the statistical leverage scores can correlate strongly with other

metrics of genetic interest (Paschou et al., 2007; Mahoney and Drineas, 2009; Drineas et al., 2010a;

Paschou et al., 2010). Our main result will permit the computation of these scores and related quan-

tities for significantly larger SNP data sets than has been possible previously (Paschou et al., 2007;

Drineas et al., 2010a; Paschou et al., 2010; Georgiev and Mukherjee, 2011).

Remark. Lest there be any confusion, we should emphasize our main contributions. First,

note that statistical leverage and matrix coherence are important concepts in statistics and machine

learning. Second, recall that several random sampling algorithms for ubiquitous matrix problems

such as least-squares approximation and low-rank matrix approximation use leverage scores in a
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crucial manner; but until now these algorithms were Ω(TSV D), where TSV D is the time required to

compute a QR decomposition or a partial SVD of the input matrix. Third, note that, in some cases,

o(TSV D) algorithms exist for these problems based on fast random projections. But recall that the

existence of those projection algorithms in no way implies that it is easy or obvious how to compute

the statistical leverage scores efficiently. Fourth, one implication of our main result is that those

random sampling algorithms can now be performed just as efficiently as those random projection

algorithms; thus, the solution for those matrix problems can now be obtained while preserving the

identity of the rows. That is, these problems can now be solved just as efficiently by using actual

rows, rather than the arbitrary linear combinations of rows that are returned by random projections.

Fifth, we provide a generalization to “fat” matrices and to obtaining the cross-leverage scores. Sixth,

we develop algorithms that can compute leverage scores and related statistics even in streaming

environments.

1.4 Empirical Discussion of Our Algorithms

Although the main contribution of our paper is to provide a rigorous theoretical understanding of

fast leverage score approximation, our paper does analyze the theoretical performance of what is

meant to be a practical algorithm. Thus, one might wonder about the empirical performance of

our algorithms—for example, whether hidden constants render the algorithms useless for data of

realistic size. Not surprisingly, this depends heavily on the quality of the numerical implementation,

whether one is interested in “tall” or more general matrices, etc. We will consider empirical and

numerical aspects of these algorithms in forthcoming papers, for example, Gittens and Mahoney

(2012). We will, however, provide here a brief summary of several numerical issues for the reader

interested in these issues.

Empirically, the running time bottleneck for our main algorithm (Algorithm 1 of Section 3)

applied to “tall” matrices is the application of the random projection Π1. Thus, empirically the

running time is similar to the running time of random projection based methods for computing

approximations to the least-squares problem, which is also dominated by the application of the

random projection. The state of the art here is the Blendenpik algorithm of Avron et al. (2010)

and the LSRN algorithm of Meng et al. (2011). In their Blendenpik paper, Avron, Maymounkov,

and Toledo showed that their high-quality numerical implementation of a Hadamard-based random

projection (and associated least-squares computation) “beats LAPACK’s3 direct dense least-squares

solver by a large margin on essentially any dense tall matrix,” and they concluded that their empir-

ical results “suggest that random projection algorithms should be incorporated into future versions

of LAPACK” (Avron et al., 2010). The LSRN algorithm of Meng, Saunders, and Mahoney im-

proves Blendenpik in several respects, for example, providing better handling of sparsity and rank

deficiency, but most notably the random projection underlying LSRN is particularly appropriate for

solving large problems on clusters with high communication cost, for example, it has been shown

to scale well on Amazon Elastic Cloud Compute clusters. Thus, our main algorithm should extend

easily to these environments with the use of the random projection underlying LSRN. Moreover, for

both Blendenpik and LSRN (when implemented with a Hadamard-based random projection), the

hidden constants in the Hadamard-based random projection are so small that the random projection

algorithm (and thus the empirical running time of our main algorithm for approximating leverage

3. LAPACK (short for Linear Algebra PACKage) is a high-quality and widely-used software library of numerical routines

for solving a wide range of numerical linear algebra problems.
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scores) beats the traditional O(nd2) time algorithm for dense matrices as small as thousands of rows

by hundreds of columns.

1.5 Outline

In Section 2, we will provide a brief review of relevant notation and concepts from linear algebra.

Then, in Sections 3 and 4, we will present our main results: Section 3 will contain our main al-

gorithm and Section 4 will contain the proof of our main theorem. Section 5 will then describe

extensions of our main result to general “fat” matrices, that is, those with n ≈ d. Section 6 will

conclude by describing the relationship of our main result with another related estimator for the sta-

tistical leverage scores, an application of our main algorithm to the under-constrained least-squares

approximation problem, and extensions of our main algorithm to streaming environments.

2. Preliminaries on Linear Algebra and Fast Random Projections

We will start with a review of basic linear algebra and notation, and then we will describe the Fast

Johnson-Lindenstrauss Transform and the related Subsampled Randomized Hadamard Transform.

2.1 Basic Linear Algebra and Notation

Let [n] denote the set of integers {1,2, . . . ,n}. For any matrix A ∈ R
n×d , let A(i), i ∈ [n], denote

the i-th row of A as a row vector, and let A( j), j ∈ [d] denote the j-th column of A as a column

vector. Let ‖A‖2
F = ∑n

i=1 ∑d
j=1 A2

i j denote the square of the Frobenius norm of A, and let ‖A‖2 =
sup ‖x‖2=1 ‖Ax‖2 denote the spectral norm of A. Relatedly, for any vector x∈Rn, its Euclidean norm

(or ℓ2-norm) is the square root of the sum of the squares of its elements. The dot product between

two vectors x,y∈Rn will be denoted 〈x,y〉, or alternatively as xT y. Finally, let ei ∈Rn, for all i∈ [n],
denote the standard basis vectors for Rn and let In denote the n×n identity matrix.

Let the rank of A be ρ≤min{n,d}, in which case the “compact” or “thin” SVD of A is denoted

by A = UΣV T , where U ∈ R
n×ρ, Σ ∈ R

ρ×ρ, and V ∈ R
d×ρ. (For a general matrix X , we will

write X = UX ΣXV T
X .) Let σi(A), i ∈ [ρ] denote the i-th singular value of A, and let σmax(A) and

σmin(A) denote the maximum and minimum singular values of A, respectively. The Moore-Penrose

pseudoinverse of A is the d× n matrix defined by A† = V Σ−1UT (Nashed, 1976). Finally, for any

orthogonal matrix U ∈R
n×ℓ, let U⊥ ∈R

n×(n−ℓ) denote an orthogonal matrix whose columns are an

orthonormal basis spanning the subspace of Rn that is orthogonal to the subspace spanned by the

columns of U (i.e., the range of U). It is always possible to extend an orthogonal matrix U to a full

orthonormal basis of Rn as [U U⊥].

The SVD is important for a number of reasons (Golub and Loan, 1996). For example, the

projection of the columns of A onto the k left singular vectors associated with the top k singular

values gives the best rank-k approximation to A in the spectral and Frobenius norms. Relatedly,

the solution to the least-squares (LS) approximation problem is provided by the SVD: given an

n× d matrix A and an n-vector b, the LS problem is to compute the minimum ℓ2-norm vector x

such that ‖Ax−b‖2 is minimized over all vectors x ∈ R
d . This optimal vector is given by xopt =

A†b. We call a LS problem overconstrained (or overdetermined) if n > d and underconstrained (or

underdetermined) if n < d.
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2.2 The Fast Johnson-Lindenstrauss Transform (FJLT)

Given ε> 0 and a set of points x1, . . . ,xn with xi ∈Rd , a ε-Johnson-Lindenstrauss Transform (ε-JLT),

denoted Π ∈ R
r×d , is a projection of the points into R

r such that

(1− ε)‖xi‖2
2 ≤ ‖Πxi‖2

2 ≤ (1+ ε)‖xi‖2
2.

To construct an ε-JLT with high probability, simply choose every entry of Π independently, equal

to ±
√

3/r with probability 1/6 each and zero otherwise (with probability 2/3) (Achlioptas, 2003).

Let ΠJLT be a matrix drawn from such a distribution over r× d matrices.4 Then, the following

lemma holds.

Lemma 4 (Theorem 1.1 of Achlioptas (2003)) Let x1, . . . ,xn be an arbitrary (but fixed) set of points,

where xi ∈ R
d and let 0 < ε≤ 1/2 be an accuracy parameter. If

r ≥ 1

ε2

(

12lnn+6ln
1

δ

)

then, with probability at least 1−δ, ΠJLT ∈ R
r×d is an ε-JLT .

For our main results, we will also need a stronger requirement than the simple ε-JLT and so we will

use a version of the Fast Johnson-Lindenstrauss Transform (FJLT), which was originally introduced

in Ailon and Chazelle (2006) and Ailon and Chazelle (2009). Consider an orthogonal matrix U ∈
R

n×d , viewed as d vectors in R
n. A FJLT projects the vectors from R

n to R
r, while preserving the

orthogonality of U ; moreover, it does so very quickly. Specifically, given ε > 0, Π ∈ R
r×n is an

ε-FJLT for U if

•
∥

∥Id−UT ΠT ΠU
∥

∥

2
≤ ε, and

• given any X ∈ R
n×d , the matrix product ΠX can be computed in O(nd lnr) time.

The next lemma follows from the definition of an ε-FJLT, and its proof can be found in Drineas

et al. (2006b) and Drineas et al. (2010b).

Lemma 5 Let A be any matrix in R
n×d with n≫ d and rank(A) = d. Let the SVD of A be A =

UΣV T , let Π be an ε-FJLT for U (with 0 < ε ≤ 1/2) and let Ψ = ΠU = UΨΣΨV T
Ψ . Then, all the

following hold:

rank(ΠA) = rank(ΠU) = rank(U) = rank(A) = d,
∥

∥I−Σ−2
Ψ

∥

∥

2
≤ ε/(1− ε), and (3)

(ΠA)† = V Σ−1(ΠU)†. (4)

4. When no confusion can arise, we will use ΠJLT to refer to this distribution over matrices as well as to a specific

matrix drawn from this distribution.
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2.3 The Subsampled Randomized Hadamard Transform (SRHT)

One can use a Randomized Hadamard Transform (RHT) to construct, with high probability, an

ε-FJLT. Our main algorithm will use this efficient construction in a crucial way.5 Recall that the

(unnormalized) n×n matrix of the Hadamard transform Ĥn is defined recursively by

Ĥ2n =

[

Ĥn Ĥn

Ĥn −Ĥn

]

,

with Ĥ1 = 1. The n×n normalized matrix of the Hadamard transform is equal to

Hn = Ĥn/
√

n.

From now on, for simplicity and without loss of generality, we assume that n is a power of 2 and

we will suppress n and just write H. (Variants of this basic construction that relax this assumption

and that are more appropriate for numerical implementation have been described and evaluated

in Avron et al. (2010).) Let D ∈ R
n×n be a random diagonal matrix with independent diagonal

entries Dii = +1 with probability 1/2 and Dii = −1 with probability 1/2. The product HD is a

RHT and it has three useful properties. First, when applied to a vector, it “spreads out” its energy.

Second, computing the product HDx for any vector x ∈ R
n takes O(n log2 n) time. Third, if we

only need to access r elements in the transformed vector, then those r elements can be computed

in O(n log2 r) time (Ailon and Liberty, 2008). The Subsampled Randomized Hadamard Transform

(SRHT) randomly samples (according to the uniform distribution) a set of r rows of a RHT.

Using the sampling matrix formalism described previously (Drineas et al., 2006a,b, 2008, 2010b),

we will represent the operation of randomly sampling r rows of an n×d matrix A using an r×n lin-

ear sampling operator ST . Let the matrix ΠFJLT = ST HD be generated using the SRHT.6 The most

important property about the distribution ΠFJLT is that if r is large enough, then, with high prob-

ability, ΠFJLT generates an ε-FJLT. We summarize this discussion in the following lemma (which

is essentially a combination of Lemmas 3 and 4 from Drineas et al. (2010b), restated to fit our

notation).

Lemma 6 Let ΠFJLT ∈ R
r×n be generated using the SRHT as described above and let U ∈ R

n×d

(n≫ d) be an (arbitrary but fixed) orthogonal matrix. If

r ≥ 142d ln(40nd)

ε2
ln

(

302d ln(40nd)

ε2

)

,

then, with probability at least 0.9, ΠFJLT is an ε-FJLT for U.

3. Our Main Algorithmic Results

In this section, we will describe our main results for computing relative-error approximations to

every statistical leverage score (see Algorithm 1) as well as additive-error approximations to all of

the large cross-leverage scores (see Algorithm 2) of an arbitrary matrix A ∈Rn×d , with n≫ d. Both

algorithms make use of a “randomized sketch” of A of the form A(Π1A)†Π2, where Π1 is an ε-FJLT

and Π2 is an ε-JLT. We start with a high-level description of the basic ideas.

5. Note that the RHT has also been crucial in the development of o(nd2) randomized algorithms for the general over-

constrained LS problem (Drineas et al., 2010b) and its variants have been used to provide high-quality numerical

implementations of such randomized algorithms (Rokhlin and Tygert, 2008; Avron et al., 2010).

6. Again, when no confusion can arise, we will use ΠFJLT to denote a specific SRHT or the distribution on matrices

implied by the randomized process for constructing an SRHT.
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3.1 Outline of Our Basic Approach

Recall that our first goal is to approximate, for all i ∈ [n], the quantities

ℓi =
∥

∥U(i)

∥

∥

2

2
=
∥

∥eT
i U
∥

∥

2

2
, (5)

where ei is a standard basis vector. The hard part of computing the scores ℓi according to Equa-

tion (5) is computing an orthogonal matrix U spanning the range of A, which takes O(nd2) time.

Since UUT = AA†, it follows that

ℓi =
∥

∥eT
i UUT

∥

∥

2

2
=
∥

∥eT
i AA†

∥

∥

2

2
=
∥

∥(AA†)(i)
∥

∥

2

2
, (6)

where the first equality follows from the orthogonality of (the columns of) U . The hard part of

computing the scores ℓi according to Equation (6) is two-fold: first, computing the pseudoinverse;

and second, performing the matrix-matrix multiplication of A and A†. Both of these procedures

take O(nd2) time. As we will see, we can get around both of these bottlenecks by the judicious

application of random projections to Equation (6).

To get around the bottleneck of O(nd2) time due to computing A† in Equation (6), we will com-

pute the pseudoinverse of a “smaller” matrix that approximates A. A necessary condition for such

a smaller matrix is that it preserves rank. So, naı̈ve ideas such as uniformly sampling r1≪ n rows

from A and computing the pseudoinverse of this sampled matrix will not work well for an arbitrary

A. For example, this idea will fail (with high probability) to return a meaningful approximation

for matrices consisting of n− 1 identical rows and a single row with a nonzero component in the

direction perpendicular to that the identical rows; finding that “outlying” row is crucial to obtaining

a relative-error approximation. This is where the SRHT enters, since it preserves important struc-

tures of A, in particular its rank, by first rotating A to a random basis and then uniformly sampling

rows from the rotated matrix (see Drineas et al., 2010b for more details). More formally, recall that

the SVD of A is UΣV T and let Π1 ∈ R
r1×n be an ε-FJLT for U (using, for example, the SRHT of

Lemma 6 with the appropriate choice for r1). Then, one could approximate the ℓi’s of Equation (6)

by

ℓ̂i =
∥

∥

∥
eT

i A(Π1A)†
∥

∥

∥

2

2
, (7)

where we approximated the n×d matrix A by the r1×d matrix Π1A. Computing A(Π1A)†
in this

way takes O(ndr1) time, which is not efficient because r1 > d (from Lemma 6).

To get around this bottleneck, recall that we only need the Euclidean norms of the rows of the

matrix A(Π1A)† ∈Rn×r1 . Thus, we can further reduce the dimensionality of this matrix by using an

ε-JLT to reduce the dimension r1 = Ω(d) to r2 = O(lnn). Specifically, let ΠT
2 ∈ R

r2×r1 be an ε-JLT

for the rows of A(Π1A)†
(viewed as n vectors in R

r1) and consider the matrix Ω = A(Π1A)† Π2.

This n× r2 matrix Ω may be viewed as our “randomized sketch” of the rows of AA†. Then, we can

compute and return

ℓ̃i =
∥

∥

∥
eT

i A(Π1A)† Π2

∥

∥

∥

2

2
,

for each i∈ [n], which is essentially what Algorithm 1 does. Not surprisingly, the sketch A(Π1A)† Π2

can be used in other ways: for example, by considering the dot product between two different rows

of this randomized sketching matrix (and some additional manipulations) Algorithm 2 approximates

the large cross-leverage scores of A.
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Input: A ∈ R
n×d (with SVD A =UΣV T ), error parameter ε ∈ (0,1/2].

Output: ℓ̃i, i ∈ [n].

1. Let Π1 ∈ R
r1×n be an ε-FJLT for U , using Lemma 6 with

r1 = Ω

(

d lnn

ε2
ln

(

d lnn

ε2

))

.

2. Compute Π1A ∈ R
r1×d and its SVD, Π1A =UΠ1AΣΠ1AV T

Π1A. Let

R−1 =VΠ1AΣ−1
Π1A ∈ R

d×d .

(Alternatively, R could be computed by a QR factorization of Π1A.)

3. View the normalized rows of AR−1 ∈ R
n×d as n vectors in R

d , and construct

Π2 ∈ R
d×r2 to be an ε-JLT for n2 vectors (the aforementioned n vectors and their

n2−n pairwise sums), using Lemma 4 with

r2 = O
(

ε−2 lnn
)

.

4. Construct the matrix product Ω = AR−1Π2.

5. For all i ∈ [n] compute and return ℓ̃i =
∥

∥Ω(i)

∥

∥

2

2
.

Algorithm 1: Approximating the (diagonal) statistical leverage scores ℓi.

3.2 Approximating All the Statistical Leverage Scores

Our first main result is Algorithm 1, which takes as input an n×d matrix A and an error parameter

ε ∈ (0,1/2], and returns as output numbers ℓ̃i, i ∈ [n]. Although the basic idea to approximate
∥

∥(AA†)(i)
∥

∥

2
was described in the previous section, we can improve the efficiency of our approach

by avoiding the full sketch of the pseudoinverse. In particular, let Â = Π1A and let its SVD be

Â = UÂΣÂV T
Â

. Let R−1 = VÂΣ−1

Â
and note that R−1 ∈ R

d×d is an orthogonalizer for Â since UÂ =

ÂR−1 is an orthogonal matrix.7 In addition, note that AR−1 is approximately orthogonal. Thus, we

can compute AR−1 and use it as an approximate orthogonal basis for A and then compute ℓ̂i as the

squared row-norms of AR−1. The next lemma states that this is exactly what our main algorithm

does; even more, we could get the same estimates by using any “orthogonalizer” of Π1A.

Lemma 7 Let R−1 be such that Q = Π1AR−1 is an orthogonal matrix with rank(Q) = rank(Π1A).

Then,
∥

∥(AR−1)(i)
∥

∥

2

2
= ℓ̂i.

7. This preprocessing is reminiscent of how Rokhlin and Tygert (2008) and Avron et al. (2010) preprocessed the input

to provide numerical implementations of the fast relative-error algorithm (Drineas et al., 2010b) for approximate

LS approximation. From this perspective, Algorithm 1 can be viewed as specifying a particular basis Q, that is, as

choosing Q to be the left singular vectors of Π1A.
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Proof Since Â=Π1A has rank d (by Lemma 5) and R−1 preserves this rank, R−1 is a d×d invertible

matrix. Using Â = QR and properties of the pseudoinverse, we get
(

Â
)†

= R−1QT . Thus,

ℓ̂i =
∥

∥

∥
(A(Π1A)†)(i)

∥

∥

∥

2

2
=
∥

∥

∥

(

AR−1QT
)

(i)

∥

∥

∥

2

2
=
∥

∥

∥

(

AR−1
)

(i)
QT
∥

∥

∥

2

2
=
∥

∥

∥

(

AR−1
)

(i)

∥

∥

∥

2

2
.

This lemma says that the ℓ̂i of Equation (7) can be computed with any QR decomposition, rather

than with the SVD; but note that one would still have to post-multiply by Π2, as in Algorithm 1, in

order to compute “quickly” the approximations of the leverage scores.

3.3 Approximating the Large Cross-leverage Scores

By combining Lemmas 9 and 10 (in Section 4.2 below) with the triangle inequality, one immediately

obtains the following lemma.

Lemma 8 Let Ω be either the sketching matrix constructed by Algorithm 1, that is, Ω = AR−1Π2,

or Ω = A(Π1A)† Π2 as described in Section 3.1. Then, the pairwise dot-products of the rows of Ω

are additive-error approximations to the leverage scores and cross-leverage scores:

∣

∣〈U(i),U( j)〉−〈Ω(i),Ω( j)〉
∣

∣≤ 3ε

1− ε

∥

∥U(i)

∥

∥

2

∥

∥U( j)

∥

∥

2
.

That is, if one were interested in obtaining an approximation to all the cross-leverage scores to

within additive error (and thus the diagonal statistical leverage scores to relative-error), then the

algorithm which first computes Ω followed by all the pairwise inner products achieves this in time

T (Ω)+O
(

n2r2

)

, where T (Ω) is the time to compute Ω from Section 3.2 and r2 = O(ε−2 lnn).8 The

challenge is to avoid the n2 computational complexity and this can be done if one is interested only

in the large cross-leverage scores.

Our second main result is provided by Algorithms 2 and 3. Algorithm 2 takes as input an n×d

matrix A, a parameter κ > 1, and an error parameter ε ∈ (0,1/2], and returns as output a subset

of [n]× [n] and estimates c̃i j satisfying Theorem 3. The first step of the algorithm is to compute

the matrix Ω = AR−1Π2 constructed by Algorithm 1. Then, Algorithm 2 uses Algorithm 3 as a

subroutine to compute “heavy hitter” pairs of rows from a matrix.

4. Proofs of Our Main Theorems

We will start with a sketch of the proofs of Theorems 2 and 3, and then we will provide the details.

4.1 Sketch of the Proof of Theorems 2 and 3

We will start by providing a sketch of the proof of Theorems 2 and 3. A detailed proof is provided

in the next two subsections. In our analysis, we will condition on the events that Π1 ∈ R
r1×n is

an ε-FJLT for U and Π2 ∈ R
r1×r2 is an ε-JLT for n2 points in R

r1 . Note that by setting δ = 0.1 in

Lemma 4, both events hold with probability at least 0.8, which is equal to the success probability of

Theorems 2 and 3. The algorithm estimates ℓ̃i = ‖ũi‖2
2, where ũi = eT

i A(Π1A)†Π2. First, observe

8. The exact algorithm which computes a basis first and then the pairwise inner products requires O(nd2 + n2d) time.

Thus, by using the sketch, we can already improve on this running time by a factor of d/ lnn.
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Input: A ∈ R
n×d and parameters κ > 1, ε ∈ (0,1/2].

Output: The set H consisting of pairs (i, j) together with estimates c̃i j satisfying

Theorem 3.

1. Compute the n× r2 matrix Ω = AR−1Π2 from Algorithm 1.

2. Use Algorithm 3 with inputs Ω and κ′ = κ(1+30dε) to obtain the set H

containing all the κ′-heavy pairs of Ω.

3. Return the pairs in H as the κ-heavy pairs of A.

Algorithm 2: Approximating the large (off-diagonal) cross-leverage scores ci j.

Input: X ∈ R
n×r with rows x1, . . . ,xn and a parameter κ > 1.

Output: H = {(i, j), c̃i j} containing all heavy (unordered) pairs. The pair (i, j), c̃i j ∈H

if and only if c̃2
i j = 〈xi,x j〉2 ≥

∥

∥XT X
∥

∥

2

F
/κ.

1: Compute the norms ‖xi‖2 and sort the rows according to norm, so that

‖x1‖2 ≤ ·· · ≤ ‖xn‖2.

2: H ←{}; z1← n; z2← 1.

3: while z2 ≤ z1 do

4: while ‖xz1
‖2

2‖xz2
‖2

2 <
∥

∥XT X
∥

∥

2

F
/κ do

5: z2← z2 +1.

6: if z2 > z1 then

7: return H .

8: end if

9: end while

10: for each pair (i, j) where i = z1 and j ∈ {z2,z2 +1, . . . ,z1} do

11: c̃2
i j = 〈xi,x j〉2.

12: if c̃2
i j ≥

∥

∥XT X
∥

∥

2

F
/κ then

13: add (i, j) and c̃i j to H .

14: end if

15: z1← z1−1.

16: end for

17: end while

18: return H .

Algorithm 3: Computing heavy pairs of a matrix.

that the sole purpose of Π2 is to improve the running time while preserving pairwise inner products;
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this is achieved because Π2 is an ε-JLT for n2 points. So, the results will follow if

eT
i A(Π1A)†((Π1A)†)T AT e j ≈ eT

i UUT e j

and (Π1A)† can be computed efficiently. Since Π1 is an ε-FJLT for U , where A = UΣV T , (Π1A)†

can be computed in O(nd lnr1 + r1d2) time. By Lemma 5, (Π1A)† =V Σ−1(Π1U)†, and so

eT
i A(Π1A)†((Π1A)†)T AT e j = eT

i U(Π1U)†(Π1U)†T
UT e j.

Since Π1 is an ε-FJLT for U , it follows that (Π1U)†(Π1U)†T ≈ Id , that is, that Π1U is approximately

orthogonal. Theorem 2 follows from this basic idea. However, in order to prove Theorem 3, having

a sketch which preserves inner products alone is not sufficient. We also need a fast algorithm to

identify the large inner products and to relate these to the actual cross-leverage scores. Indeed, it is

possible to efficiently find pairs of rows in a general matrix with large inner products. Combining

this with the fact that the inner products are preserved, we obtain Theorem 3.

4.2 Proof of Theorem 2

We condition all our analysis on the events that Π1 ∈ R
r1×n is an ε-FJLT for U and Π2 ∈ R

r1×r2 is

an ε-JLT for n2 points in R
r1 . Define

ûi = eT
i A(Π1A)†, and

ũi = eT
i A(Π1A)†Π2.

Then, ℓ̂i = ‖ûi‖2
2 and ℓ̃i = ‖ũi‖2

2. The proof will follow from the following two lemmas.

Lemma 9 For i, j ∈ [n],

∣

∣〈U(i),U( j)〉−〈ûi, û j〉
∣

∣≤ ε

1− ε

∥

∥U(i)

∥

∥

2

∥

∥U( j)

∥

∥

2
.

Lemma 10 For i, j ∈ [n],
∣

∣〈ûi, û j〉−〈ũi, ũ j〉
∣

∣≤ 2ε‖ûi‖2

∥

∥û j

∥

∥

2
.

Lemma 9 states that 〈ûi, û j〉 is an additive error approximation to all the cross-leverage scores

(i 6= j) and a relative error approximation for the diagonals (i = j). Similarly, Lemma 10 shows

that these cross-leverage scores are preserved by Π2. Indeed, with i = j, from Lemma 9 we have

|ℓ̂i− ℓi| ≤ ε
1−εℓi, and from Lemma 10 we have |ℓ̂i− ℓ̃i| ≤ 2εℓ̂i. Using the triangle inequality and

ε≤ 1/2:

∣

∣ℓi− ℓ̃i

∣

∣=
∣

∣ℓi− ℓ̂i + ℓ̂i− ℓ̃i

∣

∣≤
∣

∣ℓi− ℓ̂i

∣

∣+
∣

∣ℓ̂i− ℓ̃i

∣

∣≤
(

ε

1− ε
+2ε

)

ℓi ≤ 4εℓi.

The theorem follows after rescaling ε.
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Proof of Lemma 9 Let A =UΣV T . Using this SVD of A and Equation (4) in Lemma 5,

〈ûi, û j〉 = eT
i UΣV TV Σ−1 (Π1U)† (Π1U)†T

Σ−1V TV ΣUT e j = eT
i U (Π1U)† (Π1U)†T

UT e j.

By performing standard manipulations, we can now bound
∣

∣〈U(i),U( j)〉−〈ûi, û j〉
∣

∣:

∣

∣〈U(i),U( j)〉−〈ûi, û j〉
∣

∣ = eT
i UUT e j− eT

i U (Π1U)† (Π1U)†T
UT e j

= eT
i U
(

Id− (Π1U)† (Π1U)†T
)

UT e j

≤
∥

∥

∥
Id− (Π1U)† (Π1U)†T

∥

∥

∥

2

∥

∥U(i)

∥

∥

2

∥

∥U( j)

∥

∥

2
.

Let the SVD of Ψ = Π1U be Ψ = UΨΣΨV T
Ψ , where VΨ is a full rotation in d dimensions (because

rank(A) = rank(Π1U)). Then, Ψ†Ψ†T
=VΨΣ−2

Ψ V T
Ψ . Thus,

∣

∣〈U(i),U( j)〉−〈ûi, û j〉
∣

∣ ≤
∥

∥Id−VΨΣ−2
Ψ V T

Ψ

∥

∥

2

∥

∥U(i)

∥

∥

2

∥

∥U( j)

∥

∥

2

=
∥

∥VΨV T
Ψ −VΨΣ−2

Ψ V T
Ψ

∥

∥

2

∥

∥U(i)

∥

∥

2

∥

∥U( j)

∥

∥

2

=
∥

∥Id−Σ−2
Ψ

∥

∥

2

∥

∥U(i)

∥

∥

2

∥

∥U( j)

∥

∥

2
,

where we used the fact that VΨV T
Ψ = V T

ΨVΨ = Id and the unitary invariance of the spectral norm.

Finally, using Equation (3) of Lemma 5 the result follows.

Proof of Lemma 10. Since Π2 is an ε-JLT for n2 vectors, it preserves the norms of an arbitrary

(but fixed) collection of n2 vectors. Let xi = ûi/‖ûi‖2. Consider the following n2 vectors:

xi for i ∈ [n], and

xi + x j for i, j ∈ [n], i 6= j.

By the ε-JLT property of Π2 and the fact that ‖xi‖2 = 1,

1− ε≤ ‖xiΠ2‖2
2 ≤ 1+ ε for i ∈ [n], and (8)

(1− ε)
∥

∥xi + x j

∥

∥

2

2
≤
∥

∥xiΠ2 + x jΠ2

∥

∥

2

2
≤ (1+ ε)

∥

∥xi + x j

∥

∥

2

2
for i, j ∈ [n], i 6= j. (9)

Combining Equations (8) and (9) after expanding the squares using the identity ‖a+b‖2 = ‖a‖2 +
‖b‖2 +2〈a,b〉, substituting ‖xi‖= 1, and after some algebra, we obtain

〈xi,x j〉−2ε≤ 〈xiΠ2,x jΠ2〉 ≤ 〈xi,x j〉+2ε.

To conclude the proof, multiply throughout by ‖ûi‖
∥

∥û j

∥

∥ and use the homogeneity of the inner

product, together with the linearity of Π2, to obtain:

〈ûi, û j〉−2ε‖ûi‖
∥

∥û j

∥

∥≤ 〈ûiΠ2, û jΠ2〉 ≤ 〈ûi, û j〉+2ε‖ûi‖
∥

∥û j

∥

∥.

Running Times. By Lemma 7, we can use VΠ1AΣ−1
Π1A instead of (Π1A)† and obtain the same

estimates. Since Π1 is an ε-FJLT, the product Π1A can be computed in O(nd lnr1) while its

SVD takes an additional O(r1d2) time to return VΠ1AΣ−1
Π1A ∈ R

d×d . Since Π2 ∈ R
d×r2 , we obtain

VΠ1AΣ−1
Π1AΠ2 ∈ R

d×r2 in an additional O(r2d2) time. Finally, premultiplying by A takes O(ndr2)
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time, and computing and returning the squared row-norms of Ω = AVΠ1AΣ−1
Π1AΠ2 ∈ R

n×r2 takes

O(nr2) time. So, the total running time is the sum of all these operations, which is

O(nd lnr1 +ndr2 + r1d2 + r2d2).

Recall that for our implementations of the ε-JLTs and ε-FJLTs, we have δ = 0.1, and we have

r1 = O
(

ε−2d (lnn)
(

ln
(

ε−2d lnn
)))

and r2 = O(ε−2 lnn). It follows that the asymptotic running

time is

O
(

nd ln
(

dε−1
)

+ndε−2 lnn+d3ε−2 (lnn)
(

ln
(

dε−1
)))

.

To simplify, suppose that d ≤ n≤ ed and treat ε as a constant. Then, the asymptotic running time is

O
(

nd lnn+d3 (lnn)(lnd)
)

.

4.3 Proof of Theorem 3

We first construct an algorithm to estimate the large inner products among the rows of an arbitrary

matrix X ∈Rn×r with n> r. This general algorithm will be applied to the matrix Ω= AVΠ1AΣ−1
Π1AΠ2.

Let x1, . . . ,xn denote the rows of X ; for a given κ > 1, the pair (i, j) is heavy if

〈xi,x j〉2 ≥
1

κ

∥

∥XT X
∥

∥

2

F
.

By the Cauchy-Schwarz inequality, this implies that

‖xi‖2
2

∥

∥x j

∥

∥

2

2
≥ 1

κ

∥

∥XT X
∥

∥

2

F
, (10)

so it suffices to find all the pairs (i, j) for which Equation (10) holds. We will call such pairs norm-

heavy. Let s be the number of norm-heavy pairs satisfying Equation (10). We first bound the number

of such pairs.

Lemma 11 Using the above notation, s≤ κr.

Proof Observe that

n

∑
i, j=1

‖xi‖2
2

∥

∥x j

∥

∥

2

2
=

(

n

∑
i=1

‖xi‖2
2

)2

= ‖X‖4
F =

(

r

∑
i=1

σ2
i

)2

,

where σ1, . . . ,σr are the singular values of X . To conclude, by the definition of a heavy pair,

∑
i, j

‖xi‖2
2

∥

∥x j

∥

∥

2

2
≥ s

κ

∥

∥XT X
∥

∥

2

F
=

s

κ

r

∑
i=1

σ4
i ≥

s

κr

(

r

∑
i=1

σ2
i

)2

,

where the last inequality follows by Cauchy-Schwarz.

Algorithm 3 starts by computing the norms ‖xi‖2
2 for all i ∈ [n] and sorting them (in O(nr+n lnn)

time) so that we can assume that ‖x1‖2≤ ·· · ≤ ‖xn‖2. Then, we initialize the set of norm-heavy pairs

to H = {} and we also initialize two pointers z1 = n and z2 = 1. The basic loop in the algorithm

checks if z2 > z1 and stops if that is the case. Otherwise, we increment z2 to the first pair (z1,z2) that
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is norm-heavy. If none of pairs are norm heavy (i.e., z2 > z1 occurs), then we stop and output H ;

otherwise, we add (z1,z2),(z1,z2 + 1), . . . ,(z1,z1) to H . This basic loop computes all pairs (z1, i)
with i ≤ z1 that are norm-heavy. Next, we decrease z1 by one and if z1 < z2 we stop and output

H ; otherwise, we repeat the basic loop. Note that in the basic loop z2 is always incremented. This

occurs whenever the pair (z1,z2) is not norm-heavy. Since z2 can be incremented at most n times,

the number of times we check whether a pair is norm-heavy and fail is at most n. Every successful

check results in the addition of at least one norm-heavy pair into H and thus the number of times

we check if a pair is norm heavy (a constant-time operation) is at most n+ s. The number of pair

additions into H is exactly s and thus the total running time is O(nr+n lnn+ s). Finally, we must

check each norm-heavy pair to verify whether or not it is actually heavy by computing s inner

products vectors in R
r; this can be done in O(sr) time. Using s≤ κr we get the following lemma.

Lemma 12 Algorithm 3 returns H including all the heavy pairs of X in O(nr+κr2 +n lnn) time.

To complete the proof, we apply Algorithm 3 with Ω=AVΠ1AΣ−1
Π1AΠ2 ∈Rn×r2 , where r2 =O(ε−2 lnn).

Let ũ1, . . . , ũn denote the rows of Ω and recall that A =UΣV T . Let u1, . . . ,un denote the rows of U ;

then, from Lemma 8,

〈ui,u j〉−
3ε

1− ε
‖ui‖

∥

∥u j

∥

∥≤ 〈ũi, ũ j〉 ≤ 〈ui,u j〉+
3ε

1− ε
‖ui‖

∥

∥u j

∥

∥. (11)

Given ε,κ, assume that for the pair of vectors ui and u j

〈ui,u j〉2 ≥
1

κ

∥

∥UTU
∥

∥

2

F
+12ε‖ui‖2

∥

∥u j

∥

∥

2
=

d

κ
+12ε‖ui‖2

∥

∥u j

∥

∥

2
,

where the last equality follows from
∥

∥UTU
∥

∥

2

F
= ‖Id‖2

F = d. By Equation (11), after squaring and

using ε < 0.5,

〈ui,u j〉2−12ε‖ui‖2ε
∥

∥u j

∥

∥

2 ≤ 〈ũi, ũ j〉2 ≤ 〈ui,u j〉2 +30ε‖ui‖2
∥

∥u j

∥

∥

2
. (12)

Thus, 〈ũi, ũ j〉2 ≥ d/κ and summing Equation (12) over all i, j we get
∥

∥ΩT Ω
∥

∥

2

F
≤ d + 30εd2, or,

equivalently,

d ≥
∥

∥ΩT Ω
∥

∥

2

F

1+30dε
.

We conclude that

〈ui,u j〉2 ≥
d

κ
+12ε‖ui‖2

∥

∥u j

∥

∥

2
=⇒ 〈ũi, ũ j〉2 ≥

d

κ
≥

∥

∥ΩT Ω
∥

∥

2

F

κ(1+30dε)
. (13)

By construction, Algorithm 3 is invoked with κ′ = κ
∥

∥ΩT Ω
∥

∥

2

F
/d and thus it finds all pairs with

〈ũi, ũ j〉2 ≥
∥

∥ΩT Ω
∥

∥

2

F
/κ′ = d/κ. This set contains all pairs for which

〈ui,u j〉2 ≥
d

κ
+12ε‖ui‖2

∥

∥u j

∥

∥

2
.

Further, since every pair returned satisfies 〈ũi, ũ j〉2 ≥ d/κ, by Equation (12), ci j ≥ d/κ− 30εℓiℓ j.

This proves the first claim of the Theorem; the second claim follows analogously from Equa-

tion (12).

Using Lemma 12, the running time of our approach is O
(

nr2 +κ′r2
2 +n lnn

)

. Since r2 =

O
(

ε−2 lnn
)

, and, by Equation (13), κ′ = κ
∥

∥ΩT Ω
∥

∥

2

F
/d ≤ κ(1+ 30dε), the overall running time

is O
(

ε−2n lnn+ ε−3κd ln2 n
)

.
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5. Extending Our Algorithm to General Matrices

In this section, we will describe an important extension of our main result, namely the computation

of the statistical leverage scores relative to the best rank-k approximation to a general matrix A. More

specifically, we consider the estimation of leverage scores for the case of general “fat” matrices,

namely input matrices A∈Rn×d , where both n and d are large, for example, when d = n or d =Θ(n).
Clearly, the leverage scores of any full rank n×n matrix are exactly uniform. The problem becomes

interesting if one specifies a rank parameter k≪min{n,d}. This may arise when the numerical rank

of A is small (e.g., in some scientific computing applications, more than 99% of the spectral norm of

A may be captured by some k≪min{n,d} directions), or, more generally, when one is interested in

some low rank approximation to A (e.g., in some data analysis applications, a reasonable fraction or

even the majority of the Frobenius norm of A may be captured by some k≪ min{n,d} directions,

where k is determined by some exogenously-specified model selection criterion). Thus, assume that

in addition to a general n× d matrix A, a rank parameter k < min{n,d} is specified. In this case,

we wish to obtain the statistical leverage scores ℓi =
∥

∥(Uk)(i)
∥

∥

2

2
for Ak = UkΣkV

T
k , the best rank-k

approximation to A. Equivalently, we seek the normalized leverage scores

pi =
ℓi

k
. (14)

Note that ∑n
i=1 pi = 1 since ∑n

i=1 ℓi = ‖Uk‖2
F = k.

Unfortunately, as stated, this is an ill-posed problem. Indeed, consider the degenerate case when

A = In (i.e., the n×n identity matrix). In this case, Uk is not unique and the leverage scores are not

well-defined. Moreover, for the obvious
(

n
k

)

equivalent choices for Uk, the leverage scores defined

according to any one of these choices do not provide a relative error approximation to the leverage

scores defined according to any other choices. More generally, removing this trivial degeneracy

does not help. Consider the matrix

A =

(

Ik 0

0 (1− γ)In−k

)

∈ R
n×n.

In this example, the leverage scores for Ak are well defined. However, as γ→ 0, it is not possible

to distinguish between the top-k singular space and its complement. This example suggests that it

should be possible to obtain some result conditioning on the spectral gap at the kth singular value.

For example, one might assume that σ2
k −σ2

k+1 ≥ γ > 0, in which case the parameter γ would play

an important role in the ability to solve this problem. Any algorithm which cannot distinguish the

singular values with an error less than γ will confuse the k-th and (k+ 1)-th singular vectors and

consequently will fail to get an accurate approximation to the leverage scores for Ak.

In the following, we take a more natural approach which leads to a clean problem formulation.

To do so, recall that the leverage scores and the related normalized leverage scores of Equation (14)

are used to approximate the matrix in some way, for example, we might be seeking a low-rank ap-

proximation to the matrix with respect to the spectral (Drineas et al., 2008) or the Frobenius (Bout-

sidis et al., 2009) norm, or we might be seeking useful features or data points in downstream data

analysis applications (Paschou et al., 2007; Mahoney and Drineas, 2009), or we might be seeking

to develop high-quality numerical implementations of low-rank matrix approximation algorithms

(Halko et al., 2011), etc. In all these cases, we only care that the estimated leverage scores are

a good approximation to the leverage scores of some “good” low-rank approximation to A. The
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following definition captures the notion of a set of rank-k matrices that are good approximations to

A.

Definition 13 Given A ∈ R
n×d and a rank parameter k ≪ min{n,d}, let Ak be the best rank-k

approximation to A. Define the set Sε of rank-k matrices that are good approximations to A as

follows (for ξ = 2,F):

Sε =
{

X ∈ R
n×d : rank(X) = k and ‖A−X‖ξ ≤ (1+ ε)‖A−Ak‖ξ

}

.

We are now ready to define our approximations to the normalized leverage scores of any matrix

A ∈Rn×d given a rank parameter k≪min{n,d}. Instead of seeking to approximate the pi of Equa-

tion (14) (a problem that is ill-posed as discussed above), we will be satisfied if we can approximate

the normalized leverage scores of some matrix X ∈ Sε. This is an interesting relaxation of the task

at hand: all matrices X that are sufficiently close to Ak are essentially equivalent, since they can be

used instead of Ak in applications.

Definition 14 Given A∈Rn×d and a rank parameter k≪min{n,d}, let Sε be the set of matrices of

Definition 13. We call the numbers p̂i (for all i ∈ [n]) β-approximations to the normalized leverage

scores of Ak (the best rank-k approximation to A) if, for some matrix X ∈ Sε,

p̂i ≥
β
∥

∥(UX)(i)
∥

∥

2

2

k
and

n

∑
i=1

p̂i = 1.

Here UX ∈ R
n×k is the matrix of the left singular vectors of X.

Thus, we will seek algorithms whose output is a set of numbers, with the requirement that those

numbers are good approximations to the normalized leverage scores of some matrix X ∈ Sε (instead

of Ak). This removes the ill-posedness of the original problem. Next, we will give two examples

of algorithms that compute such β-approximations to the normalized leverage scores of a general

matrix A with a rank parameter k for two popular norms, the spectral norm and the Frobenius norm.9

5.1 Leverage Scores for Spectral Norm Approximators

Algorithm 4 approximates the statistical leverage scores of a general matrix A with rank parameter

k in the spectral norm case. It takes as inputs a matrix A ∈Rn×d with rank(A) = ρ and a rank

parameter k≪ ρ, and outputs a set of numbers p̂i for all i ∈ [n], namely our approximations to the

normalized leverage scores of A with rank parameter k.
The next lemma argues that there exists a matrix X ∈Rn×d of rank k that is sufficiently close to A

(in particular, it is a member of Sε with constant probability) and, additionally, can be written as X =
BY, where Y ∈R2k×d is a matrix of rank k. A version of this lemma was essentially proven in Halko

et al. (2011), but see also Rokhlin et al. (2009) for computational details; we will use the version

of the lemma that appeared in Boutsidis et al. (2011b). (See also the conference version (Boutsidis

et al., 2011a), but in the remainder we refer to the technical report version (Boutsidis et al., 2011b)

for consistency of numbering.) Note that for our purposes in this section, the computation of Y is

not relevant and we defer the reader to Halko et al. (2011) and Boutsidis et al. (2011b) for details.

9. Note that we will not compute Sε, but our algorithms will compute a matrix in that set. Moreover, that matrix can be

used for high-quality low-rank matrix approximation. See the comments in Section 1.4 for more details.
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Input: A ∈ R
n×d with rank(A) = ρ and a rank parameter k≪ ρ

Output: p̂i, i ∈ [n]

1. Construct Π ∈ R
d×2k with entries drawn in i.i.d. trials from the normal distribution

N (0,1).

2. Compute B =
(

AAT
)q

AΠ ∈ R
n×2k, with q as in Equation (16).

3. Approximately compute the statistical leverage scores of the “tall” matrix B by

calling Algorithm 1 with inputs B and ε; let ℓ̂i (for all i ∈ [n]) be the outputs of

Algorithm 1.

4. Return

p̂i =
ℓ̂i

∑n
j=1 ℓ̂ j

(15)

for all i ∈ [n].

Algorithm 4: Approximating the statistical leverage scores of a general matrix A (spectral

norm case).

Lemma 15 (Spectral Sketch) Given A ∈ R
n×d of rank ρ, a rank parameter k such that 2≤ k < ρ,

and an error parameter ε such that 0 < ε < 1, let Π ∈ R
d×2k be a standard Gaussian matrix (with

entries selected in i.i.d. trials from N (0,1)). If B =
(

AAT
)q

AΠ, where

q≥











ln
(

1+
√

k
k−1

+ e

√

2
k

√

min{n,d}− k
)

2ln(1+ ε/10)−1/2











, (16)

then there exists a matrix X ∈ R
n×d of rank k satisfying X = BY (with Y ∈ R

2k×d) such that

E [‖A−X‖2]≤
(

1+
ε

10

)

‖A−Ak‖2.

The matrix B can be computed in O(ndkq) time.

This version of the above lemma is proven in Boutsidis et al. (2011b).10 Now, since X has rank k,

it follows that ‖A−X‖2 ≥ ‖A−Ak‖2 and thus we can consider the non-negative random variable

‖A−X‖2−‖A−Ak‖2 and apply Markov’s inequality to get that

‖A−X‖2−‖A−Ak‖2 ≤ ε‖A−Ak‖2

holds with probability at least 0.9. Thus, X ∈ Sε with probability at least 0.9.

10. More specifically, the proof may be found in Lemma 32 and in particular in Equation (14) in Section A.2; note that

for our purposes here we replaced ε/
√

2 by ε/10 after adjusting q accordingly.
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The next step of the proposed algorithm is to approximately compute the leverage scores of

B ∈ R
n×2k via Algorithm 1. Under the assumptions of Theorem 2, this step runs in O

(

nkε−2 lnn
)

time. Let UX ∈Rn×k be the matrix containing the left singular vectors of the matrix X of Lemma 15.

Then, since X = BY by Lemma 15, it follows that

UB = [UX UR]

is a basis for the subspace spanned by the columns of B. Here UR ∈ R
n×k is an orthogonal matrix

whose columns are perpendicular to the columns of UX . Now consider the approximate leverage

scores ℓ̂i computed by Algorithm 1 and note that (by Theorem 2),

∣

∣

∣

∣

ℓ̂i−
∥

∥

∥
(UB)(i)

∥

∥

∥

2

2

∣

∣

∣

∣

≤ ε
∥

∥

∥
(UB)(i)

∥

∥

∥

2

2

holds with probability at least 0.8 for all i ∈ [n]. It follows that

n

∑
j=1

ℓ̂ j ≤ (1+ ε)
n

∑
j=1

∥

∥

∥
(UB)( j)

∥

∥

∥

2

2
= (1+ ε)

n

∑
j=1

‖UB‖2
F = 2(1+ ε)k.

Finally,

p̂i =
ℓ̂i

∑n
j=1 ℓ̂ j

≥ (1− ε)

∥

∥

∥
(UB)(i)

∥

∥

∥

2

2

∑n
j=1 ℓ̂ j

≥ (1− ε)

∥

∥

∥
(UX)(i)

∥

∥

∥

2

2
+
∥

∥

∥
(UR)(i)

∥

∥

∥

2

2

∑n
j=1 ℓ̂ j

≥ 1− ε

2

∥

∥

∥
(UX)(i)

∥

∥

∥

2

2

∑n
j=1 ℓ̂ j

≥ 1− ε

2(1+ ε)

∥

∥

∥
(UX)(i)

∥

∥

∥

2

2

k
.

Clearly,

∥

∥

∥
(UX)(i)

∥

∥

∥

2

2
/k are the normalized leverage scores of the matrix X . Recall that X ∈ Sε with

probability at least 0.9 and use Definition 14 to conclude that the scores p̂i of Equation (15) are
(

1−ε
2(1+ε)

)

-approximations to the normalized leverage scores of A with rank parameter k. The fol-

lowing Theorem summarizes the above discussion:

Theorem 16 Given A ∈ R
n×d , a rank parameter k, and an accuracy parameter ε, Algorithm 4

computes a set of normalized leverage scores p̂i that are
(

1−ε
2(1+ε)

)

-approximations to the normalized

leverage scores of A with rank parameter k with probability at least 0.7. The proposed algorithm

runs in

O

(

ndk
ln(min{n,d})

ln(1+ ε)
+nkε−2 lnn

)

time.
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Input: A ∈ R
n×d with rank(A) = ρ and a rank parameter k≪ ρ

Output: p̂i, i ∈ [n]

1. Let r be as in Equation (18) and construct Π ∈ R
d×r whose entries are drawn in

i.i.d. trials from the normal distribution N (0,1).

2. Compute B = AΠ ∈ R
n×r.

3. Compute a matrix Q ∈ R
n×r whose columns form an orthonormal basis for the

column space of B.

4. Compute the matrix QT A ∈ R
r×d and its left singular vectors UQT A ∈ R

r×d .

5. Let UQT A,k ∈ R
r×k denote the top k left singular vectors of the matrix QT A (the

first k columns of UQT A) and compute, for all i ∈ [n],

ℓ̂i =
∥

∥

∥

(

QUQT A,k

)

(i)

∥

∥

∥

2

2
. (17)

6. Return p̂i = ℓ̂i/k for all i ∈ [n].

Algorithm 5: Approximating the statistical leverage scores of a general matrix A (Frobenius

norm case).

5.2 Leverage Scores for Frobenius Norm Approximators

Algorithm 5 approximates the statistical leverage scores of a general matrix A with rank param-

eter k in the Frobenius norm case. It takes as inputs a matrix A ∈Rn×d with rank(A) = ρ and

a rank parameter k ≪ ρ, and outputs a set of numbers p̂i for all i ∈ [n], namely our approxi-

mations to the normalized leverage scores of A with rank parameter k. It is worth noting that

∑n
i=1 ℓ̂i =

∥

∥QUQT A,k

∥

∥

2

F
=
∥

∥UQT A,k

∥

∥

2

F
= k and thus the p̂i sum up to one. The next lemma argues that

there exists a matrix X ∈ R
n×d of rank k that is sufficiently close to A (in particular, it is a member

of Sε with constant probability). Unlike the previous section (the spectral norm case), we will now

be able to provide a closed-form formula for this matrix X and, more importantly, the normalized

leverage scores of X will be exactly equal to the p̂i returned by our algorithm. Thus, in the parlance

of Definition 14, we will get a 1-approximation to the normalized leverage scores of A with rank

parameter k.

Lemma 17 (Frobenius Sketch) Given A∈Rn×d of rank ρ, a rank parameter k such that 2≤ k < ρ,

and an error parameter ε such that 0 < ε < 1, let Π ∈ R
d×r be a standard Gaussian matrix (with

entries selected in i.i.d. trials from N (0,1)) with

r ≥ k+

⌈

10k

ε
+1

⌉

. (18)

3462



FAST APPROXIMATION OF MATRIX COHERENCE AND STATISTICAL LEVERAGE

Let B = AΠ and let X be as in Equation (19). Then,

E
[

‖A−X‖2
F

]

≤
(

1+
ε

10

)

‖A−Ak‖2
F .

The matrix B can be computed in O
(

ndkε−1
)

time.

Let

X = Q
(

QT A
)

k
∈ R

n×d , (19)

where
(

QT A
)

k
is the best rank-k approximation to the matrix QT A; from standard linear algebra,

(

QT A
)

k
=UQT A,kU

T
QT A,kQT A. Then, the above lemma is proven in Boutsidis et al. (2011b).11 Now,

since X has rank k, it follows that ‖A−X‖2
F ≥‖A−Ak‖2

F and thus we can consider the non-negative

random variable ‖A−X‖2
F −‖A−Ak‖2

F and apply Markov’s inequality to get that

‖A−X‖2
F −‖A−Ak‖2

F ≤ ε‖A−Ak‖2
F

holds with probability at least 0.9. Rearranging terms and taking square roots of both sides implies

that

‖A−X‖F ≤
√

1+ ε‖A−Ak‖F ≤ (1+ ε)‖A−Ak‖F .

Thus, X ∈ Sε with probability at least 0.9. To conclude our proof, recall that Q is an orthonormal

basis for the columns of B. From Equation (19),

X = Q
(

QT A
)

k
= QUQT A,kU

T
QT A,kQT A = QUQT A,kΣQT A,kV

T
QT A,k.

In the above, ΣQT A,k ∈ R
k×k is the diagonal matrix containing the top k singular values of QT A and

V T
QT A,k ∈ R

k×d is the matrix whose rows are the top k right singular vectors of QT A. Thus, the left

singular vectors of the matrix X are exactly equal to the columns of the orthogonal matrix QUQT A,k;

it now follows that the ℓ̂i of Equation (17) are the leverage scores of the matrix X and, finally, that

the p̂i returned by the proposed algorithm are the normalized leverage scores of the matrix X .

We briefly discuss the running time of the proposed algorithm. First, we can compute B in

O(ndr) time. Then, the computation of Q takes O(nr2) time. The computation of QT A takes

O(ndr) time and the computation of UQT A takes O(dr2) time. Thus, the total time is equal to

O
(

ndr+(n+d)r2
)

. The following Theorem summarizes the above discussion.

Theorem 18 Given A∈Rn×d , a rank parameter k, and an accuracy parameter ε, Algorithm 5 com-

putes a set of normalized leverage scores p̂i that are 1-approximations to the normalized leverage

scores of A with rank parameter k with probability at least 0.7. The proposed algorithm runs in

O
(

ndkε−1 +(n+d)k2ε−2
)

time.

6. Discussion

We will conclude with a discussion of our main results in a broader context: understanding the

relationship between our main algorithm and a related estimator for the statistical leverage scores;

applying our main algorithm to solve under-constrained least squares problems; and implementing

variants of the basic algorithm in streaming environments.

11. More specifically, the proof may be found in Lemma 33 in Section A.3; note that for our purposes here we set

p =
⌈

10k
ε +1

⌉

.
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6.1 A Related Estimator for the Leverage Scores

Magdon-Ismail (2010) presented the following algorithm to estimate the statistical leverage scores:

given as input an n×d matrix A, with n≫ d, the algorithm proceeds as follows.

• Compute ΠA, where the O
(

n lnd

ln2 n

)

×n matrix Π is a SRHT or another FJLT.

• Compute X = (ΠA)†Π.

• For t = 1, . . . ,n, compute the estimate w̃t = AT
(t)X

(t) and set wt = max
{

d ln2 n
4n

, w̃t

}

.

• Return the quantities p̃i = wi/∑n
i′=1 wi′ , for i ∈ [n].

Magdon-Ismail (2010) argued that the output p̃i achieves an O(ln2 n) approximation to all of the

(normalized) statistical leverage scores of A in roughly O(nd2/ lnn) time. (To our knowledge, prior

to our work here, this is the only known estimator that obtains any nontrivial provable approximation

to the leverage scores of a matrix in o(nd2) time.) To see the relationship between this estimator

and our main result, recall that

ℓi = eT
i UUT ei = eT

i AA†ei = xT
i yi,

where the vector xT
i = eT

i A is cheap to compute and the vector yi =A†ei is expensive to compute. The

above algorithm effectively approximates yi =A†ei via a random projection as ỹi =(ΠA)†Πei, where

Π is a SRHT or another FJLT. Since the estimates xT
i ỹi are not necessarily positive, a truncation at

the negative tail, followed by a renormalization step, must be performed in order to arrive at the final

estimator returned by the algorithm. This truncation-renormalization step has the effect of inflating

the estimates of the small leverage scores by an O(ln2 n) factor. By way of comparison, Algorithm 1

essentially computes a sketch of AA† of the form A(ΠA)†ΠT that maintains positivity for each of

the row norm estimates.

Although both Algorithm 1 and the algorithm of this subsection estimate AA† by a matrix of the

form A(ΠA)†ΠT , there are notable differences. The algorithm of this subsection does not actually

compute or approximate AAT directly; instead, it separates the matrix into two parts and computes

the dot product between eT
i A and (ΠA)†Πei. Positivity is sacrificed and this leads to some compli-

cations in the estimator; however, the truncation step is interesting, since, despite the fact that the

estimates are “biased” (in a manner somewhat akin to what is obtained with “thresholding” or “reg-

ularization” procedures), we still obtain provable approximation guarantees. The algorithm of this

subsection is simpler (since it uses an application of only one random projection), albeit at the cost

of weaker theoretical guarantees and a worse running time than our main algorithm. A direction of

considerable practical interest is to evaluate empirically the performance of these two estimators, ei-

ther for estimating all the leverage scores or (more interestingly) for estimating the largest leverage

scores for data matrices for which the leverage scores are quite nonuniform.

6.2 An Application to Under-constrained Least-squares Problems

Consider the following under-constrained least-squares problem:

min
x∈Rd
‖Ax−b‖2 , (20)
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where A ∈ R
n×d has much fewer rows than columns, that is, n≪ d. It is well-known that we

can solve this problem exactly in O(n2d) time and that the minimal ℓ2-norm solution is given by

xopt = A†b. For simplicity, let’s assume that the input matrix A has full rank (i.e., rank(A) = n) and

thus ‖Axopt −b‖
2
= 0.

In this section, we will argue that Algorithm 6 computes a simple, accurate estimator x̃opt for

xopt . In words, Algorithm 6 samples a small number of columns from A (note that the columns

of A correspond to variables in our under-constrained problem) and uses the sampled columns to

compute x̃opt . However, in order to determine which columns will be included in the sample, the al-

gorithm will make use of the statistical leverage scores of the matrix AT ; more specifically, columns

(and thus variables) will be chosen with probability proportional to the corresponding statistical

leverage score. We will state Algorithm 6 assuming that these probabilities are parts of the input;

the following theorem is our main quality-of-approximation result for Algorithm 6.

Theorem 19 Let A ∈Rn×d be a full-rank matrix with n≪ d; let ε ∈ (0,0.5] be an accuracy param-

eter; let δ ∈ (0,1) be a failure probability; and let xopt = A†b be the minimal ℓ2-norm solution to

the least-squares problem of Equation (20). Let pi ≥ 0, i ∈ [d], be a set of probabilities satisfying

∑d
i=1 pi = 1 and

pi ≥
β
∥

∥V(i)

∥

∥

2

2

n
(21)

for some constant β ∈ (0,1]. (Here V ∈Rd×n is the matrix of the right singular vectors of A.) If x̃opt

is computed via Algorithm 6 then, with probability at least 1−δ,

‖xopt − x̃opt‖2
≤ 2ε‖xopt‖2

.

Algorithm 6 runs in O
(

n3ε−2β−1 ln(n/εβδ)+nd
)

time.

Proof Let the singular value decomposition of the full-rank matrix A be A =UΣV T , with U ∈Rn×n,

Σ ∈ R
n×n, and V ∈ R

d×n; note that all the diagonal entries of Σ are strictly positive since A has full

rank. We can now apply Theorem 4 of Section 6.1 of Drineas et al. (2010b) to get12 that

∥

∥In−V T SSTV
∥

∥

2
=
∥

∥V TV −V T SSTV
∥

∥

2
≤ ε

for our choice of r with probability at least 1−δ. Note that V T S∈Rn×r (with r≥ n) and let σi

(

V T S
)

denote the singular values of V T S for all i ∈ [n]; the above inequality implies that for all i ∈ [n]

∣

∣1−σ2
i

(

V T S
)∣

∣≤
∥

∥In−V T SSTV
∥

∥

2
≤ ε≤ 0.5.

Thus, all the singular values of V T S are strictly positive and hence V T S has full rank equal to n.

Also, using ε≤ 0.5,
∣

∣1−σ−2
i

(

V T S
)∣

∣≤ ε

1− ε
≤ 2ε. (22)

12. We apply Theorem 4 of Section 6.1 of Drineas et al. (2010b) with A =V T and note that
∥

∥V T
∥

∥

2

F
= n≥ 1,

∥

∥V T
∥

∥

2
= 1,

and
(

V T
)(i)

=V(i).
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We are now ready to prove our theorem:

‖xopt − x̃opt‖2
=

∥

∥

∥
AT (AS)†T (AS)†

b−A†b

∥

∥

∥

2

=
∥

∥

∥
V ΣUT

(

UΣV T S
)†T (

UΣV T S
)†

b−V Σ−1UT b

∥

∥

∥

2

=
∥

∥

∥
ΣUTUΣ−1

(

V T S
)†T (

V T S
)†

Σ−1UT b−Σ−1UT b

∥

∥

∥

2

=
∥

∥

∥

(

V T S
)†T (

V T S
)†

Σ−1UT b−Σ−1UT b

∥

∥

∥

2
.

In the above derivations we substituted the SVD of A, dropped terms that do not change unitarily

invariant norms, and used the fact that V T S and Σ have full rank in order to simplify the pseudoin-

verse. Now let
(

V T S
)†T (

V T S
)†

= In +E and note that Equation (22) and the fact that V T S has full

rank imply

‖E‖2 =
∥

∥

∥
In−

(

V T S
)†T (

V T S
)†
∥

∥

∥

2
= max

i∈[n]

∣

∣1−σ−2
i

(

V T S
)∣

∣≤ 2ε.

Thus, we conclude our proof by observing that

‖xopt − x̃opt‖2
=

∥

∥(In +E)Σ−1UT b−Σ−1UT b
∥

∥

2

=
∥

∥EΣ−1UT b
∥

∥

2

≤ ‖E‖2

∥

∥Σ−1UT b
∥

∥

2

≤ 2ε‖xopt‖2
.

In the above we used the fact that ‖xopt‖2
=
∥

∥A†b
∥

∥

2
=
∥

∥V Σ−1UT b
∥

∥

2
=
∥

∥Σ−1UT b
∥

∥

2
. The running

time of the algorithm follows by observing that AS is an n× r matrix and thus computing its pseu-

doinverse takes O(n2r) time; computing xopt takes an additional O(nr+dn) time.

We conclude the section with a few remarks. First, assuming that ε, β, and δ are constants

and n lnn = o(d), it immediately follows that Algorithm 6 runs in o(n2d) time. It should be clear

that we can use Theorem 2 and the related Algorithm 1 to approximate the statistical leverage

scores, thus bypassing the need to exactly compute them. Second, instead of approximating the

statistical leverage scores needed in Algorithm 6, we could use the randomized Hadamard transform

(essentially post-multiply A by a randomized Hadamard transform to make all statistical leverage

scores uniform). The resulting algorithm could be theoretically analyzed following the lines of

Drineas et al. (2010b). It would be interesting to evaluate experimentally the performance of the

two approaches in real data.

6.3 Extension to Streaming Environments

In this section, we consider the estimation of the leverage scores and of related statistics when the

input data set is so large that an appropriate way to view the data is as a data stream (Muthukrishnan,

2005). In this context, one is interested in computing statistics of the data stream while making one

pass (or occasionally a few additional passes) over the data from external storage and using only a

small amount of additional space. For an n×d matrix A, with n≫ d, small additional space means

that the space complexity only depends logarithmically on the high dimension n and polynomially

on the low dimension d. When we discuss bits of space, we assume that the entries of A can be
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Input: A ∈ R
n×d , b ∈ R

n, error parameter ε ∈ (0, .5], failure probability δ, and a set of

probabilities pi (for all i ∈ [d]) summing up to one and satisfying Equation (21).

Output: x̃opt ∈ R
d .

1. Let r = 96n
βε2 ln

(

96n

βε2
√

δ

)

.

2. Let S ∈ R
d×r be an all-zeros matrix.

3. For t = 1, . . . ,r do

• Pick it ∈ [d] such that Pr(it = i) = pi.

• Sit t = 1/
√

rpit .

4. Return x̃opt = AT (AS)†T (AS)†
b.

Algorithm 6: Approximately solving under-constrained least squares problems.

discretized to O(logn) bit integers, though all of our results can be generalized to arbitrary word

sizes. The general strategy behind our algorithms is as follows.

• As the data streams by, compute TA, for an appropriate problem-dependent linear sketching

matrix T , and also compute ΠA, for a random projection matrix Π.13

• After the first pass over the data, compute the matrix R−1, as described in Algorithm 1, cor-

responding to ΠA (or compute the pseudoinverse of ΠA or the R matrix from any other QR

decomposition of A).

• Compute TAR−1Π2, for a random projection matrix Π2, such as the one used by Algorithm 1.

With the procedure outlined above, the matrix T is effectively applied to the rows of AR−1Π2, that

is, to the sketch of A that has rows with Euclidean norms approximately equal to the row norms of

U , and pairwise inner products approximately equal to those in U . Thus statistics related to U can

be extracted.

Large Leverage Scores. Given any n× d matrix A in a streaming setting, it is known how to

find the indices of all rows A(i) of A for which ‖A(i)‖2
2 ≥ τ‖A‖2

F , for a parameter τ, and in addition

it is known how to compute a (1+ ε)-approximation to ‖A(i)‖2
2 for these large rows. The basic

idea is to use the notion of ℓ2-sampling on matrix A, namely, to sample random entries Ai j with

probability A2
i j/‖A‖2

F . A single entry can be sampled from this distribution in a single pass using

O(ε−2 log3(nd)) bits of space (Monemizadeh and Woodruff, 2010; Andoni et al., 2010). More pre-

cisely, these references demonstrate that there is a distribution over O(dε−2 log3(nd))×n matrices

13. In the offline setting, one would use an SRHT or another FJLT, while in the streaming setting one could use either of

the following. If the stream is such that one sees each entire column of A at once, then one could do an FJLT on the

column. Alternatively, if one see updates to the individual entries of A in an arbitrary order, then one could apply any

sketching matrix, such as those of Achlioptas (2003) or of Dasgupta et al. (2010).
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T for which for any fixed matrix A ∈ R
n×d , there is a procedure which given TA, outputs a sample

(i, j) ∈ [n]× [d] with probability (1± ε)
A2

i, j

‖A‖2
F

± n−O(1). Technically, these references concern sam-

pling from vectors rather than matrices, so T (A) is a linear operator which treats A as a length-nd

vector and applies the algorithm of Monemizadeh and Woodruff (2010) and Andoni et al. (2010).

However, by simply increasing the number of rows in T by a factor of the small dimension d, we

can assume T is left matrix multiplication. By considering the marginal along [n], the probability

that i = a, for any a ∈ [n], is

(1± ε)
‖U(a)‖2

2

‖U‖2
F

± (nd)−O(1).

By the coupon collector problem, running O(τ−1 logτ−1) independent copies is enough to find a set

containing all rows A(i) for which ‖A(i)‖2
2 ≥ τ‖A‖2

F , and no rows A(i) for which ‖A(i)‖2
2 < τ

2
‖A‖2

F

with probability at least 0.99.

When applied to our setting, we can apply a random projection matrix Π and a linear sketching

matrix T which has O(dτ−1ε−2 log3(n) logτ−1) rows in the following manner. First, TA and ΠA

are computed in the first pass over the data; then, at the end of the first pass, we compute R−1;

and finally, we compute TAR−1Π2, for a random projection matrix Π2. This procedure effectively

applies the matrix T to the rows of AR−1Π2, which have norms equal to the row norms of U , up to a

factor of 1+ ε. The multiplication at the end by Π2 serves only to speed up the time for processing

TAR−1. Thus, by the results of Monemizadeh and Woodruff (2010) and Andoni et al. (2010), we

can find all the leverage scores ‖U(i)‖2
2 that are of magnitude at least τ‖U‖2

F in small space and a

single pass over the data. By increasing the space by a factor of O(ε−2 logn), we can also use the

ℓ2-samples to estimate the norms ‖U(i)‖2
2 for the row indices i that we find.

Entropy. Given a distribution ρ, a statistic of ρ of interest is the entropy of this distribution,

where the entropy is defined as H(ρ) = ∑i ρ(i) log2(1/ρ(i)). This statistic can be approximated in

a streaming setting. Indeed, it is known that estimating H(ρ) up to an additive ε can be reduced

to (1 + ε̃)-approximation of the ℓp-norm of the vector (ρ(1), . . . ,ρ(n)), for O(log1/ε) different

p ∈ (0,1) (Harvey et al., 2008). Here ε̃ = ε/(log3 1/ε · logn). When applied to our setting, the

distribution of interest is ρ(i) = 1
d
‖U(i)‖2

2. To compute the entropy of this distribution, there exist

sketching matrices T for providing (1+ε)-approximations to the quantity Fp(F2) of an n×d matrix

A, where Fp(F2) is defined as ∑n
i=1 ‖A(i)‖2p

2 , using O(ε−4 log2 n log1/ε) bits of space (see Theorem

1 of Ganguly et al. (2008)). Thus, to compute the entropy of the leverage score distribution, we

can do the following. First, maintain TA and ΠA in the first pass over the data, where T is a

sketching matrix for Fp(F2), p ∈ (0,1). At the end of the first pass, compute R−1; and finally,

compute TAR−1Π2, which effectively applies the Fp(F2)-estimation matrix T to the rows of the

matrix AR−1Π2. Therefore, by the results of Harvey et al. (2008) and Ganguly et al. (2008), we can

compute an estimate φ which is within an additive ε of H(ρ) using O(dε−4 log6 n log14 1/ε) bits of

space and a single pass. We note that it is also possible to estimate H(ρ) up to a multiplicative 1+ε

factor using small, but more, space; see, for example, Harvey et al. (2008).

Sampling Row Identities. Another natural problem is that of obtaining samples of rows of

A proportional to their leverage score importance sampling probabilities. To do so, we use ℓ2-

sampling (Monemizadeh and Woodruff, 2010; Andoni et al., 2010) as used above for finding the

large leverage scores. First, compute TA and ΠA in the first pass over the data stream; then, compute

R−1; and finally, compute TAR−1. Thus, by applying the procedures of Andoni et al. (2010) a total

of s times independently, we obtain s samples i1, . . . , is, with replacement, of rows of A proportional
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to ‖U(i1)‖2
2, . . . ,‖U(is)‖2

2, that is, to their leverage score. The algorithm requires O(sdε−2 log4 n) bits

of space and runs in a single pass. To obtain more than just the row identities i1, . . . , is, for example,

to obtain the actual samples, one can read off these rows from A in a second pass over the matrix.

References

D. Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins.

Journal of Computer and System Sciences, 66(4):671–687, 2003.

N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast Johnson-Lindenstrauss trans-

form. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages 557–

563, 2006.

N. Ailon and B. Chazelle. The fast Johnson-Lindenstrauss transform and approximate nearest neigh-

bors. SIAM Journal on Computing, 39(1):302–322, 2009.

N. Ailon and E. Liberty. Fast dimension reduction using Rademacher series on dual BCH codes.

In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1–9,

2008.

A. Andoni, R. Krauthgamer, and K. Onak. Streaming algorithms from precision sampling. Techni-

cal report, 2010. Preprint: arXiv:1011.1263.

H. Avron, P. Maymounkov, and S. Toledo. Blendenpik: Supercharging LAPACK’s least-squares

solver. SIAM Journal on Scientific Computing, 32:1217–1236, 2010.

C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix. Applied Numer-

ical Mathematics, 57:1214–1229, 2007.

C. Bekas, A. Curioni, and I. Fedulova. Low cost high performance uncertainty quantification. In

Proceedings of the 2nd Workshop on High Performance Computational Finance, page Article

No.: 8, 2009.

P. Bonacich. Power and centrality: A family of measures. The American Journal of Sociology, 92

(5):1170–1182, 1987.

C. Boutsidis, M.W. Mahoney, and P. Drineas. An improved approximation algorithm for the column

subset selection problem. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 968–977, 2009.

C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near-optimal column-based matrix reconstruction.

In Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, pages

305–314, 2011a.

C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near-optimal column-based matrix reconstruction.

Technical report, 2011b. Preprint: arXiv:1103.0995.

E.J. Candes and B. Recht. Exact matrix completion via convex optimization. Technical report,

2008. Preprint: arXiv:0805.4471.

3469



DRINEAS, MAGDON-ISMAIL, MAHONEY AND WOODRUFF

S. Chatterjee and A.S. Hadi. Influential observations, high leverage points, and outliers in linear

regression. Statistical Science, 1(3):379–393, 1986.

S. Chatterjee and A.S. Hadi. Sensitivity Analysis in Linear Regression. John Wiley & Sons, New

York, 1988.

S. Chatterjee, A.S. Hadi, and B. Price. Regression Analysis by Example. John Wiley & Sons, New

York, 2000.

A. Dasgupta, R. Kumar, and T. Sarlós. A sparse Johnson-Lindenstrauss transform. In Proceedings

of the 42nd Annual ACM Symposium on Theory of Computing, pages 341–350, 2010.

P. Drineas, R. Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for matrices I: Approxi-

mating matrix multiplication. SIAM Journal on Computing, 36:132–157, 2006a.

P. Drineas, M.W. Mahoney, and S. Muthukrishnan. Sampling algorithms for ℓ2 regression and

applications. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 1127–1136, 2006b.

P. Drineas, M.W. Mahoney, and S. Muthukrishnan. Relative-error CUR matrix decompositions.

SIAM Journal on Matrix Analysis and Applications, 30:844–881, 2008.

P. Drineas, J. Lewis, and P. Paschou. Inferring geographic coordinates of origin for Europeans using

small panels of ancestry informative markers. PLoS ONE, 5(8):e11892, 2010a.

P. Drineas, M.W. Mahoney, S. Muthukrishnan, and T. Sarlós. Faster least squares approximation.

Numerische Mathematik, 117(2):219–249, 2010b.

S. Ganguly, M. Bansal, and S. Dube. Estimating hybrid frequency moments of data streams. In

Proceedings of the 2nd Annual International Workshop on Frontiers in Algorithmics, pages 55–

66, 2008.

S. Georgiev and S. Mukherjee, 2011. Unpublished results. (2011).

A. Gittens and M. W. Mahoney, 2012. In preparation. (2012).

G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore,

1996.

N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217–288,

2011.

N.J.A. Harvey, J. Nelson, and K. Onak. Sketching and streaming entropy via approximation theory.

In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, pages

489–498, 2008.

D.C. Hoaglin and R.E. Welsch. The hat matrix in regression and ANOVA. The American Statisti-

cian, 32(1):17–22, 1978.

3470



FAST APPROXIMATION OF MATRIX COHERENCE AND STATISTICAL LEVERAGE

E. A. Jonckheere, M. Lou, J. Hespanha, and P. Barooah. Effective resistance of Gromov-hyperbolic

graphs: Application to asymptotic sensor network problems. In Proceedings of the 46th IEEE

Conference on Decision and Control, pages 1453–1458, 2007.

M. Magdon-Ismail. Row sampling for matrix algorithms via a non-commutative Bernstein bound.

Technical report, 2010. Preprint: arXiv:1008.0587.

M. W. Mahoney. Randomized Algorithms for Matrices and Data. Foundations and trends in machine

learning. NOW Publishers, Boston, 2011. Also available at: arXiv:1104.5557.

M.W. Mahoney and P. Drineas. CUR matrix decompositions for improved data analysis. Proc. Natl.

Acad. Sci. USA, 106:697–702, 2009.

X. Meng, M. A. Saunders, and M. W. Mahoney. LSRN: A parallel iterative solver for strongly over-

or under-determined systems. Technical report, 2011. Preprint: arXiv:1109.5981.

M. Monemizadeh and D. P. Woodruff. 1-pass relative-error lp-sampling with applications. In Pro-

ceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1143–1160,

2010.

S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends in Theo-

retical Computer Science. Now Publishers Inc, Boston, 2005.

M.Z. Nashed, editor. Generalized Inverses and Applications. Academic Press, New York, 1976.

M.E.J. Newman. A measure of betweenness centrality based on random walks. Social Networks,

27:39–54, 2005.

C.H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic indexing: a proba-

bilistic analysis. Journal of Computer and System Sciences, 61(2):217–235, 2000.

P. Paschou, E. Ziv, E.G. Burchard, S. Choudhry, W. Rodriguez-Cintron, M.W. Mahoney, and

P. Drineas. PCA-correlated SNPs for structure identification in worldwide human populations.

PLoS Genetics, 3:1672–1686, 2007.

P. Paschou, J. Lewis, A. Javed, and P. Drineas. Ancestry informative markers for fine-

scale individual assignment to worldwide populations. Journal of Medical Genetics, page

doi:10.1136/jmg.2010.078212, 2010.

M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing. In Proceed-

ings of the 8th Annual ACM SIGKDD Conference, pages 61–70, 2002.

V. Rokhlin and M. Tygert. A fast randomized algorithm for overdetermined linear least-squares

regression. Proc. Natl. Acad. Sci. USA, 105(36):13212–13217, 2008.

V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for principal component analysis.

SIAM Journal on Matrix Analysis and Applications, 31(3):1100–1124, 2009.

T. Sarlós. Improved approximation algorithms for large matrices via random projections. In Pro-

ceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pages 143–

152, 2006.

3471



DRINEAS, MAGDON-ISMAIL, MAHONEY AND WOODRUFF

A. Talwalkar and A. Rostamizadeh. Matrix coherence and the Nyström method. In Proceedings of

the 26th Conference in Uncertainty in Artificial Intelligence, 2010.

P.F. Velleman and R.E. Welsch. Efficient computing of regression diagnostics. The American

Statistician, 35(4):234–242, 1981.

3472


