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Aβ(1–42) is the highly pathologic isoform of amyloid-β, the peptide
constituent of fibrils and neurotoxic oligomers involved in Alzheimer's
disease. Recent studies on the structural features of Aβ in water have
suggested that the system can be described as an ensemble of distinct
conformational species in fast exchange. Here, we use replica exchange
molecular dynamics (REMD) simulations to characterize the conformations
accessible to Aβ42 in explicit water solvent, under the ff99SB force field.
Monitoring the correlation between J-coupling(3JHNHα) and residual dipolar
coupling (RDC) data calculated from the REMD trajectories to their
experimental values, as determined by NMR, indicates that the simulations
converge towards sampling an ensemble that is representative of the
experimental data after 60 ns/replica of simulation time. We further
validate the converged MD-derived ensemble through direct comparison
with 3JHNHα and RDC experimental data. Our analysis indicates that the
ff99SB-derived REMD ensemble can reproduce the experimental J-coupling
values with high accuracy and further provide good agreement with the
RDC data. Our results indicate that the peptide is sampling a highly diverse
range of conformations: by implementing statistical learning techniques
(Laplacian eigenmaps, spectral clustering, and Laplacian scores), we are
able to obtain an otherwise hidden structure in the complex conformational
space of the peptide. Using these methods, we characterize the peptide
conformations and extract their intrinsic characteristics, identify a small
number of different conformations that characterize the whole ensemble,
and identify a small number of protein interactions (such as contacts
between the peptide termini) that are the most discriminative of the
different conformations and thus can be used in designing experimental
ress: angel@rpi.edu.
-β; REMD, replica exchange molecular dynamics; RDC, residual dipolar coupling;
arson's correlation coefficient.
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probes of transitions between such molecular states. This is a study of an
important intrinsically disordered peptide system that provides an atomic-
level description of structural features and interactions that are relevant
during the early stages of the oligomerization and fibril nucleation
pathways.
© 2010 Published by Elsevier Ltd.
Introduction

The amyloid-β (Aβ) peptides are the major
constituents of amyloid plaques, the pathological
hallmark of Alzheimer's disease (AD) and neurode-
generation in general.1 Aggregation of Aβ leads to
various β-sheet-rich conformers that are found in
the brains of AD patients and correlate with the
onset of AD.2 Moreover, Aβ oligomerization leads
to the formation of soluble, neurotoxic oligomeric
species that impair synapse transmission and
eventually memory function.3,4 Both the amyloido-
genic and oligomeric pathways originate in the cell
membrane: the different-length isoforms of Aβ are
derived from the proteolytic processing of a
transmembrane protein, the amyloid precursor
protein. Variability in the exact site of amyloid
precursor protein cleavage leads to the production
of Aβ isoforms of different lengths (ranging from 39
to 42 residues), of which Aβ42 is a major isoform
and has a high potential to elicit amyloidogenesis
and toxicity.
Despite significant advances in the structure

determination of Aβ f ibri ls 5 ,6 and their
polymorphisms7 in atomic detail, few studies have
been performed to characterize the ensemble of the
full-length Aβ(1–42) peptide at the monomeric level
in water. An NMR-derived model of the average
structure of the 26mer Aβ(10–35) in water has
revealed a collapsed coil with little presence of
regular secondary structural elements.8 However,
several experimental and computational studies
focusing on different fragments of Aβ and its
mutants9,10 have indicated a highly dynamic,
rugged energy landscape that is consistent with an
ensemble of rapidly interconverting, isoenergetic (to
a first approximation) conformational species in fast
exchange.11,12 Previous experimental results have
suggested that the peptide displays structural
features that deviate significantly from the ran-
dom-coil model indicated by local conformational
preferences of the backbone.13–15 In a previous
study, we used MD simulations validated by
experimental NMR data to elucidate the conforma-
tions accessible to both in vivo isoforms of Aβ, A40
and 42.16 Our MD-derived molecular ensemble
suggested that both peptides displayed unique
structural features that were consistent with the
experimentally measured J-coupling data. More-
over, the mechanism of aggregation and the
energetics of the transitions between monomers,
oligomers, and fibrils are yet to be characterized in
atomic detail. Recent efforts to characterize the
structure of important intermediates along the
aggregation pathway including neurotoxic oligo-
meric species have resulted in the solution structure
of a soluble Aβ oligomer by NMR.17 To this extent, a
detailed view of the solution conformation of Aβ at
the monomer level and their dynamics is important
towards modeling the aggregation pathways, as
well as in rationally designing therapeutics that
would selectively stabilize non-amyloidogenic
conformations18,19 and inhibit oligomers and fibril
formation.20

Here, we present a detailed characterization of the
ensemble of Aβ42 that is obtained by all-atom
molecular dynamics simulations in explicit solvent.
We implement the same enhanced-sampling proto-
cols used previously16 that were extended to the
microsecond simulation timescale and used a recently
improved force field21 derived from the AMBER
series of molecular mechanics force fields.22 Our
simulation data are validated by direct comparison
with three-bond J-coupling constants and residual
dipolar couplings (RDCs), as measured experimen-
tally by NMR for the backbone NH groups. These
experimental observables, through their intrinsic
dependence on the average backbone conformation
and orientation relative to a molecular alignment
frame, respectively, provide a sensitive probe of
molecular structure and have been recently used to
model the conformations of unfolded, intrinsically
disordered and chemically denatured proteins using
biased ensemble-based approaches.23–25 In addition,
RDCs have been previously measured for both major
isoforms of Aβ and interpreted on the basis of
statistical coil models.26,27 Analysis of our unbiased
replica exchange molecular dynamics (REMD) struc-
tural ensemble reveals the presence of distinct
conformational species,whichwe identify and further
analyze to obtain a small number of representative
conformations. Our results indicate the presence of a
highly diverse conformational ensemble that can be
analyzed in terms of correlated patterns of interacting
residues to yield conformational species of distinct
structural features. To analyze the structural proper-
ties of the ensemble, we port nontrivial techniques
from statistical learning. More specifically, we are
using the Laplacian eigenmaps approach28 to visual-
ize the conformations in a low-dimensional space,
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while the spectral clustering technique29 is used to
efficiently extract conformations that are representa-
tive of the ensemble. Finally, using Laplacian scores,30

we identify interactions (such as contacts between the
peptide termini) that are highly effective in distin-
guishing between distinct conformational basins and
can be thus used to design experimental labels that
report on the transitions between these conforma-
tional species. This study augments on the existing
knowledge of the conformations accessible to Aβ(1–
42) monomers in water and further indicates a
strategy to effectively identify key structural features
and classify diverse ensembles of such conformations
from MD simulation data for metastable and intrin-
sically disordered systems in general.
 0
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Fig. 1. Simulation convergence through comparison
with experimental data. Correlation between J-couplings
and RDCs calculated from the MD ensemble with their
experimentally determined values. Monitoring the P.C.C.
to the experimental data as a function of the total
simulation time indicates that the ensemble is converged
after approximately 60 ns/replica. The broken line
indicates the start of the production phase of the
simulation, during which the calculated J-coupling and
RDC values are converged to their ensemble-averaged
values, as dictated by the details of the force field and
solvation model used.
Results

Convergence of the REMD simulations

We have estimated the time it takes for the
simulations to converge, according to the selected
observables by monitoring the agreement of results
calculated from our MD simulations to their
experimentally determined values. To perform this
task, in addition to (3JHNHα J-couplings, we have
monitored the correlation of RDCs to the experi-
mental results.27 The two observables give very
similar results (Fig. 1a and b). We observe a first
phase in the simulations (0–60 ns/replica) where the
correlation to experiments changes rapidly after
which the simulations converge to showing only
larger timescale fluctuations that are more pro-
nounced for the RDCs. After roughly 60 ns/replica,
the two observables reach Pearson's correlation
coefficients (P.C.C.'s) of approximately 0.4–0.5
(Fig. 1). These values are strikingly similar to the
ones obtained previously16 for the same system
using the OPLS/AA force field31 and TIP3p water
model32 (60 ns/replica and P.C.C. of 0.48 according
to (3JHNHα), indicating the robustness of the replica
exchange algorithm for this intrinsically disordered
system. The differences in calculated J-coupling and
RDC values among three samples of equal length
obtained from the production phase of our simula-
tion trajectory (60–225 ns/replica) are less than 10%
in magnitude, indicating that the simulation is
indeed well converged to sampling an ensemble
that is representative of the ff99SB force field after
this first equilibration phase.

Validation with experimental results

We have examined the use of different parameter
sets for the Karplus equation in calculating J-
coupling constants from the simulation coordinates
for comparison with their experimental measure-
ments, as described in Methods.33,34 In general, we
observe a correlation between the experimental and
simulation data set that is comparable to the
correlation between the two experimental data
sets, as indicated by RMSD values below 1 Hz
(0.32 Hz versus 0.73 Hz) (Fig. 2). This agreement
with the experimental J-coupling data is comparable
to results recently obtained using the same force
field for stable protein folds.36 Nevertheless, we also
observe several outliers for which the calculated
values are not in agreement with the experimental
results. In particular, for residues Glu22, Asp23, and
His13, the calculated values differ by more than
1 Hz from both experimental data sets. For single
conformations, this may amount to differences in
the φ dihedral angle as small as 5–7°, or as large as
74° for selected values of (3JHNHα, by virtue of the fact
that the Karplus equation is not a 1-to-1 function of
φ. Analysis of the values of φ for these three residues
in our simulation data set indicates that all three
allowed basins of the Ramachandran plot are being
sampled in our REMD trajectories, with different
population weights that are given by the relative
free energies under the current force field (Fig. S2).
Therefore, the discrepancy with the experimental
results could be attributed to incorrect weighting of
the different basins. All three of these outlier
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Fig. 2. Validation with experimental data. Thirty-two experimental three-bond J-coupling values and 22 RDCs that
report on the average conformation of the backbone and orientation of the amide bond vectors in the molecular alignment
frame, respectively, are compared with results calculated from our REMD simulation trajectories. Two independent
experimental measurements of (3JHNHα were used.16,27 Results are shown in (a) and (c) along the sequence of Aβ and as
correlation plots in (b) and (d). Experimental J-coupling and RDC values were measured at 300 K and 277.3 K,
respectively, while simulation values were calculated over the range of replica temperatures 280–310 K. Simulation errors
were estimated using block averages.35
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residues are charged at neutral pH modeled in this
simulation study. This finding suggests a potential
strategy for improvement of the ff99sb force field
that takes into account the interplay between the
backbone dihedrals and charged sites.
We further validated our converged MD data set

(according to the J-coupling convergence shown in
Fig. 1b) by comparison of calculated RDCs with
previously published experimental data.27 RDCs
report on the alignment of the amide bond vectors
relative to a conformation-specific molecular align-
ment frame that was calculated based on the steric
properties of each conformation using the method
PALES.37 The comparison between the experimen-
tal and calculated RDCs is shown in Fig. 2c and d. In
general, good agreement between the two data sets
is obtained (RMSD, 1.49 Hz), which is reflected in a
P.C.C. of 0.30 to the experimental data. We observe
three outliers for which the disagreement with
experimental data is larger than twice the sum of
the experimental and simulation errors. These are
residues Phe20, Val36, and Ala42. In contrast, for the
remaining 19 residues of Aβ42 for which accurate
experimental values were available, the agreement
with the experimental data is significantly better,
reaching a P.C.C. of 0.57. As the calculated RDCs
report both on the alignment properties of the
molecule and on the orientation of individual
amide bond vectors, the fact that the disagreement
with the experimental data is limited to residues 20,
36, and 42 indicates that the force field and solvation
model used are likely sampling the correct shape
distribution of Aβ42, and the inconsistencies are due
to local deviations in the backbone torsion angles.

Identification and characterization of
representative conformational species

We have implemented a spectral clustering
approach to characterize the conformations sampled
in the REMD ensemble (summarized in Fig. 6). In
the case of the intrinsically disordered Aβ peptide,
which samples a diverse range of conformations,
common clustering strategies that rely on the
calculation of geometrical distances such as RMSD
are limited by the drastic change in the shape of the



Fig. 3. Spectral clustering of the conformational ensemble and identification of representative conformational species.
(a) Visualization of the REMD ensemble of conformations in a space defined by the last three nontrivial eigenvectors of the
affinity matrix. Good dispersion of the data in this low-dimensional space is observed. Each region of the space contains
conformations with distinct contact patterns, as shown in the structural diagrams belonging to individual conformations.
(b) Example of the use of the k-means spectral clustering algorithm for k=20, operating in the space defined by the last six
nontrivial eigenvectors of the affinity matrix (see Methods). The clustering results are visualized in three dimensions
corresponding to the last three nontrivial eigenvectors, same as in (a). Using this technique, we have identified several
clusters of conformations that share common structural elements as discrete groups in the low-dimensional eigenspace.
Representative (central) conformations for selected clusters are shown in the insets and discussed in the main text. These
results suggest that Aβ42 can sample a wide range of conformations with distinct features that can be analyzed using a
relatively small set of collective variables.
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molecule across the conformational space that is
accessible. In summary, this approach is based on
the representation of each protein conformation as a
contact map (Fig. 6a). This representation is then
used in the calculation of a square affinity matrix A,
whose elements are defined for each pair of



Fig. 4. Structural precision in the clustering results. Overlay of all conformations within a single identified cluster
according to the spectral clustering technique implemented here. Despite the high degree of structural heterogeneity in
the REMD ensemble, the contact-map-based approach chosen here successfully identifies clusters of conformations with
similar features. The central conformation of this cluster is shown in a cartoon representation, while the trace of the
backbone is shown for every other member of the cluster. A high degree of structural similarity among conformations
within the same cluster is observed, as indicated by an average pairwise RMSD of 1.33 Å for the protein backbone among
cluster members.

575Aβ(1–42) Conformations in Water
conformations according to a distance kernel. The
spectral clustering technique involves the diagonal-
ization of this matrix to obtain singular values of
high discriminative power in distinguishing be-
tween different points using a small number of
linearly independent dimensions (Fig. 6b). This
information is encoded within a small number of
the lowest nontrivial eigenvectors and can be used
to cluster the ensemble into groups of conformations
that share common contact map patterns. A direct
visualization of the REMD conformational ensemble
in the space defined by the three lowest nontrivial
eigenvectors is shown in Fig. 3a. We observe good
dispersion of the REMD data in the three eigenvec-
tors. In general, we observe a high degree of
structural similarity for conformations that are
near and different overall structural features for
conformations belonging to different regions of the
space (Fig. 3), which indicates the high discrimina-
tive power of this technique. Consequently, con-
formations belonging to the spatially distinct
clusters display common structural features, as
exemplified in Fig. 4. Furthermore, we observe
frequent transitions between the clusters throughout
the REMD trajectories (Fig. S3), which further
supports the conclusion that we are sampling a
structurally converged ensemble of conformations,
as previously indicated by the convergence of the
ensemble-averaged J-coupling and RDC data shown
in Fig. 1.
The identified representative conformations illus-

trate a diversity of local structural features including
regions with elements of regular secondary struc-
ture that were assigned using the DSSP algorithm.38

In particular, we frequently observe the formation of
β-sheets involving interactions of the C-terminus
with other parts of the sequence, as shown in Fig. 5.
In a conformationally distinct cluster, we observe
the formation of a β-sheet involving strands at
residues 4–6 and 38–40 (sequence GVV), as well as
an α-helix at the sequence 8SGYE12V (Fig. 5a).
Alternatively, the stand at residues 38–40 can form a
β-hairpin involving residues 33–35, as seen in
another representative conformation (Fig. 5b) or a
sheet with residues 18–20, as seen in a separate
closely clustered group of conformations (Fig. 5c).
This indicates that the region 38–40 may act as a
conformational switch, whose interactions with
various parts of the sequence dictate the conforma-
tional state of the peptide. A similar conformation
for the C-terminus has been previously reported in
results using the OPLS/AA force field,31 where it
was found to form a β-sheet with residues 31–34. In
a separate closely clustered group of conformations,

image of Fig. 4


Fig. 5. Conformations of Aβ in water. Representative conformations of Aβ42 from the REMD ensemble as identified
using the spectral clustering technique. A diverse mixture of extended as well as collapsed coil conformations with
secondary structural elements is observed.
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we observe the formation of a β-hairpin involving
short strands at residues 3EF5R and 10YE12V
towards the N-terminus of the sequence (Fig. 5d).
In addition, a short α-helix spanning residues 20–
23 can be seen. In the same cluster, a hydrogen
bond of Arg5 with Ser26 is also observed. In a
conformationally distinct cluster, we observe the
formation of a 310 helix at the sequence 29GAII33G
(Fig. 5e). This region has a high potential to form a
310 helix, as also observed in other clusters (Fig.
5c). Finally, in a separate cluster that represents a
large part of the population, the conformation of
the peptide resembles a coiled coil (Fig. 5f). A brief
310 helix is observed at residues 21–24. The
presence of turn-like structures at residues Y10,
F19, and F20, as observed in some of the clusters,
is corroborated by the analysis of RDC measure-
ments in stretched polyacrylamide gels previously
reported by Lim et al.26

Identification of interactions with high
discriminative power

We have further explored the use of different
interactions in Aβ to discriminate among distinct
conformations in the ensemble. For this purpose, we
have implemented the Laplacian scores technique.30
This technique can be used to extract features that
are optimal in describing the local structure of points
in a data set. In our case, the features correspond to
residue contacts derived from the contact map
representation of the REMD conformations de-
scribed previously. An inspection of the 2D Lapla-
cian score map relative to the raw probabilities of
contact formation for different pairs of residues in
Aβ indicates these regions of high discriminative
power (Fig. 7). These interactions are formed
between the N-terminal residues 2–5 and residues
24–26 or residues 34–40 and between residues 25–28
and residues 36–40. All three regions have a
relatively small probability of contact formation in
the ensemble and would not be identified on the
basis of the contact probabilities alone. However, the
Laplacian score analysis suggests interesting fea-
tures. One such region is for contacts between the
N- and C-termini of the peptide (shown in the
upper left part of Fig. 6). These regions have been
observed to interact through a β-sheet in one of
the representative conformations in the ensemble
(Fig. 3) involving a strand at residues 38–40.
Therefore, the Laplacian score in this case can be
attributed to the formation of this long-range
structure. In addition, high Laplacian scores are
obtained for interactions between the C-terminus

image of Fig. 5


Fig. 6. Flow diagram of the spectral clustering method. In (a), a diverse ensemble of conformations obtained from
enhanced-sampling molecular dynamics is encoded as a binary distance matrix (contact matrix) where each column
represents the state of a residue contact (i,j) defined according to a distance threshold of 4.5 Å between any pair of heavy
atoms belonging to residues i and j. In (b), the original MD data set in the contact matrix representation is used to calculate
a square affinity matrix, whose elements are given by e−Dij, whereDij is the distance between conformations with indices i
and j according to a chosen distance kernel. The singular value decomposition of the affinity matrix yields eigenvectors of
high discriminative power. In particular, the m lowest nontrivial eigenvectors (where m ‘N) can be used as explicit
coordinates to separate the MD ensemble into k clusters using the k-means clustering algorithm.
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(residues 36–40) with residues 23–28, which have
also been found to form β-sheets as well as α-
helices in different conformations in the ensemble.
This result is consistent with the picture obtained
from the analysis of representative conformations,
where the β-strand at positions 38–40 was found
to interact with several alternative partners, thus
indicating the high discriminative power of this
region to distinguish between different cluster
conformations. Finally, for interactions between
residues 2–5 and residues 24–27, we identify
another region of contacts with high discriminative
power, which again highlights the importance of
long-range interactions in shaping the energy
landscape of Aβ. Therefore, monitoring the state
of these key contacts would be highly informative
for the overall conformation of the peptide.
Discussion

We have performed REMD simulations using the
ff99SB force field21 for the full-length Aβ(1–42)
monomer, which constitutes a characteristic intrinsi-
cally disordered peptide system. Previous studies
have indicated themerits21,39–43 and limitations36,44 of
using this force field to obtain realistic ensembles of
short peptides and proteins, relative to a variety of
NMR data that report on both the average structural
properties and dynamics of biomolecules. In two
recently published studies, Wickstrom et al. have
shown that this force field, when used in combination
with the TIP4P-Ew explicit solvation model,45 can
reproduce experimental backbone J-couplings with
reasonable accuracy for short alanine polypeptides43

and the chemically denatured state of the vilin
headpiece.46 Notably, using this combination of
force field and solvation model, Fawzi et al. per-
formed multiple microcanonical simulations for a
smaller fragment of Aβ(21–30) that reproduced both
J-coupling constants and rotating-frame Overhauser
effects and 13C relaxation rates measured by NMR.41

Day et al. studied the unbiased folding/unfolding
thermodynamics of the trp-cage miniprotein and
found that the ff99SB force field produced folded
ensembles with distributions centered at 0.6 Å RMSD
from the NMR structure and a folding temperature
that is comparable to the one that is determined
experimentally for this system.39 However, Lindorff-
Larsen et al. observed significant deviations in the

image of Fig. 6
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distributions of side-chain rotameric states in exten-
sive ff99SB simulations, relative to statistics obtained
from the Protein Data Bank that influence the
calculation of accurate J-coupling values in proteins.36

Taken together, these results indicate the major areas
of improvement towards the next generation of
AMBER force fields.
Here, we confirm these findings and further

explore the generality of MD results obtained
using ff99SB under extensive sampling conditions
for an intrinsically disordered peptide. We have
obtained a converged ensemble, from the point of
view of correlation to experimental J-coupling and
RDC values, after 60 ns/replica. The convergence of
this ensemble at the structural level is further
confirmed by the observed global sampling of the
accessible conformational space according to the
time history of the assigned clusters (Fig. S3).
Validation with both J-couplings and RDCs indi-
cates good agreement with experiments for most
sites for which experimental data were available,
which is manifested in P.C.C. in the range of 0.4–0.5
for both observables. In a previous study for the
same peptide system using a variety of force fields,
we have found that the best-performing force field,
OPLS/AA,31 reached a P.C.C. of 0.48 to the same
experimental J-coupling data set,16 indicating a
small improvement for the ff99SB force field,
which is within the simulation error. Moreover, we
observe similar convergence times (∼60 ns/replica)
for the replica exchange algorithm for both force
fields, which suggests that the simulation time
needed to obtain realistic ensembles of intrinsically
disordered peptides is in this range, which is a
promising result given the combinatorial explosion
of the conformational space that is accessible to
systems of size comparable to Aβ42 and is of great
medical and biological importance. Finally, the
reported correlation to the experimental data is, in
most cases, comparable if not higher to the one
obtained using microsecond timescale simulations
of stable-folded proteins using a recently proposed
improvement of the ff99SB force field used here.36

We demonstrate the high discriminative power of
the spectral clustering method used here in identi-
fying representative conformations towards a de-
tailed characterization of the highly diverse
ensemble of Aβ42. To date, several dimensionality
reduction techniques have been employed to study
biomolecular dynamics from MD simulation data,
for the purposes of clustering, the identification of
representative conformations, or transitions be-
tween distinct conformational states.47–50 The spec-
tral clustering technique implemented here,
although previously applied for the clustering of
protein sequences,51 has not been previously used to
address the problem of classifying conformational
ensembles from MD simulation data. In this study,
we show that this technique is highly efficient in
deriving families of conformations that share dis-
tinct intramolecular interaction patterns, as shown
in Figs. 3–5. Analysis of our simulation data using
this method suggests that Aβ42 samples a highly
diverse conformational ensemble that can be ana-
lyzed on the basis of a relatively small number of
collective variables that report on medium- to long-
range intramolecular interactions. A similar ap-
proach has been recently used by our group using
MD simulation data to identify and characterize
distinct intermolecular orientations in the rhodop-
sin/transducin complex.52 Without loss of general-
ity, this approach can be implemented for the
visualization and clustering of conformations
obtained via other computational and experimental
methods such as results from ab initio protein folding
calculations and protein structure calculations.
When compared with commonly employed clus-

tering algorithms53 that are based on the RMSD
kernel,54 our method offers some attractive features.
The main drawback of RMSD-based clustering
methods is that conformations that are far apart in
RMSD space will be classified in different clusters
regardless of their contact map similarity. In systems
with conformational flexibility, this may result in a
very large number of clusters that are hard to
interpret manually. Our method overcomes this
problem by looking for structures that may be far
apart in RMSD but share common interactions.
Furthermore, results using hierarchical RMSD-
based algorithms in particular are highly dependent
on the choice of the RMSD cutoff used in the
clustering, a parameter that needs to be optimized in
order to obtain meaningful results (see procedure in
Ref. 16). We have repeated the clustering using the
Daura algorithm55 on our data set of 11,570 Aβ
conformations using a 0.2-nm cutoff for the defini-
tion of neighbor lists (same parameters as in Ref. 55).
In general, we obtain several small clusters (2170),
the majority of which have very small sizes. The six
largest clusters have populations in the range 2–6%.
Looking at the central conformations of the clusters,
we see a diverse group of structures, as expected.
The conformations of the largest cluster are very
similar to those obtained using our method in
cluster 6 (Fig. 4). This confirms that structures that
are close in RMSD space can also be close in the
space defined by the contact map definition.
However, the opposite is not necessarily true.
Finally, we made use of Laplacian scores30 to

identify pairwise residue interactions that can be
used to discriminate between different conformation-
al species, thus opening the possibility of designing
experimental labels to study transitions among such
conformations. The identified contacts, although not
observed in the REMD ensemble with high probabil-
ity, show significant differences (on average) between
different families of conformations (Fig. 7). This
analysis indicates that the short β-strand at residues



Fig. 7. Identification of discrimi-
native contacts using Laplacian
scores. The raw probabilities of
contact formation between all
pairs of residues i,j in Aβ42 accord-
ing to a 4.5-Å distance threshold
(lower right quadrant) are con-
trasted to the extracted Laplacian
scores for the same residue pair
(upper left quadrant). According to
this analysis, we identify several
contacts of high power in discrim-
inating between different confor-
mational species that are not
apparent from a simple inspection
of the ensemble-derived statistics of
contact formation, as discussed in
the text. This information can be
used to design experimental probes
to investigate transitions between
different conformations.
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38–40 may act as a conformational switch whose
alternative interactions with other strands along the
sequence of Aβ determine the conformational state of
the peptide. To this extent, the REMD ensemble can
provide valuable predictions to experimentalists
towards the study of transitions between different
conformations with distinct aggregation and oligo-
merization properties. If experimentally verified, this
information is valuable in designing strategies to
block transitions that lead to pathogenic conforma-
tions, thus suggesting a novel approach in AD
treatment at the molecular level.
Methods

REMD simulations

Molecular dynamics simulations were performed using
the REMD algorithm. The REMD is a generalized
ensemble method56,57 that involves several identical
copies of the system, or replicas, that are simulated in
parallel over a range of temperatures. At frequent
intervals, trials to exchange the temperature of all adjacent
replicas are performed, according to a Metropolis Monte
Carlo criterion. To optimize the temperature spacing of
the replicas, we performed 16 pilot constant temperature
(and volume) simulations for 3 ns each, spanning different
temperatures in the range 250–600 K. The histograms of
potential energy obtained from these short trajectories
were then used to define the temperatures of the replicas,
such that the average exchange ratio is constant through-
out the temperature space and equal to 15%, according to
the algorithm described previously.58 The range of
temperatures used in the final REMD simulations was
from 270.0 to 601.2 K. A total of 52 replicas were used to
optimally span the temperature space. Exchange moves in
temperature were attempted every 4 ps between all
adjacent replicas in temperature space. A detailed
structural analysis was performed only on conformations
sampled by all replicas at seven temperatures in the range
289–311 K. For all calculations, we used the FF99SB force
field21 in combinations with the TIP4P-Ew water model.45

Previous calculations focusing on Aβ(10–35) by Fawzi et
al. have shown that this combination of force field and
water model produces an ensemble of configurations that
is in good agreement with NMR data.41

To build the peptide system, we started from a
completely extended conformation of the full-length
Aβ(1–42) peptide with sequence:

1D AEFRHDSG10YEVHHQKLVF20FAEDVGSNKG30

AIIGLMVGGV40VIA

The following procedure was used to construct the
system: First, we run a 1-ns MD simulation of the peptide
in vacuo, at high temperature (~700 K), starting from a
completely extended conformation, followed by an energy
minimization of the system. The collapsed peptide was
then solvated in a cubic box, whose dimensions were
adjusted to accommodate 4947 water molecules (total
system size, 20,415 interaction sites). We chose a system
size that reduces short-range interactions between peri-
odic images of the peptide and is computationally
tractable. The solvated system was then equilibrated at
constant temperature (300 K) and pressure (1 atm) for 1 ns
with a short integration time step of 1 fs. This resulted in a
cubic simulation box of side length 53 Å in each
dimension. Finally, REMD simulations at constant volume

image of Fig. 7
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were run for 225 ns/replica in total (aggregate simulation
time of 11.7 μs). At this stage, the application of the
LINCS59 and SETTLE35 algorithms to constrain the bond
lengths in the peptides and water molecules, respectively,
allowed a relatively large integration step of 2 fs. We used
a cutoff of 10 Å for the evaluation of Lenard–Jones
interactions, while pair lists were updated every 10
integration steps. We used the particle mesh Ewald
method60 with a 52 Å×52 Å×52 Å cubic grid to evaluate
long-range electrostatics. Charge neutrality of the system
is implicitly treated by the used of the Ewald method for
the computation of long-range electrostatics. This is
closely mimicking the NMR experimental conditions,
where the sample salt concentration was kept minimal
(20 mM potassium phosphate buffer with no other salt).27

Ions, especially ones of the cationic series, have been
shown to play important roles in the aggregation and fibril
morphology of Aβ;61,62 however, this is a condition that
was not explored in the current study.
The system was coupled to a Nose–Hoover63 heat bath

to maintain a constant temperature between exchanges.
All simulations were performed at 204 CPUs of Linux-
based clusters at Rensselaer, with the use of the
GROMACS64 simulation machine under a variety of
domain decomposition schemes.

Comparison with experimental data

Avariety of experimental datawereused for thepurposes
of (a) assessment of simulation convergence and (b)
validation of the MD-derived conformational ensemble. In
a manner similar to the approach used previously,16 we
have monitored the correlation with experimental three-
bond J-couplings as an indicator of convergence and as a
measure of validity. The correlation between two data sets
X,Y is quantified in terms of the P.C.C.:

P:C:C: =
Cov X;Yð Þ
r2 Xð Þ4r2 Yð Þ

where Cov(X,Y) is the covariance of the two variables and
σ2(X),σ2(Y) are the corresponding standard deviations. In
order to assess the reproducibility of the J-coupling data, we
used two independent data sets of measured (3JHNHα data to
compare with simulations, the first published in a previous
study by our group,16 while the second was collected under
identical sample conditions and the experimental protocols
described by Yan et al.27 The two measurements of J-
coupling constantswere very similar formost residues (P.C.
C. of 0.92), with the exception of Glu11, which was found to
differ significantly between the two experimental data sets.
In total, 21 experimental (3JHNHα values were used, of which
17 were redundant between the two data sets. We used the
Karplus equation to predict J-coupling constants from our
MD coordinates:65

J = a cos2 uð Þ + b cos uð Þ + b

where a, b, and c are semi-empirically derived coefficients
andθ=ϕ−60,whereϕ is thepeptide dihedral angle. Theuse
of various published data sets of Karplus coefficients was
explored. We used coefficients previously determined by
fitting to X-ray structures,34 as well as a modified data set
that accounts for dynamics within a single harmonic well.33

Finally, motional averaging effects within our MD data set
were explicitly taken into account by fitting the Karplus
coefficients to the experimental data for Aβ. This resulted in
a set of coefficients that optimally describes our data and is
within previously published values, as reported by Brusch-
weiler and Case.33 The fitted values were determined to be
a=7.7, b=−1.9, and c=0.06, introducing a marginal change
to a and b and a significant decrease in c relative to
previously published values (reviewed in Ref. 33). With the
use of this set of fitted parameters, the RMSD from the
experimental data was reduced to 0.73 Hz from 1.46 Hz, for
J-couplings calculated using the coefficients published by
Vuister and Bax.34 When the corrected coefficients were
used,33 the RMSDwas 0.96 Hz (Fig. S1). For all calculations,
we used the final 165 ns/replica of our simulation
trajectories, sampled every 100 ps. The MD data set was
split into three samples of 3857 conformations each, which
were used to estimate the error in the calculated values.
In addition, we used RDCs measured in 10% polyacryl-

amide gels as an additional, independent measure of the
validity of our simulations. Experimental RDCs were
obtained from a previously published study for 30 amides
in Aβ(1–42) under partial alignment conditions at
273.3 K.27 From this data set, we extracted 22 RDCs for
which the experimental error was less than 33%. The
method PALES37,66 was used for the calculation of RDC
values from the MD data. In summary, for each
conformation in our MD ensemble, the program calculates
an alignment orientation due to steric properties of the
molecule, which is subsequently used to calculate RDC
values. This is done by diagonalization of the moment of
inertia tensor. Finally, ensemble-averaged RDCs are
computed according to the equation:

Dij =
−A0gigjh

2p

�
3 cos2 qij − 1

2r3

�

= Dmax

X
k;l

�
skl
r3

cos ukij cos u
l
ij

�

where μ0 is the permeability of empty space, γi,γj are the
gyromagnetic ratios of the i and j nuclei, h is Planck's
constant, r3 is the length of the internuclear vector, and ϑij
is the angle between the internuclear vector and the
external magnetic field. Expressed in the molecular frame,
all constants are absorbed in Dmax, which is the maximum
possible value of the RDC for a particular nuclei pair, skl is
a component of order tensor describing the alignment of
the protein in the laboratory frame, and cosij

k and cosij
l are

the orientation cosines of the internuclear bond vector in
the molecular alignment frame. Ensemble-averaged RDC
values were uniformly scaled to minimize the RMSD from
the experimental data, due to the fact that the alignment
tensor magnitude depends on the fraction of molecules
that are in the aligned state that depends on the
experimental conditions.

A contact-map-based representation of the
configurational ensemble

We have used a numerical representation of the protein
conformations of our MD simulations (11,564 in total). In
our approach, every protein conformation is represented
as a 2-dimensional table that we refer to as “contact map
table” in the sequel. In principle, we represent a
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conformation as a binary table of residue-to-residue
interactions. We focus on 42 residues and on interactions
within a distance threshold of 4.5 Å between any pair of
heavy atoms in the residue. Each of the 11,564 contact map
tables has dimensions 42×42, where for all i,j=1,…, 42 the
(i,j)th element of the table indicates the presence or
absence of an interaction (contact) between the ith and
the jth residues of the protein that corresponds to this
particular table. We fill all elements of this table with zeros
and ones such that a ‘0’ implies a broken contact and a ‘1’
implies a formed contact. We further simplify this contact
map table by neglecting trivial short-range interactions
between residues with less than three sequence separa-
tion; that is, the main diagonal as well as the three sub-
diagonals around the main diagonal of every contact map
table are neglected. To organize the contact map tables in a
more compact way, we first transform each of them to a 1-
dimensional row vector. This vector has 741 dimensions,
and since we discarded the central diagonals, we kept only
half of it due to its symmetry. That way, every element of
this 741-dimensional vector corresponds to a unique
residue-to-residue interaction in the protein. Finally, our
MD ensemble can be represented as an 11,564×741
matrix, where each row corresponds to a snapshot (the
vectorized contact map described above) and each column
corresponds to a residue-to-residue interaction. This
binary matrix is denoted as A in the sequel.
Spectral analysis of protein conformations

The goals of our computational are threefold:

1. Visualization: we want to visualize the conforma-
tions in a small number of dimensions so that one
will be able to quickly understand the hidden
structure of the complex conformation space.

2. Clustering: identification of a small number of
“representative” conformations: we want to find a
small subset of conformations that efficiently sum-
marize and characterize the protein ensemble.

3. Feature selection: identification of a small number of
“representative” residue-to-residue interactions: we
want to find a small subset of residue-to-residue
interactions with high “discriminative power”, that
is, interactions that suffice to classify the conforma-
tions into different groups.

The above goals are achieved by employing techniques
typically referred to as “spectral algorithms”; this charac-
terization implies algorithms that use eigenvectors and
eigenvalues of appropriate matrices.67 All of our techni-
ques employ an eigenvalue-type analysis of the Laplacian
matrix of a proper graph describing the matrix A. In more
detail, we use:

1. The Laplacian eigenmaps approach28 to visualize
the conformations in a three-dimensional Euclidian
space. This is described in Appendix A1.

2. The spectral clustering approach based on normal-
ized cuts29 to cluster the conformations into different
groups and select representativeswithin each group.
This technique is described in Appendix B.
3. The feature selection approach based on the Lapla-
cian scores30 to identify contacts with high discrim-
inative power (see Appendix C).

Supplementary materials related to this article can be
found online at doi:10.1016/j.jmb.2010.10.015
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