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Abstract
This paper addresses how well we can recover a data matrix when only given a few of its elements.
We present a randomized algorithm that element-wise sparsifies the data, retaining only a few of
its entries. Our new algorithm independently samples the data using probabilities that depend
on both squares (`2 sampling) and absolute values (`1 sampling) of the entries. We prove that
this hybrid algorithm (i) achieves a near-PCA reconstruction of the data, and (ii) recovers sparse
principal components of the data, from a sketch formed by a sublinear sample size. Hybrid-(`1, `2)
inherits the `2-ability to sample the important elements, as well as the regularization properties
of `1 sampling, and maintains strictly better quality than either `1 or `2 on their own. Extensive
experimental results on synthetic, image, text, biological, and financial data show that not only
are we able to recover PCA and sparse PCA from incomplete data, but we can speed up such
computations significantly using our sparse sketch .
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1. Introduction

We address two fundamental data science problems, namely, (i) a near-PCA reconstruction of the
data, and (ii) recovering sparse principal components of the data, in a setting where we can use only
a few of the data entries (element-wise matrix sparsification problem was pioneered by Achlioptas
and McSherry 2001, 2007). This is a situation that one is confronted with all too often in machine
learning (say, we have a small sample of data points and those data points have missing features).
For example, with user-recommendation data, one does not have all the ratings of any given user.
Or in a privacy preserving setting, a client may not want to give us all entries in the data matrix.
In such a setting, our goal is to show that if the samples that we get are chosen carefully, the top-k
PCA and sparse PCA features of the data can be recovered within some provable error bounds. In
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fact, we show that solutions of a large class of optimization problems, irrespective of whether they
are efficiently solvable (e.g. PCA) or NP-hard (e.g. sparse PCA), can be approximated provably by
such element-wise sparse representation of the data.

More formally, the data matrix is A ∈ Rm×n (m data points in n dimensions). Often, real data
matrices have low effective rank, so let Ak be the best rank-k approximation to A with ‖A−Ak‖2
being small, where ‖X‖2 is the spectral norm of matrix X. Ak is obtained by projecting A onto the
subspace spanned by its top-k principal components. In order to approximate this top-k principal
subspace, we adopt the following strategy. Select a small number, s, of elements from A and
produce a sparse sketch Ã; use Ã to approximate the top-k principal subspace. Note that both PCA
and the sparse PCA problem have the same objective, i.e., to maximize the variance of the data;
however, the sparse PCA problem has an additional sparsity constraint on each principal component
(and this makes it NP-hard). Sections 2.1 and 2.2 contains the formulations of PCA and sparse PCA,
respectively. We give the details of Algorithm 2 to approximate the top-k principal subspace and the
corresponding theoretical guarantees in Theorem 3. Theorem 4 shows the quality of approximation
for the sparse PCA problem (and this error bound is applicable to a large class of optimization
problems as long as the objective function satisfies a generalized notion of Lipschitz continuity to
be discussed later). The key quantity that we must control to recover a close approximation to PCA
and sparse PCA is how well the sparse sketch approximates the data in the operator norm. That is,
if ‖A− Ã‖2 is small then we can recover PCA and sparse PCA effectively from a small number of
samples.

Problem: Element-wise Matrix Sparsification

Given A ∈ Rm×n and ε > 0, sample s elements to obtain a sparse sketch Ã for which

‖A− Ã‖2 ≤ ε and ‖Ã‖0 ≤ s. (1)

See SECTION 1.1 for notations. Our main result addresses the problem above. In a nutshell, with
only partially observed data whose elements have been carefully selected, one can recover an ap-
proximation to the top-k principal subspace. An additional benefit is that our approximation to the
top-k subspace using iterated matrix multiplication (e.g., power iterations) can benefit computation-
ally from sparsity. To construct Ã, we use a general randomized approach which independently
samples (and rescales) s elements from A using probability pij to sample element Aij . We analyze
in detail the case pij ∝ α|Aij |+ (1− α)|Aij |2 to get a bound on ‖A− Ã‖2. We now make our
discussion precise, starting with our notation.

1.1 Notation

We use bold uppercase (e.g., X) for matrices and bold lowercase (e.g., x) for column vectors.
The i-th row of X is X(i), and the i-th column of X is X(i). Let [n] denote the set {1, 2, ..., n}.
E(X) is the expectation of a random variable X; for a matrix, E(X) denotes the element-wise
expectation. For a matrix X ∈ Rm×n, the Frobenius norm ‖X‖F is ‖X‖2F =

∑m,n
i,j=1 X2

ij , and the
spectral (operator) norm ‖X‖2 is ‖X‖2 = max‖y‖2=1‖Xy‖2. We also have the `1 and `0 norms:
‖X‖1 =

∑m,n
i,j=1 |Xij | and ‖X‖0 is the number of non-zero entries in X. The k-th largest singular

value of X is σk(X). For symmetric matrices X and Y, Y � X if and only if Y −X is positive
semi-definite. In is the n × n identity and lnx is the natural logarithm of x. We use ei to denote
standard basis vectors whose dimensions will be clear from the context.
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Two popular sampling probabilities are `1, where pij = |Aij |/‖A‖1 (Achlioptas and McSherry
2001; Achlioptas et al. 2013a), and `2, where pij = A2

ij/ ‖A‖
2
F (Achlioptas and McSherry 2001;

Drineas and Zouzias 2011). We construct Ã as follows: Ãij = 0 if (i, j)-th entry is not sampled;
sampled elements Aij are rescaled to Ãij = Aij/pij which makes the sketch Ã an unbiased
estimator of A, so E[Ã] = A. The sketch is sparse if the number of sampled elements is sublinear
inmn, i.e., s = o(mn). Sampling according to element magnitudes is natural in many applications,
for example in a recommendation system users tend to rate a product they like (high positive) or
dislike (high negative).

Our main sparsification algorithm (Algorithm 1) receives as input a matrix A and an accuracy
parameter ε > 0, and samples s elements from A in s independent, identically distributed trials
with replacement, according to a hybrid-(`1, `2) probability distribution specified in Equation (3).
The algorithm returns Ã ∈ Rm×n, a sparse and unbiased estimator of A, as a solution to (1).

1.2 Prior Work on Element Sampling

Achlioptas and McSherry (2001, 2007) pioneered the idea of `2 sampling for element-wise sparsifi-
cation. However, `2 sampling on its own is insufficient for provably accurate bounds on ‖A− Ã‖2.
As a matter of fact Achlioptas and McSherry (2001, 2007) observed that “small” entries need to
be sampled with probabilities that depend on their absolute values only, thus also introducing the
notion of `1 sampling. The underlying reason for the need of `1 sampling is the fact that if a small
element is sampled and rescaled using `2 sampling, this would result in a huge entry in Ã (because
of the rescaling). As a result, the variance of `2 sampling is quite high, resulting in poor theoret-
ical and experimental behavior. `1 sampling of small entries rectifies this issue by reducing the
variance of the overall approach. Arora et al. (2006) proposed a sparsification algorithm that de-
terministically keeps large entries, i.e., entries of A such that |Aij | ≥ ε/

√
n and randomly rounds

the remaining entries using `1 sampling. Formally, entries of A that are smaller than ε
√
n are set

to sign (Aij) ε/
√
n with probability pij =

√
n |Aij | /ε and to zero otherwise. They used an ε-net

argument to show that ‖A− Ã‖2 was bounded with high probability. Drineas and Zouzias (2011)
bypassed the need for `1 sampling by zeroing-out the small entries of A (e.g., all entries such that
|Aij | < ε/2n for a matrix A ∈ Rn×n) and then use `2 sampling on the remaining entries in order to
sparsify the matrix. This simple modification improves Achlioptas and McSherry (2007) and Arora
et al. (2006), and comes with an elegant proof using the matrix-Bernstein inequality of Recht (2011).
Note that all these approaches need truncation of small entries. Recently, Achlioptas et al. (2013a)
showed that `1 sampling in isolation could be done without any truncation, and argued that (under
certain assumptions) `1 sampling would be better than `2 sampling, even using the truncation. Their
proof is also based on the matrix-valued Bernstein inequality of Recht (2011). Finally, the result
that is closest to ours is due to Achlioptas et al. (2013b), where the proposed distribution is

pij = ρi · |Aij | /‖A(i)‖1 (Bernstein distribution) (2)

where, ρi is a distribution over the rows, i.e.,
∑

i ρi = 1. This distribution is derived using matrix-
Bernstein inequality for a fixed sampling budget s, and under some assumptions it is shown to be
near-optimal in the sense that the error ‖A − Ã‖2 it produces is within a constant factor of the
smallest error produced by an optimal distribution over elements Aij . Similar to this distribution
we also use a convex combination of probabilities. However, our proposed hybrid distribution only
relies on `1 and `2 probabilities, thus requiring considerably less prior information about the data
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A comparing to Bernstein distribution (Achlioptas et al. 2013b), while also being more faithful to
how matrices in practice are sampled locally based on element properties, and not based on global
properties of a matrix.

1.3 Our Contributions

We introduce an intuitive hybrid approach to element-wise matrix sparsification, by combining `1
and `2 sampling. We propose to use sampling probabilities of the form

pij = α · |Aij |
‖A‖1

+ (1− α)
A2
ij

‖A‖2F
, α ∈ (0, 1] (3)

for all i, j . We retain the good properties of `2 sampling that bias us towards data elements in the
presence of small noise, while regularizing smaller entries using `1 sampling. We summarize the
main contributions below.
• We give a parameterized sampling distribution in the variable α ∈ (0, 1] that controls the

balance between `2 sampling and `1 regularization. This greater flexibility allows us to achieve
better accuracy than both `1 and `2. Further, we derive the optimal hybrid-(`1, `2) distribution,
using Lemma 1 for any given A, by computing the optimal parameter α∗ which achieves the desired
accuracy with the smallest sample size using our theoretical bound.

Setting α = 1 in our bounds we reproduce the result of Achlioptas et al. (2013a) who claim
that `1 is typically better than `2. Moreover, our result shows that α∗ < 1 which means that the
hybrid approach is better than `1 (and `2). Thus, our result generalizes the result of Achlioptas et al.
(2013a). Note that the Bernstein distribution of Achlioptas et al. (2013b) (for a given s) is a convex
combination of ‘intra-row’ weights |Aij | /‖A‖1, where as, our distribution (for a given ε) is a much
simpler and intuitive convex combination of `1 and `2 probabilities.
• We propose Algorithm 2 to provably recover PCA by constructing a sparse unbiased sketch

of (centered) data from a limited number of samples. Moreover, we show how we can effectively
approximate the sparse PCA problem (NP-hard) from incomplete data. In fact, we prove how
sampling based sketches can approximate the solutions for a large class of optimization problems
(irrespective of their computational hardness) from limited number of observed data points.

For the above problems we want to derive probabilities using little or no global information
about the data. The Bernstein distribution in Achlioptas et al. (2013b) requires additional informa-
tion about row norms ‖A(i)‖1, as well as, optimal convex combinations ρi, for each row. In contrast,
our distribution assumes only one real number α∗. This makes our optimal hybrid distribution more
convenient for the above problems in practice.
• Finally, we propose Algorithm 3 to provably implement hybrid sampling using only one pass

over the data. This is particularly useful in streaming setting where we receive data as a stream
of numbers and we have only limited memory to store them. Note that Bernstein sampling of
Achlioptas et al. (2013b) can be implemented in streaming setting as well; however, they need
information (or estimates) of those global quantities beforehand. In contrast, we need no prior
knowledge of parameter α which governs the sampling distribution. Surprisingly, we can set α∗ (or
its estimate) at a later stage of the sampling process when the stream terminates.

Extensive experimental results on image, text, biological, and financial data show that sketches
using our optimal hybrid-(`1, `2) sampling achieve better quality of approximation to PCA and
sparse PCA problems than either `1 or `2 sampling on their own. Moreover, we can speed up such
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Figure 1: (left) Synthetic 500× 500 binary data D; (right) mesh view of noisy data A0.1.

computations significantly using our sparse sketch. Finally, our results are comparable (if not better)
than those of Achlioptas et al. (2013b) despite using significantly less information about the data.

1.4 A Motivating Example for Hybrid Sampling

The main motivation for introducing the idea of hybrid-(`1, `2) sampling comes from achieving a
tighter bound on s using a simple and intuitive probability distribution on elements of A. For this,
we observe certain good properties of both `1 and `2 sampling for sparsification of noisy data (in
practice, we experience data that are noisy, and it is perhaps impossible to separate “true” data from
noise). We illustrate the behavior of `1 and `2 sampling on noisy data using the following synthetic
example. We construct a 500 × 500 binary data D (FIGURE 1), and then perturb it by a random
Gaussian matrix N whose elements Nij follow Gaussian distribution with mean zero and standard
deviation 0.1. We denote this perturbed data matrix by A0.1. First, we note that `1 and `2 sampling
work identically on binary data D. However, FIGURE 2 depicts the change in behavior of `1 and
`2 sampling to sparsify A0.1. Data elements and noise in A0.1 are the elements with non-zero
and zero values in D, respectively. We sample s = 5000 indices in i.i.d. trials according to `1
and `2 probabilities separately to produce sparse sketch Ã. FIGURE 2 shows that elements of Ã,
produced by `1 sampling, have controlled variance but most of them are noise. On the other hand,
`2 sampling is biased towards data elements, although small number of sampled noisy elements
create large variance due to rescaling. Such large magnitude noisy elements become outliers in
Ã; consequently, PCA on Ã becomes a poor approximation to the true PCA of A. Our hybrid-
(`1, `2) sampling benefits from this bias of `2 towards data elements to sample large number of true
data. Additionally, the regularization property of `1 component prevents noisy elements to become
outliers in Ã helping us to achieve near-PCA reconstruction.

We parameterize our distribution using the variable α ∈ (0, 1] that controls the balance between
`2 sampling and `1 regularization. One can view α as a regularization parameter. We derive an
expression to compute α∗, the optimal α, corresponding to the smallest sample size that we need
to achieve an accuracy ε in (1). When α = 1 we reproduce the result of Achlioptas et al. (2013a).
However, α∗ may be smaller than 1, and the bound on sample size, using α∗, is guaranteed to be
tighter than that of Achlioptas et al. (2013a) and `2.

2. Main Results

We present the quality-of-approximation result of our main sampling algorithm (Algorithm 1). We
sample some of the non-zero elements of the fixed matrix A ∈ Rm×n (and rescale them) to form
a sparse matrix Ã that is close to A in spectral norm. It would be useful to interpret the sampling
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(a) `1 sampling
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(b) `2 sampling
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(c) Hybrid-(`1, `2) sampling

Figure 2: Elements of sparse sketch Ã produced from A0.1 by (a) `1, (b) `2, and (c) hybrid-(`1, `2),
α = 0.7 sampling. In each plot, x-axis is the number of sampled indices s = 5000,
including both data and noise. y-axis plots the rescaled absolute values (in ln scale) of
Ã corresponding to the sampled indices. `1 sampling produces elements with controlled
variance but it mostly samples noise, whereas `2 samples a lot of data although producing
large variance of rescaled elements. Hybrid-(`1, `2) sampling uses `1 as a regularizer
while sampling fairly large number of data that helps to preserve the spectral structure of
original data. Data and noisy elements are shown as clusters for better visualization.

of elements from A as follows. We can express A as a sum of matrices each having at most one
non-zero element.

A =

m,n∑
i,j=1

Aijeie
T
j , ∀(i, j) ∈ [m]× [n] (4)

We sample (in i.i.d. trials) some of the terms in (4) according to some probability distribution
{pij}m,ni,j=1 defined over the elements of A to form a (weighted) partial sum that represents our sparse
sketch Ã of A. More formally, we define the following sampling operator SΩ : Rm×n → Rm×n in
(5) that extracts some of the terms from (4). Let Ω ⊂ [m] × [n] be a multi-set of sampled indices
(it, jt), for t = 1, ..., s. Then,

Ã = SΩ (A) =
1

s

s∑
t=1

Aitjt

pitjt
eite

T
jt , (it, jt) ∈ Ω (5)

Clearly, Ã in (5) is a sparse (at most s non-zero elements), unbiased estimator of A. We use
the sampling operator in (5) in Algorithm 1 to randomly sample (in i.i.d. trials) s elements of A,
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according to pij’s as in equation (3). In order to bound ‖A−Ã‖2 we first express A−Ã as a sum of
zero-mean, independent, random matrices, and then use the following matrix-Bernstein inequality
in Lemma 1 (due to Recht 2011) that bounds the deviation of spectral norms of such matrices.

Lemma 1 [Theorem 3.2 of Recht 2011] Let M1,M2, ...,Ms be independent, zero-mean random
matrices in Rm×n. Suppose maxt∈[s]

{
‖E(MtM

T
t )‖2, ‖E(MT

t Mt)‖2
}
≤ ρ2, and ‖Mt‖2 ≤ γ for

all t ∈ [s]. Then, for any ε > 0,
∥∥1
s

∑s
t=1 Mt

∥∥
2
≤ ε holds, subject to a failure probability at most

(m+ n) exp
(
−sε2/2
ρ2+γε/3

)
.

A popular construction of Mt ∈ Rm×n, t ∈ [s], in Lemma 1 is Mt =
Aitjt
pitjt

eite
T
jt
−A for pitjt 6= 0.

Clearly, 1
s

∑s
t=1 Mt = Ã − A. We can see that ρ2 and γ of Lemma 1 are now dependent on pij

(Lemmas 8 and 9), i.e., different choices of pij lead to different bounds on ρ2 and γ. Now, upper
bounding the failure probability in Lemma 1 by δ > 0, we can express the sample size s as a
function of the key quantities ρ2 and γ, and consequently as a function of pij :

s ≥ 2

ε2
· (ρ2 + γε/3) · ln((m+ n)/δ).

Since our choice of pij in (3) is a function of distribution parameter α, we essentially parameterize
ρ2 and γ by α, and express s as a function of α. Let us define f(α) as follows.

f(α) = ρ2(α) + γ(α)ε‖A‖2/3,

where

γ(α) = max
i,j:

Aij 6=0

{
‖A‖1

α+ (1− α)
‖A‖1·|Aij |
‖A‖2F

}
+ ‖A‖2, (6)

ρ2(α) = max
{

max
i

n∑
j=1

ξij(α),max
j

m∑
i=1

ξij(α)
}
− σ2

min, (7)

ξij(α) = ‖A‖2F /
( α · ‖A‖2F
|Aij | · ‖A‖1

+ (1− α)
)
,Aij 6= 0, (8)

σmin is the smallest singular value of A. Such parameterization gives us a flexibility to express the
sample size as a function of α: s(α) ∝ f(α). Naturally, we want to find α ∈ (0, 1] that results in
the smallest s(α). The optimal α may be less than 1, and setting α = 1 (in which case equation 3
coincides with `1 probabilities of Achlioptas et al. 2013a) may not produce the smallest s.

We can see that γ(α) prevents f(α) from blowing up (in case of sampling a tiny element of A)
by setting α away from 0 (this is a regularization step). Thus, ρ2(α) becomes the dominating term
in f(α) as γ(α) is multiplied by a small constant ε. We take a closer look at ξij(α) as it is the key
quantity in ρ2(α) which is approximately the larger of the largest row sum or the largest column

sum of ξij(α). While minimizing f(α), α maintains a trade-off between the two terms α·‖A‖2F
|Aij |·‖A‖1

and (1 − α) such that the maximum row sum or column sum of ξij(α) gets smaller. Along row i
or column j, for smaller |Aij |, we typically have |Aij | · ‖A‖1 < ‖A‖2F , and consequently α → 1
reduces ρ2(α). On the other hand, for larger |Aij | we have |Aij | · ‖A‖1 > ‖A‖2F and α away
from 1 is preferred to reduce ρ2(α). Thus α plays an intricate role to reduce the overall sample size
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Algorithm 1 Element-wise Matrix Sparsification

1: Input: A ∈ Rm×n, accuracy ε > 0.
2: Set s as in eq. (11).
3: For t = 1 . . . s (i.i.d. trials with replacement) randomly sample pairs of indices (it, jt) ∈

[m]× [n] with P [(it, jt) = (i, j)] = pij , where pij are as in (3), using α as in (10).
4: Output: SΩ (A) = 1

s

∑s
t=1

Aitjt
pitjt

eite
T
jt
.

depending on the structure of the data. Note that for α = 1 (as in Achlioptas et al. 2013a) we have
ξij(α) = |Aij | · ‖A‖1. Therefore, for larger |Aij | (true data points), maximum row sum or column
sum of ξij(α) lose the benefit of the delicate role played by α < 1 to reduce those quantities, and
they become larger than that for α < 1. Thus, parameterization and optimization with α gives us a
strictly smaller sample size than that of `1 or `2 sampling for the problem in (1).

Our main algorithm Algorithm 1 leads us to the following theorem.

Theorem 2 Let A ∈ Rm×n and let ε > 0 be an accuracy parameter. Let SΩ be the sampling
operator defined in (5), and assume that the multi-set Ω is generated using sampling probabilities
{pij}m,ni,j=1 as in (3). Then, with probability at least 1− δ, ‖SΩ(A)−A‖2 ≤ ε‖A‖2, if

s ≥ 2

(ε‖A‖2)2
· f(α) · ln((m+ n)/δ). (9)

Furthermore, we can find α∗ (optimal α corresponding to the smallest s) by solving (10):

α∗ = min
α∈(0,1]

f(α), (10)

and the corresponding optimal sample size is

s∗ =
2

(ε‖A‖2)2
· f(α∗) · ln((m+ n)/δ). (11)

For a given matrix A, we can easily compute ρ2(α) and γ(α) for various values of α. Given
an accuracy ε and failure probability δ, we can compute α∗ corresponding to the tightest bound on
s. Note that, for α = 1 we reproduce the results of Achlioptas et al. (2013a) (which was expressed
using various matrix metrics). However, α∗ may be smaller than 1, and is guaranteed to produce
tighter s comparing to extreme choices of α (e.g. α = 1 for `1). We illustrate this in FIGURE 3.
We give a proof of Theorem 2 in APPENDIX A.

2.1 Approximation of PCA via Element Sampling

The top-k principal components of centered data A ∈ Rm×n (m data points in n dimensions),
denoted by Vk ∈ Rn×k, can be formulated as the solution to the variance maximization problem:

Vk = argmax
V∈Rn×k,VTV=I

trace(VTATAV). (12)

The maximum variance achievable using Vk, denoted by OPTk, is the sum of squares of the top-k
singular values of A. Note that in (12) the optimal solution is computed using the full data A (which
is typically dense).
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Figure 3: Plot of f(α) in eqn. (10) for data A0.1. We use ε = 0.05 and δ = 0.1. x-axis plots α and
y-axis is in log scale.

Algorithm 2 Approximation of PCA from Data Samples

1: Input: Centered data A ∈ Rm×n, sparsity parameter s > 0, and rank parameter k.
2: Produce sparse unbiased sketch Ã from A, in s i.i.d. trials using Algorithm 11.
3: Perform rank truncated SVD on matrix Ã, i.e., [Ũk, D̃k, Ṽk] = SVD(Ã, k).
4: Output: Ṽk (columns of Ṽk are the ordered principal components).

Here we discuss a provable algorithm (Algorithm 2) to approximate PCA by applying element-
wise sampling. We produce a sparse unbiased estimator Ã of centered data A by sampling s
elements in i.i.d. trials according to our hybrid-(`1, `2) distribution in (3). We use this Ã instead of
A in (12) to compute the new optimal solution Ṽk

Ṽk = argmax
V∈Rn×k,VTV=I

trace(VT ÃT ÃV). (13)

The computation of rank-truncated SVD on sparse data requires fewer floating point operations
(therefore can be fast), and we consider the right singular vectors Ṽk of Ã as the approximate
principal components of A. Naturally, more samples produce better approximation. However, this
reduces sparsity, consequently we may lose the speed advantage. Theorem 3 shows the quality of
approximation of principal components produced by Algorithm 2.

Theorem 3 Let A ∈ Rm×n be a given matrix, and Ã be a sparse sketch produced by Algorithm 1.
Let Ṽk be the PCA’s of Ã computed in step 3 of Algorithm 2. Then

1) ‖A−AṼkṼk
T ‖2F ≤ ‖A−Ak‖2F + 4‖Ak‖2F · ‖A− Ã‖2/σk(A),

2) ‖Ak − Ãk‖F ≤
√

8k · (‖A−Ak‖2 + ‖A− Ã‖2),

3) ‖A− Ãk‖F ≤ ‖A−Ak‖F +
√

8k · (‖A−Ak‖2 + ‖A− Ã‖2).

1. Here we avoid computing ‖A‖2 directly and instead upper bound it by ‖A‖F in γ(α) in Lemma 8. In (10) ρ2(α) is
the dominating term (we ignore σmin as it is typically very small) and γ(α) is multiplied by a small constant ε; thus
in reality such relaxation of γ(α) and ρ2(α) has little effect on α∗ (we verified it experimentally). However, we refer
to the α that we get using the above as near-optimal.

9
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The first inequality of Theorem 3 bounds the approximation of projected data onto the space
spanned by top k approximate principal components. The second and third inequalities measure the
quality of Ãk as a surrogate for Ak and the quality of projection of sparsified data onto approximate
principal components, respectively. The proofs of first two inequalities of Theorem 3 follow from
Theorem 5 and Theorem 8 of Achlioptas and McSherry (2001), respectively. The last inequality
follows from the triangle inequality. The last two inequalities above are particularly useful in cases
where A is inherently low-rank and we choose an appropriate k for which ‖A−Ak‖2 is small.

2.2 Approximating Sparse PCA from Incomplete Data

PCA constructs a low dimensional subspace of the data such that projection of the data onto this
subspace preserves as much information as possible. However a shortcoming of PCA is the in-
terpretation of the principal components (or factors) as they can be linear combinations of all the
original variables. In many cases the original variables have direct physical significance (e.g. genes
in biological applications or assets in financial applications). In such cases it is desirable to have
factors which have loadings on only a small number of the original variables. These interpretable
factors are sparse principal components (SPCA). To derive sparse principal components, we add a
sparsity constraint to the optimization problem (see equation 14): every column of V should have
at most r non-zero entries (r is an input parameter),

Sk = argmax
V∈Rn×k,VTV=I,‖V(i)‖0≤r

trace(VTATAV). (14)

The sparse PCA problem is not only NP-hard, but also inapproximable (Magdon-Ismail 2017).
There are many heuristics for obtaining sparse factors (Cadima and Jolliffe, 1995; Trendafilov et al.,
2003; Zou et al., 2006; d’Aspremont et al., 2007, 2008; Moghaddam et al., 2006; Shen and Huang,
2008) including some approximation algorithms with provable guarantees Asteris et al. (2014). The
existing research typically addresses the task of getting just the top principal component (k = 1)
(some exceptions are Ma 2013; Cai et al. 2013; Wang et al. 2014; Lei and Vu 2015). While the
sparse PCA problem is hard and interesting, it is not the focus of this work.

We address the question: What if we do not know A, but only have a sparse sampling of some of
the entries in A (incomplete data)? The sparse sampling is used to construct a sketch of A, denoted
Ã. There is not much else to do but solve the sparse PCA problem with the sketch Ã instead of the
full data A to get S̃k,

S̃k = argmax
V∈Rn×k,VTV=I,‖V(i)‖0≤r

trace(VT ÃT ÃV). (15)

We study how S̃k performs as an approximation to Sk with respective to the objective that we
are trying to optimize, namely trace(STATAS) — the quality of approximation is measured with
respect to the true A. We show that the quality of approximation is controlled by how well ÃT Ã
approximates ATA as measured by the spectral norm of the deviation ATA − ÃT Ã. This is a
general result that does not rely on how one constructs the sketch Ã.

Lemma 4 (Sparse PCA from a Sketch) Let Sk be a solution to the sparse PCA problem that
solves (14), and S̃k a solution to the sparse PCA problem for the sketch Ã which solves (15).
Then,

trace(S̃k
TATAS̃k) ≥ trace(Sk

TATASk)− 2k‖ATA− ÃT Ã‖2.

10
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Lemma 4 says that if we can closely approximate A with Ã, then we can compute, from Ã, sparse
components which capture almost as much variance as the optimal sparse components computed
from the full data A. We prove that Lemma 4 follows as a corollary of a more general result given
in Theorem 10.

In our setting, the sketch Ã is computed from a sparse sampling of the data elements in A
(incomplete data). We use probabilities of the form in (3) to determine which elements to sample
and how to form the sketch such that the error ‖ATA − ÃT Ã‖2 is small. We can simplify this
quantity in terms of ‖A− Ã‖2 as follows. Let ∆ = A− Ã.

‖ATA− ÃT Ã‖2 = ‖AT∆ + ∆TA−∆T∆‖2 ≤ 2‖A‖2‖∆‖2 + ‖∆‖22. (16)

We combine the bound on ‖A − Ã‖2 for given accuracy ε/k from Theorem 2 with Lemma 4 to
derive k‖ATA − ÃT Ã‖2 ≤ ε(2 + ε/k)‖A‖22 with a sample size s = k2 · s∗ where s∗ as in (11).
However, we simplify this bound for a better interpretation of s in terms matrix dimensions m and
n and stable rank k̃ = ‖A‖2F /‖A‖22. Note that ‖A‖1 ≤

√
mn‖A‖F from Cauchy-Schwartz. Then,

γ(α)/‖A‖2 ≤ 1 + ‖A‖1/(α‖A‖2) ≤ 1 +
√
mnk̃/α = γ̂. (17)

Also, from |Aij | ≤ ‖A‖2, ρ2(α) in (7) can be simplified as

ξij(α) ≤ ‖A‖2F
(
αk̃‖A‖2/‖A‖1 + (1− α)

)−1
, (18)

ρ2(α)/‖A‖22 ≤ max{m,n}k̃
(
αk̃‖A‖2/‖A‖1 + (1− α)

)−1
= ρ̂2. (19)

Using the above relaxations we have the following theorem on sample size complexity.

Theorem 5 (Sampling Complexity for Sparse PCA) Sample s data-elements from A ∈ Rm×n to
form the sparse sketch Ã using Algorithm 1. Let Sk be a solution to the sparse PCA problem that
solves (14), and let S̃k, which solves (15), be a solution to the sparse PCA problem for the sketch Ã
formed from the s sampled data elements. Suppose the number of samples s satisfies

s ≥ 2k2ε−2(ρ̂2 + εγ̂/(3k)) log((m+ n)/δ),

(ρ̂2 and γ̂ are dimensionless quantities that depend only on A). Then, with probability at least 1− δ

trace(S̃k
TATAS̃k) ≥ trace(Sk

TATASk)− 2ε(2 + ε/k)‖A‖22.

The dependence of ρ̂2 and γ̂ on A are given in (17) and (19), respectively. Roughly speaking, we
can ignore the term with γ̂ since it is multiplied by ε/k, and we have ρ̂2 = O(k̃max{m,n}). To
paraphrase Theorem 5, when the stable rank k̃ is a small constant, with O(k2 max{m,n}) samples,
one can recover almost as good sparse principal components as with all data (a possible price being
a small fraction of the optimal variance, since OPTk ≥ ‖A‖22). As far as we know, the only prior
work related to the problem we consider here is Lounici (2013) which proposed a specific method
to construct sparse PCA from incomplete data. However, we develop a general tool that can be used
with any existing sparse PCA heuristic. Moreover, we derive much simpler bounds (Theorems 4
and 5) using matrix concentration inequalities, as opposed to ε-net arguments in Lounici (2013).

11
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2.2.1 SPARSE SKETCH USING GREEDY THRESHOLD

We also give an application of Lemma 4 to run sparse PCA after “denoising” the data using a
greedy thresholding algorithm that sets the small elements to zero (see Theorem 6). Such denoising
is appropriate when the observed matrix has been element-wise perturbed by small noise, and the
uncontaminated data matrix is sparse and contains large elements. We show that if an appropriate
fraction of the (noisy) data is set to zero, one can still recover sparse principal components. This
gives a principled approach to regularizing sparse PCA in the presence of small noise when the data
is sparse.

We give the simplest scenario of incomplete data where Lemma 4 gives some reassurance that
one can compute good sparse principal components. Suppose the smallest data elements have been
set to zero. This can happen, for example, if only the largest elements are measured, or in a noisy
setting if the small elements are treated as noise and set to zero. So

Ãij =

{
Aij |Aij | ≥ δ,
0 |Aij | < δ.

Recall k̃ = ‖A‖2F /‖A‖22 (stable rank of A), and define ‖Aδ‖2F =
∑
|Aij |<δ A2

ij . Let ∆ = A− Ã.

By construction, ‖∆‖2F = ‖Aδ‖2F and ‖ATA − ÃT Ã‖2 ≤ 2‖A‖2‖∆‖2 + ‖∆‖22 from (16). Sup-
pose the zeroing of elements only loses a fraction of the energy in A, i.e. δ is selected so that
‖Aδ‖2F ≤ ε2‖A‖2F /k̃; that is an ε/k̃ fraction of the total variance in A has been lost in the unmea-

sured (or zero) data. Then ‖∆‖2 ≤ ‖∆‖F ≤ ε‖A‖F /
√
k̃ = ε‖A‖2.

Theorem 6 Suppose that Ã is created from A by zeroing all elements that are less than δ, and δ
is such that the truncated norm satisfies ‖Aδ‖22 ≤ ε2‖A‖2F /k̃. Then the sparse PCA solution Ṽ∗

satisfies
trace(Ṽ∗TAAṼ∗) ≥ trace(V∗TAATV∗)− 2kε‖A‖22(2 + ε).

Theorem 6 shows that it is possible to recover sparse PCA after setting small elements to zero. This
is appropriate when most of the elements in A are small noise and a few of the elements in A
contain large data elements. For example if the data consists of sparse O(

√
nm) large elements (of

magnitude, say 1) and many nm−O(
√
nm) small elements whose magnitude is o(1/

√
nm) (high

signal-to-noise setting), then ‖Aδ‖22/‖A‖22 → 0 and with just a sparse sampling of the O(
√
nm)

large elements (very incomplete data), we recover near optimal sparse PCA.
Not only do our algorithms preserve the quality of the sparse principal components, but iterative

algorithms for sparse PCA, whose running time is proportional to the number of non-zero entries in
the input matrix, benefit from the sparsity of Ã. Our experiments show about five-fold speed gains
while producing near-comparable sparse components using less than 10% of the data.

2.3 One-pass Hybrid-(`1, `2) Sampling

Here we discuss the implementation of hybrid-(`1, `2) sampling in one pass over the input ma-
trix A using O(s) memory, e.g., a streaming model. Here we propose an algorithm, Algorithm 3,
to implement a one-pass version of the hybrid sampling without a priori knowledge of the regular-
ization parameter α.

We use SELECT-s algorithm (Algorithm 5 in APPENDIX F) to implement one-pass `1 and `2
sampling. We note that steps 2-3 of Algorithm 3 access the elements of A only once, in parallel,

12
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Algorithm 3 One-pass hybrid sampling

1: Input: Aij for all (i, j) ∈ [m]× [n], arbitrarily ordered, and sample size s.
2: Apply SELECT-s algorithm (Algorithm 5) using `1 probabilities to sample s independent

indices (it1 , jt1) and corresponding values Ait1jt1
to form random multiset S1 of triples

(it1 , jt1 ,Ait1jt1
), for t1 = 1, ..., s.

3: Apply SELECT-s algorithm using `2 probabilities to sample s independent indices (it2 , jt2)
and corresponding values Ait2jt2

to form random multiset S2 of triples (it2 , jt2 ,Ait2jt2
), for

t2 = 1, ..., s.
4: Store ‖A‖2F and ‖A‖1 /* these are already computed in SELECT-s algorithms above */
5: /* stream terminates */
6: Set the value of α ∈ (0, 1] (say, using Algorithm 4).
7: Create empty multiset of triples S.
8: X← 0m×n.
9: For t = 1 . . . s

10: Generate a uniform random number x ∈ [0, 1].
11: if x ≤ α, S(t)← S1(t); otherwise, S(t)← S2(t).
12: (it, jt)← S(t, 1 : 2).

13: p← α · |S(t,3)|
‖A‖1 + (1− α) · |S(t,3)|2

‖A‖2F
14: X← X + S(t,3)

p·s eite
T
jt

.
15: End
16: Output: random multiset S, and sparse matrix X.

to form independent multisets S1 and S2. We store ‖A‖2F and ‖A‖1 already computed in steps
2-3. Subsequent steps do not need further access to A. Interestingly, we set α in step 6 when
the data stream terminates. Steps 9-15 sample s elements from S1 and S2 using the α in step 6,
and produces a sparse matrix X using the sampled entries in multiset S. Theorem 7 proves that
Algorithm 3 indeed samples elements of A according to the hybrid-(`1, `2) probabilities in (3).

Theorem 7 Using the same notations as in Algorithm 3, for α ∈ (0, 1], t = 1, ..., s,

P [S(t) = (i, j,Aij)] = α · |Aij |
‖A‖1

+ (1− α) ·
A2
ij

‖A‖2F
.

See proof in APPENDIX E. Note that, Theorem 7 holds for any arbitrary α ∈ (0, 1] in line 7 of
Algorithm 3, i.e., Algorithm 4 is not essential for correctness of Theorem 7. We only need α to be
independent of the elements of S1 and S2. However, we can use Algorithm 4 to get a good estimate
of α∗ (SECTION 2.3.1). In this case, we need additional independent samples from A to ‘learn’
the parameter α∗.

2.3.1 ESTIMATE OF α∗ FROM SAMPLES

Here we discuss Algorithm 4, to estimate α∗ from samples of A and few other quantities, such as,
‖A‖F , ‖A‖1, and Amin, where Amin is defined as

Amin = min
i,j:

Aij 6=0

|Aij | .
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Algorithm 4 Estimating α∗ from Samples

1: Input: Ω, the set of triples {(i, j,Aij)} where each Aij is sampled with probability pij (say
pij = |Aij | /‖A‖1), accuracy ε, Amin, ‖A‖2F , ‖A‖1, and matrix dimensions m and n.

2: Compute γ̃(α) as in equation (20) and ξ̃ij(α) as in equation (21), for a given α.
3: Output: α̃ in equation (23).

Let Ω be a set of sampled triples {(i, j,Aij)} where each Aij is sampled with probability pij (e.g.,
pij = |Aij | /‖A‖1). Let us define, for a fixed α,

γ̃(α) = max
i,j:

Aij 6=0

{
‖A‖1

α+ (1− α)
‖A‖1·|Aij |
‖A‖2F

}
+ ‖A‖F =

‖A‖1
α+ (1− α) ‖A‖1‖A‖2F

·Amin

+ ‖A‖F . (20)

Note that, γ̃(α) can be computed using only one pass over the data. Further, we define the following
random variable (parameterized by α)

ξ̃ij(α) =
‖A‖2F

α·‖A‖2F
|Aij |·‖A‖1 + (1− α)

· δij , (21)

where δij is an indicator function defined as δij := I((i, j,Aij) ∈ Ω). Note that, δij = 1 w.p. pij ,
and 0 otherwise. For a given column j, we define the following random variable Ỹj(α):

Ỹj(α) =

m∑
i=1

ξ̃ij(α).

Similarly, for a given row i, we define Ỹi(α) =
∑n

j=1 ξ̃ij(α). Finally, we define

ρ̃2(α) = max{max
j
Ỹj(α),max

i
Ỹi(α)}. (22)

Using the above quantities we solve the optimization problem in (23) and use the solution as an
estimate for α∗.

α̃ : min
α∈(0,1]

ρ̃2(α) + γ̃(α)ε/3. (23)

Note that, γ̃(α) in equation (20) closely approximates γ(α) in equation (6), where the error of
approximation is ‖A‖F −‖A‖2. This error becomes small in equation (23) as γ̃(α) is multiplied by
a small quantity ε/3. Next we analyze how well ξ̃ij(α) approximates ξij(α) using a simplified data
model. For this we assume |Aij | ∈ {L, ε, 0}, where L � ε > 0, and let sL and sε be the number
of elements with magnitudes L and ε, respectively. Also, let the minimum singular value σmin ≈ 0.
For (i, j,Aij) ∈ Ω and |Aij | = ε (which is unlikely), |Aij | · ‖A‖1 � ‖A‖2F ; consequently ξ̃ij(α)
is small and does not contribute much to Ỹj(α) (or Ỹi(α)). On the other hand, for (i, j,Aij) ∈ Ω
and |Aij | = L (which is very likely), |Aij | · ‖A‖1 � ‖A‖2F , and consequently ξ̃ij(α) contributes
significantly to Ỹj(α) (or Ỹi(α)). So, if we sample sL number of such large elements ρ̃2(α) is close
to ρ2(α), and α̃ ≈ α∗. Finally, note that Algorithm 4 can be implemented using only one-pass over
the data. Experimental results on real data validate the quality of Algorithm 4.
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3. Experiments

We perform various element-wise sampling on synthetic and real data to show how well the sparse
sketches preserve the structure of the original data, in spectral norm. Also, we show results on the
quality and computation time of the principal components and sparse principal components derived
from sparse sketches.

3.1 Algorithms for Sparse Sketches

Algorithm 1 is our prototypical algorithm to produce (unbiased) sparse sketches Ã from a given ma-
trix via various sampling methods. We construct our sparse sketch using our optimal hybrid-(`1, `2)
probabilities, and compare its quality with other sketches produced via `1 and `2 sampling. We
borrow same definitions from (Achlioptas et al. 2013a) for comparing our results with `1 sampling.

nd(A) :=
‖A‖21
‖A‖2F

, rs0(A) :=
maxi ‖A(i)‖0
‖A‖0/m

, rs1(A) :=
maxi ‖A(i)‖1
‖A‖1/m

,

where nd is numeric density and rs is row density skewness. Achlioptas et al. (2013a) argues that `1
outperforms `2 sampling when rs0 > rs1. We compute the theoretical optimal mixing parameter α∗

by solving (10) for various datasets 2, and compare this α∗ with the theoretical condition derived by
Achlioptas et al. (2013a). Further, we verify the accuracy of α∗ by measuring E = ‖A−Ã‖2/‖A‖2
for distributions corresponding to various α, for a given sample size s 3. We expect E to be the
smallest for α ≈ α∗ rather than α = 1 (`1) or α ≈ 0 (`2).

3.2 Algorithms for PCA from Sparse Sketches

We first compare three algorithms for computing PCA of the centered data A. Let the actual PCA
of the original data be A. We use Algorithm 2 to compute approximate PCA from random samples
via our optimal hybrid-(`1, `2) sampling. Let us denote this approximate PCA by H. Also, we
compute PCA of a Gaussian random projection of the original data to compare its quality with H.
Let AG = GA ∈ Rr×n, where A ∈ Rm×n is the original data, and G is a r×m standard Gaussian
matrix. Let the PCA of this random projection AG be G. The quality of various PCA is determined
by measuring how much variance of the data they can capture (as in equation 12). For this, let σk,
σh, and σg denote the variance preserved by A, H, and G, respectively. Note that, A and G require
access to the full data, while H is computed from only few samples of A. Also, we compare the
computation time (in milliseconds) ta, th, and tG for A,H, and G, respectively.

Finally, we compare the quality of our optimal hybrid sampling with `1 sampling and Bern-
stein sampling (Achlioptas et al. 2013b) by quantifying the variance, σ`1 and σb, preserved by the
corresponding sparse sketches.

3.3 Algorithms for Approximate Sparse PCA from Sketches

We show the experimental results for sparse PCA from a sketch using several real data matrices.
As we mentioned, sparse PCA is NP-Hard, and so we use heuristics. These heuristics are discussed
next, followed by the data, the experimental design and finally the results.

2. we find α∗ from the plot of f(α) for α ∈ [0.1, 1].
3. here we use A, s, and α as input to Algorithm 1 to form Ã by s i.i.d samples from pij in (3) for given α.
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Let G (ground truth) denote the algorithm which computes the principal components (which
may not be sparse) of the full data matrix A; the optimal variance is OPTk. We consider six
heuristics for getting sparse principal components.

Gmax,r The r largest-magnitude entries in each principal component generated by G.
Gsp,r r-sparse components using the Spasm toolbox of Sjstrand et al. (2012) with A.
Hmax,r The r largest entries of the principal components for the (`1, `2)-sampled sketch Ã.
Hsp,r r-sparse components using Spasm with the (`1, `2)-sampled sketch Ã.
Umax,r The r largest entries of the principal components for the uniformly sampled sketch Ã.
Usp,r r-sparse components using Spasm with the uniformly sampled sketch Ã.

Output of an algorithmZ is sparse principal components V, and we consider the metric f(Z) =
trace(VTATAV), where A is the original centered data. We consider the following statistics.

f(Gmax,r)

f(Gsp,r)
Relative loss of greedy thresholding versus Spasm, illustrating the value of a good

sparse PCA algorithm. Our sketch based algorithms do not address this loss.
f(Hmax/sp,r)

f(Gmax/sp,r)
Relative loss of using the (`1, `2)-sketch Ã instead of complete data A. A ratio

close to 1 is desired.
f(Umax/sp,r)

f(Gmax/sp,r)
Relative loss of using the uniform sketch Ã instead of complete data A. A bench-

mark to highlight the value of a good sketch.
We also report the computation time for the algorithms. We show results to confirm that sparse

PCA algorithms using the (`1, `2)-sketch are nearly comparable to those same algorithms on the
complete data; and, gain in computation time from sparse sketch is proportional to the sparsity.

Also, we evaluate the quality of Algorithm 4 to estimate α∗ from a small number of samples
from various data.

3.4 Other Sketching Probabilities

We consider pij proportional to the sum of row and column leverage scores of A (Chen et al. 2014)
to produce sparse sketch Ã using Algorithm 1. Let A be an m × n matrix of rank %, and its SVD
is given by A = UΣVT , where U and V contains % orthonormal left and right singular vectors,
respectively, and Σ is the diagonal matrix of singular values. We define leverage scores as follows
(as in Mahoney and Drineas 2009)

(row leverage) µi = ‖U(i)‖22, ∀i ∈ [m]

(column leverage) νj = ‖V(j)‖22, ∀j ∈ [n]

and element-wise leverage score (similar to Chen et al. 2014)

plev =
1

2

µi + νj
(m+ n)%

+
1

2mn
, i ∈ [m], j ∈ [n].

Note that plev is a probability distribution on the elements of A. At a high level, the leverage scores
of an element (i, j) is proportional to the squared norms of the i-th row of the left singular matrix
and the j-th row of the right singular matrix. The constant term in plev prevents the rescaled values
from blowing up in case of sampling an element with tiny leverage score. Such leverage score
sampling is distinct from uniform sampling only for low-rank matrices or low-rank approximations
to matrices. So, we consider sparsification of low-rank and rank-truncated data, and compare the
quality of sparse sketches produced from such low-rank matrices using our optimal hybrid sampling
with that of using plev.

16



RECOVERING PCA AND SPARSE PCA VIA HYBRID-(`1, `2) SPARSE SAMPLING OF DATA ELEMENTS

m n ‖A‖0 nd rs0 > rs1 α∗

A0.1 500 500 2.5e+5 9.2e+4 no .63
TTC1 139 15170 37831 12204 yes 1
TTC2 138 11859 29334 9299 yes 1
TTC3 125 15485 47304 14201 yes 1
TTC4 125 14392 35018 10252 yes 1
Digit 2313 256 5.9e+5 5.1e+5 no .20
Stock 1218 7956 5.5e+6 6.5e+3 no .74
Gene 107 22215 2.4e+6 2.25e+6 yes .99

Table 1: α∗ for various m × n data sets (ε = .05 is the desired relative-error accuracy). rs0 > rs1

implies `1 is better than `2 (Achlioptas et al. 2013a), and we reproduce this (α∗ = 1). But,
for rs0 ≤ rs1, α∗ < 1 and our hybrid sampling is strictly better than both `1 and `2.

3.5 Description of Data

Synthetic Data: A0.1 as described in SECTION 1.4 (FIGURE 1).

TechTC Datasets (TTC): (Gabrilovich and Markovitch 2004) These datasets are bag-of-words fea-
tures for document-term data describing two topics (ids). We choose four such datasets. Rows
represent documents and columns are the words. We preprocessed the data by removing all the
words of length four or smaller, and then divide each row by its Frobenius norm.

Digit Data: (Hull 1994) A data set of three handwritten digits: six (664 samples), nine (644 sam-
ples), and one (1005 samples). Pixels are treated as features, and pixel values are normalized in
[-1,1]. Each 16 × 16 digit image is encoded to form a row in the data matrix (2313 rows and 256
columns).

Stock Data (S&P): We use a temporal data containing 1218 stocks (rows) collected between 1983
and 2011. This temporal data set has with 7056 snapshots (columns) of prices.

Gene Expression Data: We use GSE10072 gene expression data for lung cancer from NCBI
Gene Expression Omnibus database. There are 107 samples (58 lung tumor cases and 49 normal
lung controls) forming the rows of the matrix, with 22,215 probes (features) from GPL96 platform
annotation table.

3.6 Results

All the random results are based on mean of several independent trials (small variance observed).

3.6.1 QUALITY OF SPARSE SKETCH

Table 1 summarizes α∗ for various data sets. Achlioptas et al. (2013a) argued that, for rs0 > rs1,
`1 sampling is better than `2 (even with truncation). Our results on α∗ in Table 1 reproduce this
condition (α∗ = 1 implies `1). Moreover, our method can derive the right blend of `1 and `2
sampling even when the above condition fails. In this sense, we generalize the results of Achlioptas
et al. (2013a).
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s/(k(m+ n)) α̂

A0.1, k = 5
2 0.7
3 0.7

Digit, k = 3
3 0.3
5 0.3

Stock, k = 1
2 0.7
3 0.7

Table 2: α̂ corresponding to the minimum relative error ‖A − Ã‖2/‖A‖2, for a fixed budget of
samples size s. α̂ ≈ α∗ in Table 1, indicating that our optimal hybrid sampling produces
strictly better sparse sketch than both `1 and `2. k ≈ ‖A‖2F /‖A‖22 (stable rank).

Also, we note the value of α 4 for the minimum relative error ‖A−Ã‖2‖A‖2 , for a fixed sample size
s in Table 2. Table 2 shows that the quality of the sparse sketch produced by our optimal hybrid
sampling is strictly better than that of both `1 and `2.
• Comparison with `2-with-truncation: We also compare our optimal hybrid sampling with `2

sampling with truncation. We use two predetermined truncation parameters, ε = 0.1 and ε = 0.01.
First, `2 sampling without truncation turns out to produce the worst quality sparse sketches for
all datasets. For real datasets, hybrid-(`1, `2) sampling using α∗ outperforms `2 with truncation
ε = 0.1 and ε = 0.01. For A0.1, `2 with ε = 0.01 appears to produce Ã that is as bad as `2 without
truncation. However, `2 with ε = 0.1 shows better quality than optimal hybrid sampling (for A0.1

only) as this ε filters out the noisy elements. We should point out that we know a good ε for A0.1

as we control the noise in this case. However, in reality, we have no control over the noise, and
choosing the right ε with no prior knowledge of the data, is an improbable outcome.

3.6.2 QUALITY OF PCA FROM SPARSE SKETCHES

We investigate the quality of Algorithm 2 for Digit data and A0.1. We set r = 30k for the random
projection matrix AG to achieve a comparable runtime of G with H (k is 3 and 5 for Digit and
A0.1, respectively). FIGURE 4 shows thatH has better quality than G for Digit data. Also, Table 3
lists the gain in computation time for Algorithm 2 due to sparsification (using hybrid sampling with
α∗). Finally, our optimal hybrid sampling outperforms `1 and Bernstein sampling (Achlioptas et al.
2013b) by preserving more variance of data via PCA (Table 4).

3.6.3 QUALITY OF SPARSE PCA ALGORITHMS

We report results for primarily the top principal component (k = 1) which is the case most consid-
ered in the literature. When k > 1, our results do not qualitatively change. We note the optimal
mixing parameter α∗ using Algorithm 1 for various datasets in Table 5.

Handwritten Digits. We sample approximately 7% of the elements from the centered data using
(`1, `2)-sampling, as well as uniform sampling. The quality of solution for small r is shown in
Table 5, including the running time τ . For this data, f(Gmax,r)/f(Gsp,r) ≈ 0.23 (r = 10), so it
is important to use a good sparse PCA algorithm. We see from Table 5 that the (`1, `2)-sketch

4. We vary α from 0.1 to 1 with step size 0.1.
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Figure 4: [Digit data] Approximation quality of PCA (Algorithm 2) from samples of data. (Left)
Visualization of principal components as 16 × 16 image. Principal components are or-
dered from the top row to the bottom. First column of PCA’s are exact (A). Second
column of PCA’s (H) are computed on sparse sketch with 7% non-zeros of all the ele-
ments via hybrid sampling using optimal α. Third column of PCA’s (G) are computed
on AG. (Right) Variance preserved by PCA algorithms. Hybrid sampling based PCA,
despite using less information, is better than PCA of random projection.

Sparsified Digit Sparsified A0.1

# non-zeros 7% 6%
ta/th/tG 151/30/36 73/18/36

Table 3: Computational gain of Algorithm 2 comparing to exact PCA. We report the computation
time of MATLAB function ‘svds(A,k)’ for actual data A (ta), sparsified data Ã (th), and
random projection data AG (tG). We use only 7% and 6% of all the elements of Digit data
and A0.1, respectively, to construct respective sparse sketches. k = 3 for Digit and k = 5
for A0.1.

significantly outperforms the uniform sketch. A more extensive comparison of recovered variance
is given in FIGURE 6(a). We also observe a speed-up of a factor of about 6 for the (`1, `2)-sketch.
We point out that the uniform sketch is reasonable for the digits data because most data elements
are close to either +1 or −1, since the pixels are either black or white.

We show a visualization of the principal components in FIGURE 5. We observe that the sparse
components from the (`1, `2)-sketch are almost identical to that of from the complete data.

TechTC Data. We sample approximately 5% of the elements from the centered data using our
(`1, `2)-sampling, as well as uniform sampling. For this data, f(Gmax,r)/f(Gsp,r) ≈ 0.84 (r = 10).
We observe a very significant quality difference between the (`1, `2)-sketch and uniform sketch.
A more extensive comparison of recovered variance is given in FIGURE 6(b). We also observe a
speed-up of a factor of about 6 for the (`1, `2)-sketch. Unlike the digits data which is uniformly near
±1, the text data is “spikey” and now it is important to sample with a bias toward larger elements,
which is why the uniform-sketch performs very poorly.
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`1 Bernstein Hybrid-(`1, `2)
σ`1/σk σb/σk σh/σk

Digit (α∗ = 0.42) 98.47 % 98.46 % 98.51%
Stock (α∗ = 0.1) 85.09 % 95.61 % 97.07%

Table 4: Variance preserved by PCA of various sparse sketches. Our optimal hybrid sampling out-
performs other sampling methods including Bernstein sampling (Achlioptas et al. 2013b).
We sample 9% non-zeros from digit data and 2% non-zeros from stock data.

Centered Data α∗ r
f(Hmax/ sp,r)

f(Gmax/ sp,r)

τ(G)

τ(H)

f(Umax/ sp,r)

f(Gmax/ sp,r)

τ(G)

τ(U)

Digit .42 40 0.99/ 0.90 6.21 1.01/ 0.70 5.33
TTC1 1 40 0.94/ 0.99 5.70 0.41/ 0.38 5.96
Stock .10 40 1.00/ 1.00 3.72 0.66/ 0.66 4.76
Gene .82 40 0.82/ 0.88 3.61 0.65/ 0.15 2.53

Table 5: Comparison of sparse principal components from the (`1, `2)-sketch and uniform sketch.
Recall, G is the ground truth.

As a final comparison, we look at the actual sparse top component with sparsity parameter
r = 10. The topic IDs in the TechTC data are 10567=”US: Indiana: Evansville” and 11346=”US:
Florida”. The top-10 features (words) in the full PCA on the complete data are shown in Table 6.
In Table 7 we show which words appear in the top sparse principal component with sparsity r = 10
using various sparse PCA algorithms. We observe that the sparse PCA from the (`1, `2)-sketch with
only 5% of the data sampled matches quite closely with the same sparse PCA algorithm using the
complete data (Gmax/sp,r matchesHmax/sp,r).

Stock Data. We sample about 2% of the non-zero elements from the centered data using the
(`1, `2)-sampling, as well as uniform sampling. For this data, f(Gmax,r)/f(Gsp,r) ≈ 0.96 (r = 10).
We observe a very significant quality difference between the (`1, `2)-sketch and uniform sketch.
A more extensive comparison of recovered variance is given in FIGURE 6(c). We also observe a
speed-up of a factor of about 4 for the (`1, `2)-sketch. Similar to TechTC data this data set is also
“spikey”, so biased sampling toward larger elements significantly outperforms the uniform-sketch.

We now look at the actual sparse top component with sparsity parameter r = 10. The top-10
features (stocks) in the full PCA on the complete data are shown in Table 8. In Table 9 we show
which stocks appear in the top sparse principal component using various sparse PCA algorithms. We
observe that the sparse PCA from the (`1, `2)-sketch with only 2% of the non-zero elements sam-
pled matches quite closely with the same sparse PCA algorithm using the complete data (Gmax/sp,r
matchesHmax/sp,r).

Gene Expression Data. We sample about 9% of the elements from the centered data using the
(`1, `2)-sampling, as well as uniform sampling. For this data, f(Gmax,r)/f(Gsp,r) ≈ 0.05 (r = 10)
which means a good sparse PCA algorithm is imperative. We observe a very significant quality
difference between the (`1, `2)-sketch and uniform sketch. A more extensive comparison of re-
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(a) r = 100% (b) r = 50% (c) r = 30% (d) r = 10%

Figure 5: [Digits] Visualization of top-3 sparse principal components. In each figure, left panel
shows Gsp,r and right panel showsHsp,r. r is the maximum number of non-zeros allowed.
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Figure 6: Quality of sparse PCA for (`1, `2)-sketch and uniform sketch over an extensive range for
the sparsity constraint r. The variance preserved by the uniform sketch is significantly
lower, highlighting the importance of a good sketch.

covered variance is given in FIGURE 6(d). We also observe a speed-up of a factor of about 4 for
the (`1, `2)-sketch. Similar to TechTC data this data set is also “spikey”, and consequently biased
sampling toward larger elements significantly outperforms the uniform-sketch.

Also, we look at the actual sparse top component with sparsity parameter r = 10. The top-
10 features (probes) in the full PCA on the complete data are shown in Table 10. In Table 11 we
show which probes appear in the top sparse principal component with sparsity r = 10 using various
sparse PCA algorithms. We observe that the sparse PCA from the (`1, `2)-sketch with only 9% of
the elements sampled matches reasonably with the same sparse PCA algorithm using the complete
data (Gmax/sp,r matchesHmax/sp,r).

Finally, we validate the genes corresponding to the top probes in the context of lung can-
cer. Table 12 lists the top twelve gene symbols in Table 10. Note that a gene can occur mul-
tiple times in principal component as genes can be associated with different probes. Genes like
SFTPC, AGER, WIF1, and FABP4 are down-regulated in lung cancer, while SPP1 is up-regulated
(see the functional gene grouping: www.sabiosciences.com/rt_pcr_product/HTML/
PAHS-134Z.html). Co-expression analysis on the set of eight genes for Hmax,r and Hsp,r us-
ing the tool ToppFun (toppgene.cchmc.org/) shows that all eight genes appear in a list of
selected probes characterizing non-small-cell lung carcinoma (NSCLC) in (Hou et al., 2010, Table
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ID Top 10 in Gmax,r ID Other words
1 evansville 11 service
2 florida 12 small
3 south 13 frame
4 miami 14 tours
5 indiana 15 faver
6 information 16 transaction
7 beach 17 needs
8 lauderdale 18 commercial
9 estate 19 bullet

10 spacer 20 inlets
21 producer

Table 6: [TechTC] Top ten words in top prin-
cipal component of the complete data
(the other words are discovered by
some of the sparse PCA algorithms).

Gmax,r Hmax,r Umax,r Gsp,r Hsp,r Usp,r

1 1 6 1 1 6
2 2 14 2 2 14
3 3 15 3 3 15
4 4 16 4 4 16
5 5 17 5 5 17
6 7 7 6 7 7
7 6 18 7 8 18
8 8 19 8 6 19
9 11 20 9 12 20
10 12 21 13 11 21

Table 7: [TechTC] Relative ordering of the
words (w.r.t. Gmax,r) in the top sparse
principal component with sparsity pa-
rameter r = 10.

ID Top 10 in Gmax,r ID Other stocks
1 T.2 11 HET.
2 AIG 12 ONE.1
3 C 13 MA
4 UIS 14 XOM
5 NRTLQ 15 PHA.1
6 S.1 16 CL
7 GOOG 17 WY
8 MTLQQ
9 ROK
10 EK

Table 8: [Stock data] Top ten stocks in top prin-
cipal component of the complete data
(the other stocks are discovered by
some of the sparse PCA algorithms).

Gmax,r Hmax,r Umax,r Gsp,r Hsp,r Usp,r

1 1 2 1 1 2
2 2 11 2 2 11
3 3 12 3 3 12
4 4 13 4 4 13
5 5 14 5 5 14
6 6 3 6 7 3
7 7 15 7 6 15
8 9 9 8 8 9
9 8 16 9 9 16
10 11 17 10 11 17

Table 9: [Stock data] Relative ordering of the
stocks (w.r.t. Gmax,r) in the top sparse
principal component with sparsity pa-
rameter r = 10.

S1). Further, AGER and FAM107A appear in the top five highly discriminative genes in (Hou et al.,
2010, Table S3). Additionally, AGER, FCN3, SPP1, and ADH1B appear among the 162 most dif-
ferentiating genes across two subtypes of NSCLC and normal lung cancer in (Dracheva et al., 2007,
Supplemental Table 1). Such findings show that our method can identify, from incomplete data,
important genes for complex diseases like cancer. Also, notice that our sampling-based method is
able to identify additional important genes, such as, FCN3 and FAM107A in top ten genes.
• Quality of Other Sketches: We briefly report on other options for sketching A. We consider

suboptimal α (not α∗ from (10) to construct a suboptimal hybrid distribution, and use this in proto-
Algorithm 1 to construct a sparse sketch. FIGURE 7 reveals that a good sketch using the α∗ is
important.

22



RECOVERING PCA AND SPARSE PCA VIA HYBRID-(`1, `2) SPARSE SAMPLING OF DATA ELEMENTS

ID Top 10 in Gmax,r ID Other probes
1 210081 at 11 205866 at
2 214387 x at 12 209074 s at
3 211735 x at 13 205311 at
4 209875 s at 14 216379 x at
5 205982 x at 15 203571 s at
6 215454 x at 16 205174 s at
7 209613 s at 17 204846 at
8 210096 at 18 209116 x at
9 204712 at 19 202834 at
10 203980 at 20 209425 at

21 215356 at
22 221805 at
23 209942 x at
24 218450 at
25 202508 s at

Table 10: [Gene data] Top ten probes in top
principal component of the complete
data (the other probes are discovered
by some of the sparse PCA algo-
rithms).

Gmax,r Hmax,r Umax,r Gsp,r Hsp,r Usp,r

1 4 13 1 4 13
2 1 14 2 1 16
3 11 3 3 2 15
4 2 15 4 11 19
5 3 5 5 3 20
6 8 16 6 8 21
7 7 6 7 7 22
8 9 17 8 9 23
9 5 4 9 5 24
10 12 18 10 12 25

Table 11: [Gene data] Relative ordering of
the probes (w.r.t. Gmax,r) in the
top sparse principal component with
sparsity parameter r = 10.

Gmax,r ν Hmax,r ν Hsp,r ν

SFTPC 4 SFTPC 3 SFTPC 3
AGER 1 SPP1 1 SPP1 1
SPP 1 1 AGER 1 AGER 1
ADH1B 1 FCN3 1 FCN3 1
CYP4B1 1 CYP4B1 1 CYP4B1 1
WIF1 1 ADH1B 1 ADH1B 1
FABP4 1 WIF1 1 WIF1 1

FAM107A 1 FAM107A 1

Table 12: [Gene data] Gene symbols corresponding to top probes in Table 11. One gene can be
associated with multiple probes. Here ν is the frequency of occurrence of a gene in top
ten probes of their respective principal component.

3.6.4 ESTIMATE OF α∗ FROM SAMPLES

Table 13 shows the quality of estimated α∗ computed by Algorithm 4 using a small number of
observed data elements. Note that most of the elements of Digit data have magnitude close to 1;
consequently we need more samples to estimate α∗ accurately.
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Figure 7: [Stock data] Quality of sketch using suboptimal α to illustrate the importance of the
optimal mixing parameter α∗.

Non-zeros sampled Estimated α∗

Digit, α∗ = 0.42
6 % 0.80
19 % 0.67

Stock, α∗ = 0.1
2 % 0.1
10 % 0.1

Table 13: Estimated α∗ using Algorithm 4 from small number of non-zeros of Digit and Stock data.
Most of elements of Digit data are close to either +1 or −1, thus requiring more samples
to accurately estimate α∗.

3.6.5 OTHER SKETCHING PROBABILITIES

We compare the quality of sparse sketches produced from low-rank and rank-truncated synthetic
and real data using our optimal hybrid sampling with plev.

• Power-law Matrix: First, we construct a 500 × 500 low-rank power-law matrix, similar to
Chen et al. (2014), as follows: Apow = DXYTD, where, matrices X and Y are 500 × 5 i.i.d.
Gaussian N (0, 1) and D is a diagonal matrix with power-law decay, Dii = i−γ , 1 ≤ i ≤ 500. The
parameter γ controls the ‘incoherence’ of the matrix (larger γ makes the data more ‘spiky’).

Further, we construct low-rank approximation by projecting a data set onto a low dimensional
subspace. We notice that the datasets projected onto the space spanned by top few principal com-
ponents preserve the linear structure of the data. For example, Digit data show good separation of
digits when projected onto the top three principal components. For TechTC and Gene data the top
two respective principal components are good enough to form a low-dimensional subspace where
the datasets show reasonable separation of two classes of samples. For the stock data we use top
three PCAs because the stable rank is close to 2.

Quality of Sparse Sketch: We measure ‖A− Ã‖2/‖A‖2 (A is the low-rank data) for the above-
mentioned two sampling methods using various sample size. Table 14 lists the quality of sparse
sketches produced from Apow via the two sampling methods. Similarly, for all other datasets our
optimal hybrid sampling (with α∗) outperforms the leverage score sampling (Table 15) for (low-
rank) matrix sparsification.
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(a) Low-rank data Apow (b) Element-wise leverage scores for Apow

(c) Optimal hybrid distribution for Apow

Figure 8: Comparing optimal hybrid-(`1, `2) distribution with leverage scores plev for data Apow

for γ = 1.0. (a) Structure of Apow, (b) distribution plev, (c) optimal hybrid-(`1, `2)
distribution. Our optimal hybrid distribution is more aligned with the structure of the
data, requiring much smaller sample size to achieve a given accuracy of sparsification.
This is supported by Table 14.

s
k(m+n) hybrid-(`1, `2) plev

γ = 0.5
3 42% 58%
5 31% 43%

γ = 0.8
3 15% 43%
5 12% 40%

γ = 1.0
3 8% 42%
5 6% 39%

Table 14: Sparsification quality ‖Apow−Ãpow‖2/‖Apow‖2 for low-rank ‘power-law’ matrix Apow

(k = 5). We compare the quality of hybrid-(`1, `2) sampling and leverage score sampling
for two sample size. We note (mean) α∗ of hybrid-(`1, `2) distribution for data Apow

using ε = 0.05, δ = 0.1. For γ = 0.5, 0.8, 1.0, we have mean α∗ = 0.11, 0.72, 0.8,
respectively, with very small variance.

We notice that with increasing γ leverage scores get more aligned with the structure of the data
Apow resulting in gradually improving approximation quality, for the same sample size. Larger γ
produces more variance in data elements. `2 component of our hybrid distribution bias us towards
the larger data elements, while `1 works as a regularizer to maintain the variance of the sampled
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s
k(m+n) Hybrid-(`1, `2) plev

Digit, k = 3
3 44% 61%
5 34% 47%

A0.1, k = 5
3 25% 80%
5 21% 62%

Table 15: Sparsification of rank-truncated data. We compare the quality of ‖A − Ã‖2/‖A‖2 for
hybrid-(`1, `2) sampling and leverage score sampling using two different sample size.
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Figure 9: [Low-rank data] Quality of sparse PCA of low-rank data for optimal (`1, `2)-sketch and
leverage score sketch over an extensive range for the sparsity constraint r. The quality
of the optimal hybrid sketch is considerably better highlighting the importance of a good
sketch.

(and rescaled) elements. With increasing γ we need more regularization to counter the problem of
rescaling. Interestingly, our optimal parameter α∗ adapts itself with this changing structure of data,
e.g. for γ = 0.5, 0.8, 1.0, we have α∗ = 0.11, 0.72, 0.8, respectively. This shows the benefit of our
parameterized hybrid distribution to achieve a superior approximation quality. FIGURE 8 shows
the structure of the data Apow for γ = 1.0 along with the optimal hybrid-(`1, `2) distribution and
leverage score distribution plev. The figure suggests our optimal hybrid distribution is better aligned
with the structure of the data, resulting in a superior sparse sketch of the data. Similar results are
observed for other datasets as well.

Quality of Sparse PCA: Let Lsp,r be the r-sparse components using Spasm for the leverage
score sampled sketch Ã. FIGURE 9 shows that leverage score sampling is not as effective as the
optimal hybrid (`1, `2)-sampling for sparse PCA of low-rank data.

3.7 Conclusion

It is possible to use a sparse sketch (incomplete data) to recover nearly as good principal components
and sparse principal components as one would have gotten with the complete data. We mention that,
while Gmax which uses the largest weights in the unconstrained PCA does not perform well with
respect to the variance, it does identify good features. A simple enhancement to Gmax is to recalibrate
the sparse component after identifying the features - this is an unconstrained PCA problem on just
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the columns of the data matrix corresponding to the features. This method of recalibrating can be
used to improve any sparse PCA algorithm.

Our algorithms are simple and efficient, and many interesting avenues for further research re-
main. Can the sampling complexity for the top-k sparse PCA be reduced from O(k2) to O(k). We
suspect that this should be possible by getting a better bound on

∑k
i=1 σi(A

TA− ÃT Ã); we used
the crude bound k‖ATA− ÃT Ã‖2. We also presented a general surrogate optimization bound
which may be of interest in other applications. In particular, it is pointed out in Magdon-Ismail
and Boutsidis (2016) that though PCA optimizes variance, a more natural way to look at PCA is as
the linear projection of the data that minimizes the information loss. Magdon-Ismail and Boutsidis
(2016) gives efficient algorithms to find sparse linear dimension reduction that minimizes informa-
tion loss – the information loss of sparse PCA can be considerably higher than optimal. To minimize
information loss, the objective to maximize is f(V) = trace(ATAV(AV)†A). It would be inter-
esting to see whether one can recover sparse low-information-loss linear projectors from incomplete
data.

Overall, the experimental results demonstrate the quality of the algorithms presented here, indi-
cating the superiority of our approach to other extreme choices of element-wise sampling methods,
such as, `1 and `2 sampling. Also, we demonstrate the theoretical and practical usefulness of hybrid-
(`1, `2) sampling for fundamental data analysis tasks such as recovering PCA and sparse PCA from
sketches. Finally, our sampling scheme outperforms element-wise leverage scores for the sparsifi-
cation of various low-rank synthetic and real data.
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Appendix A. Proof of Theorem 2

In this section we provide a proof of Theorem 2 following the proof outline of Drineas and Zouzias
(2011); Achlioptas et al. (2013a). We use Lemma 1 as our main tool. For all t ∈ [s] we define the
matrix Mt ∈ Rm×n as follows:

Mt =
Aitjt

pitjt
eite

T
jt −A.

It now follows that 1
s

∑s
t=1 Mt = SΩ(A)−A. We can bound ‖Mt‖2 for all t ∈ [s]. We define the

following quantity:

λ =
‖A‖1 · |Aij |
‖A‖2F

, for Aij 6= 0 (24)

Lemma 8 Using our notation, and using probabilities of the form (3), for all t ∈ [s],

‖Mt‖2 ≤ max
i,j:

Aij 6=0

‖A‖1
α+ (1− α)λ

+ ‖A‖2.

Proof Using probabilities of the form (3), and because Aij = 0 is never sampled,

‖Mt‖2 = ‖(Aitjt/pitjt)eite
T
jt −A‖2

≤ max
i,j:

Aij 6=0

{( α

‖A‖1
+

(1− α) · |Aij |
‖A‖2F

)−1}
+ ‖A‖2,

Using (24), we obtain the bound.

Next we bound the spectral norm of the expectation of MtM
T
t .

Lemma 9 Using our notation, and using probabilities of the form (3), for all t ∈ [s],

‖E(MtM
T
t )‖2 ≤ ‖A‖2Fβ1 − σ2,

β1 = max
i

n∑
j=1

( α · ‖A‖2F
|Aij | · ‖A‖1

+ (1− α)
)−1

,

for Aij 6= 0.

Proof Recall that A =
∑m,n

i,j=1 Aijeie
T
j and Mt =

Aitjt
pitjt

eite
T
jt
−A. We derive

E[MtM
T
t ] =

m,n∑
i,j=1

(A2
ij/pij)eie

T
i −AAT .

Sampling according to probabilities of (3), and because Aij = 0 is never sampled, we get,
m,n∑
i,j=1

A2
ij

pij
= ‖A‖2F

m,n∑
i,j=1

( α · ‖A‖2F
|Aij | · ‖A‖1

+ (1− α)
)−1

,

≤ ‖A‖2F
m∑
i=1

max
i

n∑
j=1

( α · ‖A‖2F
|Aij | · ‖A‖1

+ (1− α)
)−1

.
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for Aij 6= 0. Thus,

E[MtM
T
t ] � ‖A‖2Fβ1

m∑
i=1

eie
T
i −AAT = ‖A‖2Fβ1Im −AAT .

Note that, ‖A‖2Fβ1Im is diagonal with all entries non-negative, and AAT is postive semi-definite.
Therefore,

‖E[MtM
T
t ]‖2 ≤ ‖A‖2Fβ1 − σ2.

Similarly, we can obtain ∥∥E[MT
t Mt]

∥∥
2
≤ ‖A‖2Fβ2 − σ2,

where, for Aij 6= 0,

β2 = max
j

m∑
i=1

( α · ‖A‖2F
|Aij | · ‖A‖1

+ (1− α)
)−1

.

We can now apply Lemma 1 with

ρ2(α) = ‖A‖2F max{β1, β2} − σ2,

and

γ(α) =
‖A‖1

α+ (1− α)λ
+ ‖A‖2,

to conclude that ‖SΩ(A)−A‖2 ≤ ε holds subject to a failure probability at most

(m+ n) exp

(
−sε2/2

ρ2(α) + γ(α)ε/3

)
.

Bounding the failure probability by δ, and setting ε = ε · ‖A‖2, we complete the proof.

Appendix B. Proof of Lemma 4

Lemma 4 will be a corollary of a more general result, for a class of optimization problems involving
a Lipschitz-like objective function over an arbitrary (not necessarily convex) domain. Let f(V,X)
be a function that is defined for a matrix variable V and a matrix parameter X. The optimization
variable V is in some feasible set S which is arbitrary. The parameter X is also arbitrary. We
assume that f is locally Lipschitz in X, that is

|f(V,X)− f(V, X̃)| ≤ γ(X)‖X− X̃‖2, ∀V ∈ S.

(Note we allow the “Lipschitz constant” to depend on the fixed matrix X but not the variables V, X̃;
this is more general than a globally Lipshitz objective) The next lemma is the key tool we need to
prove Lemma 4 and it may be of independent interest in other optimization settings. We are inter-
ested in maximizing f(V,X) with respect to V to obtain V∗. But, we only have an approximation
X̃ for X, and so we maximize f(V, X̃) to obtain Ṽ∗, which will be a suboptimal solution with
respect to X. We wish to bound f(V∗,X)− f(Ṽ∗,X) which quantifies how suboptimal Ṽ∗ is
with respect to X.
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Lemma 10 (Surrogate optimization bound) Let f(V,X) be γ-locally Lipschitz w.r.t. X over the
domain V ∈ S. Define V∗ = arg maxV∈S f(V,X); Ṽ∗ = arg maxV∈S f(V, X̃). Then,

f(V∗,X)− f(Ṽ∗,X) ≤ 2γ(X)‖X− X̃‖2.

In the lemma, the function f and the domain S are arbitrary. In our setting, X ∈ Rn×n, the domain
S = {V ∈ Rn×k; VTV = Ik; ‖V(j)‖0 ≤ r}, and f(V,X) = trace(VTXV). We first show that f
is Lipschitz w.r.t. X with γ = k (a constant independent of X). Let the representation of V by its
columns be V = [v1, . . . ,vk]. Then,

|trace(VTXV)− trace(VT X̃V)| = |trace((X− X̃)VVT )| ≤
k∑
i=1

σi(X− X̃) ≤ k‖X− X̃‖2,

where, σi(A) is the i-th largest singular value of A (we used Von-neumann’s trace inequality
and the fact that VVT is a k-dimensional projection). Now, by Lemma 10, trace(V∗TXV∗) −
trace(Ṽ∗TXṼ∗) ≤ 2k‖X− X̃‖2. Lemma 4 follows by setting X = ATA and X̃ = ÃT Ã.

Appendix C. Proof of Lemma 10

In this section we provide a proof of Lemma 10. First, we need the following lemma.

Lemma 11 Let f and g be functions on a domain S. Then,

sup
x∈S

f(x)− sup
y∈S

g(y) ≤ sup
x∈S

(f(x)− g(x)).

Proof
sup
x∈S

(f(x)− g(x)) ≥ f(x)− g(x) ≥ f(x)− sup
y∈S

g(y), ∀x ∈ S.

Since RHS holds for all x, supx∈S(f(x)− g(x)) is an upper bound for f(x)− supy∈S g(U), and
hence

sup
x∈S

(f(x)− g(x)) ≥ sup
x∈S

(
f(x)− sup

y∈S
g(y)

)
= sup

x∈S
f(x)− sup

y∈S
g(y).

Proof (Lemma 10) Suppose that maxV∈S f(V,X) is attained at V∗ and maxV∈S f(V, X̃) is at-
tained at Ṽ

∗
, and define ε = f(V∗,X)− f(Ṽ

∗
,X). We have that

ε = f(V∗,X)− f(Ṽ
∗
, X̃) + f(Ṽ

∗
, X̃)− f(Ṽ

∗
,X)

= max
V

f(V,X)−max
U

f(U, X̃) + f(Ṽ
∗
, X̃)− f(Ṽ

∗
,X)

≤ max
V

(
f(V,X)− f(V, X̃)

)
+ f(Ṽ

∗
, X̃)− f(Ṽ

∗
,X),

where the last step follows from Lemma 11. Therefore,

|ε| ≤ max
V

∣∣∣f(V,X)− f(V, X̃)
∣∣∣+ |f(Ṽ

∗
, X̃)− f(Ṽ

∗
,X)|

≤ max
V

γ(X)‖X− X̃‖2 + γ(X)‖X− X̃‖2 = 2γ(X)‖X− X̃‖2.
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(We used the Lipschitz condition in the second step.)

Appendix D. An alternative proof of Lemma 4

Let ε = trace(VTXV)− trace(ṼTXṼ).

ε = trace(VTXV)− trace(VT X̃V) + trace(VT X̃V)− trace(ṼTXṼ)

≤ k‖X− X̃‖2 + trace(VT X̃V)− trace(ṼTXṼ)

≤ k‖X− X̃‖2 + trace(ṼT X̃Ṽ)− trace(ṼTXṼ)

≤ 2k‖X− X̃‖2.

Setting X = ATA and X̃ = ÃT Ã we derive the result.

Appendix E. Proof of Theorem 7

Proof Here we use the notations in Algorithm 3. Let, p1 =
|Aij |
‖A‖1 , and p2 =

A2
ij

‖A‖2F
.

Note that t-th elements of S1 and S2 are sampled independently with `1 and `2 probabilities, re-
spectively. We consider the following disjoint events:

E1 : S1(t) = (i, j,Aij) ∧ S2(t) 6= (i, j,Aij)

E2 : S1(t) 6= (i, j,Aij) ∧ S2(t) = (i, j,Aij)

E3 : S1(t) = (i, j,Aij) ∧ S2(t) = (i, j,Aij)

E4 : S1(t) 6= (i, j,Aij) ∧ S2(t) 6= (i, j,Aij)

Let us denote the events x1 : x ≤ α and x2 : x > α. Clearly, P [x1] = α, P [x2] = 1− α.
The elements S1(t) and S2(t) are sampled independently, we have

P [E1] = P [S1(t) = (i, j,Aij)]P [S2(t) 6= (i, j,Aij)] = p1(1− p2).

P [E2] = (1− p1)p2, P [E3] = p1p2, P [E4] = (1− p1)(1− p2).

We note that α is independent of elements of S1 and S2. Therefore, events x1 and x2 are independent
of the events Ej , j = 1, 2, 3, 4. Thus,

P [S(t) = (i, j,Aij)] = P [(E1 ∧ x1) ∨ (E2 ∧ x2) ∨ E3]

= P [E1 ∧ x1] + P [E2 ∧ x2] + P [E3]

= P [E1]P [x1] + P [E2]P [x2] + P [E3]

= p1(1− p2)α+ (1− p1)p2(1− α) + p1p2

= α · p1 + (1− α) · p2
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Algorithm 5 SELECT-s: One-pass SELECT Algorithm to Sample s Elements

1: Input: {a1, ..., aN}, ai ≥ 0, read in one pass sequentially over the data; number of samples s.
2: I[1, ..., s]← 0; V [1, ..., s]← 0 /* arrays to hold s indices and values */
3: pi = 0.
4: /* Stream begins */
5: For i = 1, ..., N
6: pi = pi + ai.
7: (in parallel) generate s independent uniform random numbers rj ∈ [0, 1], j = 1, ..., s.
8: (in parallel) I[j] = i and V [j] = ai, if rj ≤ ai/pi.
9: End

10: Output: random indices I and corresponding values V .

Appendix F. SELECT-s Algorithm

Here we extend the SELECT algorithm appeared on p. 137 of Drineas et al. (2006) to select s
elements in parallel. For one-pass `1 and `2 sampling on elements of A we call SELECT-s algorithm
with inputs {|Aij |} and {A2

ij}, respectively, for all i, j.
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