
J

A
o

C
P
a

b

c

d

a

A
R
A
A

K
R
H
D

1

d
a
a
r
r
t

x

S
s
[
c
i
w
f
a

c

A
R

h
1

ARTICLE IN PRESSG Model
OCS-547; No. of Pages 11

Journal of Computational Science xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

 randomized least squares solver for terabyte-sized dense
verdetermined systems�

hander Iyera,∗, Haim Avronb, Georgios Kolliasc, Yves Ineichend, Christopher Carothersa,
etros Drineasa

Department of Computer Science, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
Department of Applied Mathematics, Tel Aviv University, P.O. Box 39040, Tel Aviv, Israel
IBM Research – T.J. Watson Research Center, Yorktown Heights, NY, USA
IBM Research – Zurich Research Lab, Zurich, Switzerland

 r t i c l e i n f o

rticle history:
eceived 28 May 2016
ccepted 21 September 2016

a b s t r a c t

We present a fast randomized least-squares solver for distributed-memory platforms. Our solver is based
on the Blendenpik algorithm, but employs multiple random projection schemes to construct a sketch of
vailable online xxx

eywords:
andomized numerical linear algebra
igh-performance computing

the input matrix. These random projection sketching schemes, and in particular the use of the randomized
Discrete Cosine Transform, enable our algorithm to scale the distributed memory vanilla implementation
of Blendenpik to terabyte-sized matrices and provide up to ×7.5 speedup over a state-of-the-art scal-
able least-squares solver based on the classic QR algorithm. Experimental evaluations on terabyte scale
matrices demonstrate excellent speedups on up to 16,384 cores on a Blue Gene/Q supercomputer.
ense least squares regression

. Introduction

The explosive growth of data over the past 20 years in various
omains, ranging from physics and biological sciences to economics
nd social sciences, has led to a need to perform efficient and scal-
ble analysis on such massive datasets. One of the most widely and
outinely used primitives in statistical data analysis is least-squares
egression: given a matrix A ∈ R

m×n and a vector b ∈ R
m, we seek

o compute

∗ = arg min
x ∈ Rn

∥∥Ax − b
∥∥

2
. (1)

everal algorithms have been proposed to solve large-scale least-
quares problems in various distributed and parallel environments
1], returning solutions whose accuracy is close to machine pre-
ision. Recent approaches for large-scale least-squares problems
nclude communication-avoiding factorizations [2], which scale

ell for a variety of shared memory and distributed memory plat-
orms [3] and are based on the classic QR decomposition algorithm,
Please cite this article in press as: C. Iyer, et al., A randomized least sq
Comput. Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.09.007

n O(mn2) algorithm (assuming m ≥ n).
Recent years have witnessed an explosion of research on so-

alled Randomized Numerical Linear Algebra [4] (or RandNLA for

� This work was partially supported by the XDATA program of the Defense
dvanced Research Projects Agency (DARPA), administered through Air Force
esearch Laboratory contract FA8750- 12-C-0323, as well as by NSF IIS-1302231.
∗ Corresponding author.

ttp://dx.doi.org/10.1016/j.jocs.2016.09.007
877-7503/© 2016 Elsevier B.V. All rights reserved.
© 2016 Elsevier B.V. All rights reserved.

short) algorithms, which leverage the power of randomization in
order to perform standard matrix computations. One of the core
problems that have been extensively researched in this emerging
field is the least-squares regression problem of Eq. (1). Sarlos [5]
and Drineas et al. [6] introduced the first randomized algorithms
for this problem. These algorithms are based on the application of
the sub-sampled Randomized Hadamard Transform to the columns
of the input matrix in order to create a least-squares problem of
smaller size that can be then solved exactly and whose solution
provably approximates the solution of the original problem with
very high probability. This was followed by the work of Rokhlin
and Tygert [7], who used a subsampled Randomized Fourier Trans-
form to form a preconditioner and then used a standard iterative
solver to solve the preconditioned problem. At the same time,
Avron et al. [8] introduced Blendenpik, an algorithm and a software
package which was the first practical implementation of a RandNLA
dense least-squares solver that consistently and comprehensively
outperformed state-of-the-art implementations of the traditional
QR-based O(mn2) algorithms. Since then, there has been extensive
research on RandNLA algorithms for regression problems; see Yang
et al. [9] for a recent survey.

So far, most research on randomized least-squares regression
algorithms has focused on the single processor setting, with two
uares solver for terabyte-sized dense overdetermined systems, J.

important exceptions. Meng et al. [10] introduced LSRN, a dis-
tributed memory algorithm for least-squares problems based on
random Gaussian projections. While the algorithm is still an O(mn2)
algorithm, the benefits of randomization are apparent with respect

dx.doi.org/10.1016/j.jocs.2016.09.007
dx.doi.org/10.1016/j.jocs.2016.09.007
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
dx.doi.org/10.1016/j.jocs.2016.09.007

 ING Model
J

2 tation

t
i
s
f
t

r
B
p
t
s
p
l
i
A
a
8
P
t
1
t
b
o
c
c
[
u

t
d
d
a
d
C
t
t
t
s
a

m
l
n
t
t
w
a
t
d

d
b

l
�
r
o

2
s

o

ARTICLEOCS-547; No. of Pages 11

 C. Iyer et al. / Journal of Compu

o both constants in the asymptotic analysis, as well as its much
mproved efficiency on parallel environments. Yang et al. [9] con-
ider RandNLA in a MapReduce-like framework called Spark. This
ramework is less appropriate for supercomputers, as it is fails to
ake advantage of their hardware architecture.

In this work, we explore the behavior of Blendenpik-type algo-
ithms in a distributed memory setting. We show that variants of
lendenpik that use various batchwise transformations to compute
reconditioners lead to implementations that are not only faster
han state-of-the-art implementations of baseline least-squares
olvers, but are also able to scale to much larger matrix sizes. In
articular, we show that a Blendenpik based algorithm can solve

east-squares regression problems with terabyte-sized (and larger)
nput matrices. Our implementation and experiments were run on
MOS,1 the high-performance Blue Gene/Q supercomputer system
t Rensselaer. AMOS has five racks, 5120 nodes (81,920 cores), and
1,920 GB of main memory. AMOS has a peak performance of one
etaFLOP (1015 floating point operations per second), and a 5-D
orus network with 2 GB/s of bandwidth per link and 512 GB/s to

 TB/s of bisection network bandwidth per rack, depending on the
orus network configuration. Due to runtime constraints imposed
y the scheduling system for each partition of AMOS, we limited
ur experiments to partitions containing up to 1024 nodes (16,384
ores). The Blue Gene/Q architecture supports a hybrid communi-
ation framework that uses the MPI (Message Passing Interface)
10] standard for distributed communication and multithreading
sing OpenMP [12].

Our main contributions in this paper are: (i) implementa-
ion of and experimentation with the Blendenpik algorithm on
istributed-memory platforms; (ii) implementation of four ran-
omized sketching transforms in the context of the Blendenpik
lgorithm; (iii) a batchwise transformation scheme that scales a
istributed vanilla implementation of the Randomized Discrete
osine Transform in the context of the Blendenpik algorithm by up
o three times in terms of matrix sizes, and provides a speedup of up
o 7.5 times over a state-of-the-art scalable least-squares solver for
era-scale matrices; (iv) a detailed evaluation of four randomized
ketching transforms in the context of the Blendenpik algorithm
nd their parameters on the BG/Q, using up to 16,384 cores.

The full source code of our batchwise Blendenpik imple-
entation is available for download at https://github.com/cjiyer/

ibskylark/tree/batchwiseblendenpik. The rest of this paper is orga-
ized as follows. Section 2 describes the Blendenpik algorithm and
he various stages of the algorithm in detail. Section 3 highlights
he distributed Blendenpik implementation in the Blue Gene/Q, as
ell as scalability issues in our implementation, and describes an

pproach to overcome them. Section 4 first describes experiments
o tune our Blue Gene/Q environment for our evaluations and then
iscusses the outcome of our experimental evaluations.

Notation. Let A, B, . . . denote matrices and let x, y, z, . . .
enote column vectors. Given a vector x ∈ R

m, let ‖x‖22 =
∑m

i=1x2
i

e (the square of) its Euclidean norm; given a matrix A ∈ R
m×n,

et
∥∥A

∥∥2

F
=

∑m,n
i,j=1A2

ij be (the square of) its Frobenius norm. Let

1 ≥ �1 ≥ �2 · · · ≥ �r > 0 be the nonzero singular values of A, where
 = rank (A) is the rank of the matrix A. Then, the condition number
f A is equal to �(A) = �1/�r.

. The Blendenpik Algorithm for dense overdetermined
ystems
Please cite this article in press as: C. Iyer, et al., A randomized least sq
Comput. Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.09.007

Blendenpik (see Algorithm 1) is a least-squares solver for dense,
verdetermined, full column rank least-squares problems that

1 https://secure.cci.rpi.edu/wiki/index.php/Blue Gene/Q.
 PRESS
al Science xxx (2016) xxx–xxx

computes an approximate solution to the problem of Eq. (1), with
a high degree of precision. Given a dense, tall-and-thin matrix
A ∈ R

m×n and a column vector b ∈ R
m, the algorithm returns an

approximate solution by executing the following three steps:

1. A preconditioner is constructed by applying a randomized uni-
tary (or approximately unitary) transform F to the input matrix A
and then sampling a small number of rows from the transformed
matrix FA to form the matrix Ms.

2. A QR factorization of the sampled matrix Ms is computed, retur-
ning an orthogonal matrix Qs and an upper triangular matrix Rs.
The latter matrix Rs is then used as a preconditioner for the input
matrix A.

3. LSQR (an iterative method for solving least-squares problems)
is then used to solve a least-squares problem using the precon-
ditioned matrix to compute an approximate solution x̂ to the
original problem of Eq. (1).

The algorithm uses a simple approach to estimate the condition
number of the matrix Rs. This procedure is described in [8] and
amounts to computing the product

∥∥Rs

∥∥
1

∥∥R−1
s

∥∥
1
, where

∥∥X
∥∥

1
is

the 1-norm of the matrix X. If that estimate of the condition number
is too small (and thus its inverse is too large), the algorithm tries to
construct a new preconditioner. If no good preconditioner is con-
structed after three repetitions, the algorithm employs a standard
solver to exactly compute the solution. We will use �machine to
denote the target machine precision, which in our setting is equal
to 2 × 10−15.

Algorithm 1. The Blendenpik algorithm [8].
1: Input: A ∈ R

m×n matrix, m � n, rank (A) = n, b ∈ R
m ,

random transform matrixF ∈ R
m×m ,

oversampling factor� ≥ 1, with �n � m.
2: Output: approximate solution x̂ to the problem of Eq. (1).
3: while TRUE do
4: Let S ∈ R

m×m be a random diagonal matrix:

Sii =

{
1, withprobability

�n

m

0, otherwise
5: Ms = SFA.
6: Compute the QR factorization of Ms: Ms = QsRs .
7: Let �̂ be an estimate of the condition number of Rs .
8: if �̂−1 > 5�machine then

9: y = min
z

∥∥AR−1
s z − b

∥∥
2
.

10: Solve Rsx̂ = y and return x̂.
11: else if more than three iterations have been performed then
12: Solve using the baseline least-squares solver and return.
13: end if
14: end while

The most important stage of the Blendenpik algorithm is the
application of the randomized transform F; we will discuss various
choices for F in Section 2.1. It is worth emphasizing that computing
Ms as the product SFA in Algorithm 1 is for illustration purposes
only. We will see in Section 2.1 that there are more efficient ways
for computing Ms than simple matrix–matrix multiplication. The
oversampling factor � guarantees that as the number of rows of Ms

will be (in expectation and with high probability) close to �n. As
a result, the computation of the QR decomposition of Ms is com-
putationally efficient, since its running time only depends on the
“small” dimension n and not on the “large” dimension m. The upper
triangular matrix Rs that is returned by the QR decomposition of Ms

is then used as a preconditioner for the original problem. However,
if Rs is ill-conditioned, then we repeat the generation of the ran-
uares solver for terabyte-sized dense overdetermined systems, J.

domized transform F in the hope of getting a better-conditioned
matrix Rs. If this procedure fails three times, then an exact solver is
employed to solve the original least-squares problem. We conclude
this discussion by stating that while setting � to a smaller value

dx.doi.org/10.1016/j.jocs.2016.09.007
https://github.com/cjiyer/libskylark/tree/batchwiseblendenpik
https://github.com/cjiyer/libskylark/tree/batchwiseblendenpik
https://github.com/cjiyer/libskylark/tree/batchwiseblendenpik
https://github.com/cjiyer/libskylark/tree/batchwiseblendenpik
https://github.com/cjiyer/libskylark/tree/batchwiseblendenpik
https://github.com/cjiyer/libskylark/tree/batchwiseblendenpik
https://github.com/cjiyer/libskylark/tree/batchwiseblendenpik
https://secure.cci.rpi.edu/wiki/index.php/Blue_Gene/Q
https://secure.cci.rpi.edu/wiki/index.php/Blue_Gene/Q
https://secure.cci.rpi.edu/wiki/index.php/Blue_Gene/Q
https://secure.cci.rpi.edu/wiki/index.php/Blue_Gene/Q
https://secure.cci.rpi.edu/wiki/index.php/Blue_Gene/Q
https://secure.cci.rpi.edu/wiki/index.php/Blue_Gene/Q
https://secure.cci.rpi.edu/wiki/index.php/Blue_Gene/Q
https://secure.cci.rpi.edu/wiki/index.php/Blue_Gene/Q
https://secure.cci.rpi.edu/wiki/index.php/Blue_Gene/Q
https://secure.cci.rpi.edu/wiki/index.php/Blue_Gene/Q
https://secure.cci.rpi.edu/wiki/index.php/Blue_Gene/Q

 IN PRESSG Model
J

tational Science xxx (2016) xxx–xxx 3

c
q

B
l
f
u
c

w
a
w

a
m
p
o

2

c
t
f
F

v
t
G
w
f
c
m
p
f
r
s
−
w
t
e

F

A
f
R
a
r
o
m
n
t
t
t
a
a

o
o
n

Table 1
Elemental data distribution overview.

Distribution formats
for a 2-D process grid

∼
[MC , MR] & [MR, MC]
[VR, �] & [�, VR]
[VC , �] & [�, VC]

[�, �]

MC Matrix column

Distribution order
within each grid
dimension

MR Matrix row
VC Vector in column major order
VR Vector in row major order
� Stored on every process

Description
[X, Y] Distribute[columns, rows] with

scheme [X, Y]
[MC , MR] Distribute [columns, rows]

equally among processes
ARTICLEOCS-547; No. of Pages 11

C. Iyer et al. / Journal of Compu

an improve the running time of the QR decomposition of Ms, the
uality of the preconditioner typically diminishes as � decreases.

We now briefly discuss the LSQR method that is employed by
lendenpik in order to solve the preconditioned least-squares prob-

em. LSQR [13] is an iterative, Krylov-subspace solver that works as
ollows: given the current iterate xj and the corresponding resid-
al error rj = b − Axj, LSQR uses the following criterion to test for
onvergence:∥∥∥(

AR−1
s

)T
rj

∥∥∥
2

AR−1
s

∥∥rj

∥∥
2

≤ �,

here � is a tolerance value that determines the backward error
t which the iterative solver terminates. This guarantees a back-
ard stable solution to y = min

z

∥∥AR−1
s z − b

∥∥
2
. The residual error

t convergence is used to compute the final backward error esti-
ate. The runtime of LSQR is affected by how well-conditioned the

reconditioned system AR−1
s is, which in turn is determined by the

versampling factor � .

.1. The randomized transform F

Our work is the first detailed evaluation on a Blue Gene/Q super-
omputer of the Blendenpik algorithm with multiple choices for
he randomized transform F. We start by describing a few straight-
orward choices for F, as well as more state-of-the-art choices for
.

First, F could be a matrix whose entries are independent random
ariables, chosen from various well-known distributions. Perhaps
he simplest choice is to set the entries of F to be independent
aussian random variables of zero mean and variance 1/(�n); we
ill refer to this construction of F as a Gaussian Random Trans-

orm (GRT). While Meng et al. [10] also use the GRT as their
hoice of randomized transform for the LSRN algorithm, a funda-
ental difference between LSRN and Blendenpik is the way the

reconditioner is constructed. The Blendenpik algorithm uses a QR
actorization of the sampled matrix Ms whereas the LSRN algo-
ithm computes the SVD of Ms to form the preconditioner. A second
traight-forward choice is to set the entries of F to be +1/

√
�n or

1/
√

�n with probability 1/2, independently for each entry. We
ill refer to this construction as a Random Sign Matrix (RSM). A

hird choice was proposed by Achlioptas in [14] and constructs the
ntries of F as follows:

ij =

⎧⎨
⎩
−
√

3/(�n), with probability 1/6

0, with probability 2/3

+
√

3/(�n), with probability 1/6

gain, all entries are set to their respective values independently
rom all other entries. We refer to this construction as a Sparse
andom Sign Matrix (SRSM). It is worth noting that all three
forementioned constructions, in the context of Blendenpik algo-
ithm, would amount to first computing the product SF (essentially
nly constructing the relevant rows of the randomized transform
atrix, since rows that correspond to values Sii equal to zero should

ot be constructed) and then applying SF on to A by computing
he product (SF) A. The SRSM transform could take advantage of
he sparsity of the matrix SF to compute the above product faster
han the other two transforms. Finally, we conclude by noting that
ll three transforms are normalized appropriately in order to be
pproximately unitary.
Please cite this article in press as: C. Iyer, et al., A randomized least sq
Comput. Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.09.007

Finally, our last random transform matrix F was proposed in the
riginal Blendenpik paper [8]. The construction of F is the product
f a random diagonal matrix and a fixed unitary transformation,
amely the Discrete Cosine Transform (DCT). In this case, let D be
VC/VR Distribute over processes in
column/row major wrapping

a random diagonal matrix whose diagonal entries are set to +1
or −1 with probability 1/2. Then, let C be the matrix of the Dis-
crete Cosine Transform (see [8] for details) and construct F = DC. We
will refer to this construction of F as the Randomized DCT (RDCT).
We note that, in this case, the computation of FA is more efficient
that matrix-matrix multiplication. Indeed, one can apply the DCT
matrix C on the columns of A in a column-wise manner much faster
than matrix-vector multiplication, by using the properties of the
Discrete Cosine Transform. Then, applying the matrices S and D
on the resulting matrix CA is trivial, since they are both diagonal
matrices.

3. Implementing our algorithm on the Blue Gene/Q

The algorithm is implemented on top of the Elemental library
[15]. Given a distributed environment over p processes, any dense
matrix A ∈ R

m×n is partitioned in Elemental into rectangular grids
of sizes r × c in a 2D cyclic distribution, such that p = r × c and both
r and c are O(

√
p). Elemental allows a matrix to be distributed in

more than one way. An overview of various data distributions avail-
able in Elemental is given in Table 1 (not exhaustive). We use the
standard distribution [MC, MR] listed in Table 1 for dense input
matrices, in order to exploit operations that are communication
intensive. For column-wise and row-wise vector operations that
require local computations to be performed, we use a [�, VC/VR] or
a [VC/VR, �] distribution that assigns each column or row vector to
a single process. In some cases, we require a matrix or a column
vector to be present across all processes, which is done using the
[�, �] format. The notations used henceforth are adapted from Ele-
mental for convenience. Ref. [15] gives a comprehensive insight
on these notations, describing different data distributions and the
communication costs involved in redistribution.

We already presented in Section 2.1 various methods of gener-
ating the matrix F that is critical in the Blendenpik algorithm. When
F is a Random Gaussian Transform, or a Random Sign Transform,
or a Sparse Random Sign Transform, we generated and applied it
within Elemental using the standard [MC, MR] data distribution (a
straight-forward operation). The only construction of F that merits
additional discussion is the Randomized Discrete Cosine Transform.
In order to apply the RDCT on a matrix A in a column-wise manner,
we used the DCT implementation of FFTW [16], a highly opti-
mized implementation of the Fast Fourier Transform (FFT), tuned
for underlying architectures that work on multidimensional data.
For our purposes, we used the 1-D versions of DCT that operate on
Elemental’s data distributions. In this case, the [MC, MR] Elemental
uares solver for terabyte-sized dense overdetermined systems, J.

distribution is not a suitable format in order to apply FFTW’s DCT,
since the data distributed across multiple nodes in a column-wise as
well as in a row-wise manner are locally non-contiguous. However,
the implementation in FFTW expects contiguously distributed data

dx.doi.org/10.1016/j.jocs.2016.09.007

 ING Model
J

4 tation

a
t
a
[
m
d
i

F

T
M
r
u
p
t
b
d
p
p
s
w
t

t
t
i
S
a
t
t
t
w
b
p
f
o
i
s
d
V
s
t
M
M
n
s
e

4

t
d
f
e
t

h

ARTICLEOCS-547; No. of Pages 11

 C. Iyer et al. / Journal of Compu

cross the relevant dimensions. We resolve this problem by redis-
ributing the data so that all elements of a column or row vector
re owned locally by a process, using either the [VR/VC, *] or the
*, VR/VC] distribution of Table 1. In order to apply the DCT, all ele-

ents of a column must be stored locally, i.e., using the [*, VR/VC]
istribution. The Elemental pseudocode in order to apply the DCT

n Blendenpik is described in the following steps:

A ⇔

⎧⎪⎨
⎪⎩

A[�, VR] = A[MC, MR]

M[�, VR] = F[�, VR]A[�, VR]

M[MC, MR] = M[�, VR]

he A[*, VR] ←− A[MC, MR] redistribution can be thought of as a
PI Scatter and an MPI Gather collective pair operation. The cur-
ent MPI specifications (MPI 3.0) support sending and/or receiving
p to INT MAX (231− 1) elements for any collective operation. This
laces memory constraints for terascale dense overdetermined sys-
ems, as the row sizes increase and more column elements get
unched together inside a single process. Hammond et al. [17]
emonstrate a library implementation called BigMPI as a wrap-
er to current MPI specifications to resolve this problem. However,
orting this wrapper to the local MPI implementation of our AMOS
upercomputer is a cumbersome task and beyond the scope of our
ork. We instead overcame this problem using a batchwise unitary

hat we will discuss next.
Recall that the grid distribution of Elemental is cyclic and it

herefore imposes an additional overload during redistribution of
he input matrices. In more detail, the memory for each process
s now shared by more than one columns of the input matrix.
ince we are concerned with terascale, over-determined systems,

 piecemeal redistribution, where in we select only a few columns
o transform at a time is generally preferred. Another limiting fac-
or that inhibits Blendenpik performance on terascale matrices is
he communication cost in redistributing matrices after a batch-
ise transformation. A straightforward solution is to sample the

atchwise transformed matrix before redistribution to generate the
reconditioner. Let a matrix A ∈ R

m×n be distributed in an [MC, MR]
ormat and let there be p MPI processes (for sake of this example) in
ur distributed environment. We divide the matrix A columnwise
nto b submatrices given by A(1), A(2), . . ., A(b), redistribute each
ubmatrix A(i)[�, VR] ← A(i)[MC, MR] : i ∈ {1, . . ., b}, perform ran-
om unitary transformations on each submatrix M(i)[�, VR] ← F[�,
R]A(i)[�, VR] : i ∈ {1, . . ., b}, sample from each of the transformed
ubmatrices M(i)

s [�, VR] ← S[�, VR]M(i)[�, VR] : i ∈ {1, . . ., b}, redis-
ribute back each of the sampled b submatrices M(i)

s [MC, MR] ←
(i)
s [�, VR] : i ∈ {1, . . ., b}, and finally merge them all in the Ms[MC,
R] matrix. The number of columns in each submatrix and thus the

umber of submatrices b can be tuned depending on the dimen-
ions of the matrix and the number of MPI processes p used in our
valuations.

. Evaluation

To generate terascale-sized dense matrices, we randomly per-
urb sparse matrices with values generated from a standard normal
Please cite this article in press as: C. Iyer, et al., A randomized least sq
Comput. Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.09.007

istribution. We relied on the UFL Sparse matrix collection [18]
or obtaining matrices of different condition numbers and coher-
nce values. We chose to work with the Yoshiyasu Mesh matrix,2

he ESOC Springer matrix,3 and the Rucci4 matrix from the UFL

2 http://www.cise.ufl.edu/research/sparse/matrices/Yoshiyasu/mesh deform.
tml.
3 http://www.cise.ufl.edu/research/sparse/matrices/Springer/ESOC.html.
4 http://www.cise.ufl.edu/research/sparse/matrices/Rucci/Rucci1.html.
 PRESS
al Science xxx (2016) xxx–xxx

Sparse matrix collection for creating our datasets. Table 2 shows
the particular matrices that were used in our evaluations: starting
with the aforementioned three matrices, we first densified them by
adding random Gaussian noise as discussed above. Then, we repli-
cated and vertically concatenated them (with different noise added
at each replication step) in order to create tall-and-thin matrices.
Each matrix in Table 2 is suffixed with the number of replications
and vertical concatenations of the base dense matrix. For example,
to construct Yoshiyasu-24, we started with the Yoshiyasu Mesh
matrix, added noise to create 24 slightly different copies of this
matrix, and then vertically concatenated these 24 copies to get a
tall-and-thin matrix.

We now describe our evaluation metrics. Recall that A ∈ R
m×n

is the input matrix and b ∈ R
m is the target vector. Let x̂ be the

approximate solution returned by Algorithm 1 and let x* be the
optimal solution to the problem of Eq. (1). Let t̂run be the running
time of Algorithm 1 and let t∗run be the running time of the baseline
Elemental least-squares solver. Then, our first accuracy metric is the
relative error of the approximate solution x̂, given by the following
formula:∥∥Ax̂− Ax∗

∥∥
2
/
∥∥Ax∗

∥∥
2
. (2)

We also compute the backward error of the approximate solution
as follows:∥∥AT

(
b − Ax̂

)∥∥
2
. (3)

Finally, the speedup of Algorithm 1 is defined as

t∗run/t̂run. (4)

4.1. AMOS environment setup

Our objective in the evaluation section is to provide a thorough
evaluation of Blendenpik-type solvers for terascale least-squares
problems from three primary viewpoints: scalability, performance,
and accuracy. We tuned AMOS to evaluate the Blendenpik imple-
mentation against optimum baseline performance and scalability.
We selected a combination of the number of OpenMP threads per
node and the number of MPI processes per node that gave maxi-
mum performance for the baseline Elemental least-squares solver
on AMOS. We measured the average time taken by the baseline
solver over five runs for all possible MPI and OpenMP combinations
for two dense matrices: a random matrix whose entries were gen-
erated uniformly at random in the interval [−1,1] with dimensions
1,320,000 × 38,000 and the ESOC-4 matrix (Table 2) with dimen-
sions 1,308,248 × 37,830. The AMOS system can execute up to 64
MPI processes with one OpenMP thread, or one MPI process with
64 OpenMP threads, or any combination of the two that results in
a product of MPI processes and OpenMP threads that is equal to
64 in a single node. We used a bgclang/LLVM build of the baseline
Elemental solver for our evaluations.

As seen in Table 3, the performance of the baseline Elemen-
tal solver improved as the number of OpenMP threads per node
increased for a single MPI process per node. Similarly, the per-
formance also increased with increasing MPI processes per node
for a single OpenMP thread. However, the performance dropped
when many MPI processes compete for CPU resources with several
OpenMP threads in the system. The maximum performance is real-
ized for 32 OpenMP threads for a single MPI process (Table 3), while
it immediately degraded when the number of threads reached 64.
One possible reason could be because of possible thread synchro-
uares solver for terabyte-sized dense overdetermined systems, J.

nization during floating point operations in the BG/Q CPU cores.
The choice of one MPI process and 32 OpenMP threads per Blue
Gene/Q node was the standard configuration that we selected for
our evaluations.

dx.doi.org/10.1016/j.jocs.2016.09.007
http://www.cise.ufl.edu/research/sparse/matrices/Yoshiyasu/mesh_deform.html
http://www.cise.ufl.edu/research/sparse/matrices/Yoshiyasu/mesh_deform.html
http://www.cise.ufl.edu/research/sparse/matrices/Yoshiyasu/mesh_deform.html
http://www.cise.ufl.edu/research/sparse/matrices/Yoshiyasu/mesh_deform.html
http://www.cise.ufl.edu/research/sparse/matrices/Yoshiyasu/mesh_deform.html
http://www.cise.ufl.edu/research/sparse/matrices/Yoshiyasu/mesh_deform.html
http://www.cise.ufl.edu/research/sparse/matrices/Yoshiyasu/mesh_deform.html
http://www.cise.ufl.edu/research/sparse/matrices/Yoshiyasu/mesh_deform.html
http://www.cise.ufl.edu/research/sparse/matrices/Yoshiyasu/mesh_deform.html
http://www.cise.ufl.edu/research/sparse/matrices/Yoshiyasu/mesh_deform.html
http://www.cise.ufl.edu/research/sparse/matrices/Yoshiyasu/mesh_deform.html
http://www.cise.ufl.edu/research/sparse/matrices/Yoshiyasu/mesh_deform.html
http://www.cise.ufl.edu/research/sparse/matrices/Springer/ESOC.html
http://www.cise.ufl.edu/research/sparse/matrices/Springer/ESOC.html
http://www.cise.ufl.edu/research/sparse/matrices/Springer/ESOC.html
http://www.cise.ufl.edu/research/sparse/matrices/Springer/ESOC.html
http://www.cise.ufl.edu/research/sparse/matrices/Springer/ESOC.html
http://www.cise.ufl.edu/research/sparse/matrices/Springer/ESOC.html
http://www.cise.ufl.edu/research/sparse/matrices/Springer/ESOC.html
http://www.cise.ufl.edu/research/sparse/matrices/Springer/ESOC.html
http://www.cise.ufl.edu/research/sparse/matrices/Springer/ESOC.html
http://www.cise.ufl.edu/research/sparse/matrices/Springer/ESOC.html
http://www.cise.ufl.edu/research/sparse/matrices/Springer/ESOC.html
http://www.cise.ufl.edu/research/sparse/matrices/Rucci/Rucci1.html
http://www.cise.ufl.edu/research/sparse/matrices/Rucci/Rucci1.html
http://www.cise.ufl.edu/research/sparse/matrices/Rucci/Rucci1.html
http://www.cise.ufl.edu/research/sparse/matrices/Rucci/Rucci1.html
http://www.cise.ufl.edu/research/sparse/matrices/Rucci/Rucci1.html
http://www.cise.ufl.edu/research/sparse/matrices/Rucci/Rucci1.html
http://www.cise.ufl.edu/research/sparse/matrices/Rucci/Rucci1.html
http://www.cise.ufl.edu/research/sparse/matrices/Rucci/Rucci1.html
http://www.cise.ufl.edu/research/sparse/matrices/Rucci/Rucci1.html
http://www.cise.ufl.edu/research/sparse/matrices/Rucci/Rucci1.html
http://www.cise.ufl.edu/research/sparse/matrices/Rucci/Rucci1.html

ARTICLE IN PRESSG Model
JOCS-547; No. of Pages 11

C. Iyer et al. / Journal of Computational Science xxx (2016) xxx–xxx 5

Table 2
Matrices used in our evaluations.

Matrix name # of rows (Millions) # of columns # of entries (Billions) Size (TBs)

Yoshiyasu-1 0.234

9393

2.198 0.016
Yoshiyasu-24 5.616 52.756 0.384
Yoshiyasu-48 11.233 105.512 0.768
Yoshiyasu-72 16.849 158.268 1.152
Yoshiyasu-96 22.466 211.025 1.535
Yoshiyasu-120 28.082 263.781 1.919
Yoshiyasu-144 33.699 316.537 2.303
Yoshiyasu-168 39.315 369.294 2.687
Yoshiyasu-192 44.932 422.050 3.070

ESOC-1 0.327

37,830

12.373 0.090
ESOC-8 2.616 98.982 0.720
ESOC-16 5.233 197.964 1.440
ESOC-24 7.849 296.946 2.160
ESOC-32 10.466 395.928 2.880
ESOC-40 13.082 494.910 3.600
ESOC-48 15.698 593.892 4.321
ESOC-56 18.315 692.874 5.041
ESOC-64 20.931 791.856 5.761

Rucci-1 1.978
109,900

217.369 1.581
Rucci-2 3.956 434.739 3.163
Rucci-3 5.933 652.108 4.744

Table 3
Runtime analysis to select an optimal hybrid MPI/OpenMP configuration for our scaling experiments. Each run was averaged over five times on 128 BG/Q nodes. All runtimes
are in seconds(lower runtimes are preferred); the optimal performance (bold running times) was observed when one MPI process per node and 32 OpenMP threads per node
were used.

OpenMP threads per node random matrix A, of dimensions 1.32M × 38K; average �(A) = 1.4084 ± 1.1 * 10−4

MPI processes per node

1 2 4 8 16 32 64

1 8734.48 4613.62 2996.67 2187.48 1477.89 1878.74 1755.57
2 4499.6 2637.91 1762.49 1580.48 1240.34 1826.52 –
4 2349.32 1565.67 1156.55 1334.04 1168.86 – –
8 1276.73 1097.84 922.341 2261.12 – – –
16 800.443 1057.67 1193 – – – –
32 628.171 1081.64 – − – – –
64 686.517 – – – – – –

OpenMP threads per node ESOC-4 matrix A, of dimensions 1.3082M × 38K; average �(A) = 1.4594 * 106 ± 11.0268

MPI processes per node

1 2 4 8 16 32 64

1 9304.71 5205.42 2737.43 2067.88 1378.84 1809.77 –
2 4831.84 2922.68 1640.01 1542.24 1133.12 1741.58 –
4 2567.38 1741.82 1091.47 1236.9 1023.93 – –
8 1463.21 1207.34 898.165 1219.18 – – –

1.234

4

i
G
(
s
b
v
m
e
i

16 961.26 1026.97 89
32 742.075 919.704 –

64 744.563 – –

.2. Runtime environment evaluation

One of the key factors that influence scalability considerations
s the performance of the runtime environment of the AMOS Blue
ene/Q system. The AMOS system supports both standard GNU

4.7.2) as well as LLVM/bgclang5 environments [19]. Fig. 1 demon-
trates the speedup for the baseline Elemental least-squares solver,
uilt with bgclang, over the baseline solver built with GNU for
arious matrices from Table 2 on 512 BG/Q nodes. The baseline Ele-
ental solver achieves a significant speedup in the LLVM/bgclang
Please cite this article in press as: C. Iyer, et al., A randomized least sq
Comput. Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.09.007

nvironment due to the highly optimized linear algebraic routines
mplemented in the BG/Q Math libraries, the ESSL (Engineering

5 http://trac.alcf.anl.gov/projects/llvm-bgq.
 – – – –
– – – –
– – – –

Scientific Subroutine Library), and the MASS (Mathematical Accel-
eration Subsystem).

To solve the least-squares regression problem, the baseline Ele-
mental solver computes the QR decomposition of the input matrix.
The QR decomposition is computed via a sequence of matrix mul-
tiplications of orthogonal matrices and the input matrix. In this
setting, ESSL outperforms the BLAS routines built with the standard
GNU compiler for the Blue Gene/Q system. The speedup for the
Yoshiyasu matrix is much better than the one achieved for the ESOC
Springer matrix; this is due to the fact that the QR decomposition
depends quadratically on n and linearly on m.

4.3. Evaluating the four randomized transforms
uares solver for terabyte-sized dense overdetermined systems, J.

One of the main objectives of this paper is to evaluate the
Blendenpik algorithm with respect to the evaluation metrics given
in Eqs. (2)–(4). We aim to understand the performance of the four

dx.doi.org/10.1016/j.jocs.2016.09.007
http://trac.alcf.anl.gov/projects/llvm-bgq
http://trac.alcf.anl.gov/projects/llvm-bgq
http://trac.alcf.anl.gov/projects/llvm-bgq
http://trac.alcf.anl.gov/projects/llvm-bgq
http://trac.alcf.anl.gov/projects/llvm-bgq
http://trac.alcf.anl.gov/projects/llvm-bgq
http://trac.alcf.anl.gov/projects/llvm-bgq
http://trac.alcf.anl.gov/projects/llvm-bgq

ARTICLE ING Model
JOCS-547; No. of Pages 11

6 C. Iyer et al. / Journal of Computation

Fig. 1. Speedup defined as t∗gnu/t∗
bgclang

of the baseline solver as a function of the
matrix size in TBs on 512 nodes; t∗gnu is the time required to solve the least-squares
problem using the baseline solver and the standard GNU environment and t∗ is
t
t

r
p
f
F
t
s
t

4

s
a
T
S
i
s
i
m
s

bgclang

he time required to solve the least-squares problem using the baseline solver and
he LLVM/bgclang environment.

andomized transforms F described in Section 2.1 on the Blenden-
ik algorithm. We also aim to understand the impact of our choice
or F in terms of strong scaling and weak scaling on Blendenpik.
inally, we evaluate the impact of the oversampling factor � on
he Blendenpik algorithm using the aforementioned metrics. We
et � = 2 for evaluating our randomized transforms and we validate
his choice of � later in Section 4.4.

.3.1. Scalability evaluation
To demonstrate that the Blendenpik algorithm is a scalable

olver for tera-scale overdetermined least-squares systems, we
nalyze the speedup given by Eq. (4) for the Gaussian Random
ransform (GRT), the Random Sign Matrix transform (RSM), the
parse Random Sign Matrix transform (SRSM), and the Random-
zed Discrete Cosine Transform (RDCT) over the baseline Elemental
Please cite this article in press as: C. Iyer, et al., A randomized least sq
Comput. Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.09.007

olver. We show the scalability for each of the transforms for
ncreasing sizes of the Yoshiyasu Mesh and the ESOC Springer dense

atrices for 128 BG/Q nodes on AMOS (see Table 2). Fig. 2a and b
hows the speedup achieved by the Blendenpik algorithm for the

Fig. 2. Speedup for dense matrices as a function of increasing ma

Fig. 3. Speedup analysis for dense matrices as a function of increasin
 PRESS
al Science xxx (2016) xxx–xxx

four choices of the randomized transforms for increasing sizes of
the dense Yoshiyasu Mesh matrix on 128 nodes. As seen in the plots,
the speedup of the RDCT easily overwhelms the other transforms
for increasing matrix sizes. Another important observation is that
all the randomized transforms spend a non-negligible amount of
time in creating the sketching matrix SF (see Algorithm 1). Fig. 2a
shows the speedup of the transforms including the time needed
to construct the sketching matrix. The GRT performs marginally
better than RSM and SRSM, as the sketching creation time for the
latter transforms is higher than that of the GRT. The GRT sketching
transform is implemented in BGQ using Boost’s random normal dis-
tribution API as is, while the RSM and the SRSM are implemented via
a lazy initialization procedure, wherein each element of the sketch
is generated by a function call to Boost’s discrete distribution API.
This lazy initialization using function calls is responsible for the cre-
ation time overhead that is roughly similar for both the RSM and the
SRSM. As seen in Fig. 2b, discounting the sketch creation time only
marginally improves the speedup, while RDCT still outperforms the
GRT, RSM and SRSM transforms. In all subsequent evaluations, we
will include the time required to created the sketching matrix for
the RDCT, since it does not significantly affect the overall running
time of the resulting Blendenpik algorithm.

Fig. 3a and b shows the speedup achieved by the four random-
ized transforms (including and not including the time required
to create the sketching matrix) for increasing sizes of the ESOC
Springer matrix on 128 BG/Q nodes. In all cases, as the size of
the ESOC matrix increases, the running times and therefore the
speedup of the randomized transforms are actually worse than
the baseline least squares solver; a notable and important excep-
tion is the RDCT, which outperforms the baseline solver. Another
important observation is that the baseline Elemental least squares
solver scales quite well for (replications of) the Yoshiyasu matrix
that are highly overdetermined. Hence, the speedup observed for
the Blendenpik solver using the RDCT is not as pronounced as in
the previous evaluation. We did observe that for matrices that are
uares solver for terabyte-sized dense overdetermined systems, J.

less overdetermined (like, for example, the ESOC matrices), the
speedup of RDCT improves considerably. Also the sketch creation
time for the RSM and the SRSM is insignificant, especially compared
to the GRT, as observed in Fig. 3a. The sketching transforms perform

trix size for the Yoshiyasu Mesh matrix on 128 BG/Q nodes.

g matrix size for the ESOC Springer matrix on 128 BG/Q nodes.

dx.doi.org/10.1016/j.jocs.2016.09.007

ARTICLE IN PRESSG Model
JOCS-547; No. of Pages 11

C. Iyer et al. / Journal of Computational Science xxx (2016) xxx–xxx 7

Fig. 4. Speedup for dense matrices as a function of increasing matrix size.

ber o

c
i

4

a
p
t
f
t
c
a
b
o
t
s
o
p
f

b
n
n
a
n
m
s
w
b
T
c
o

p
f
a
5
1
s

Fig. 5. Strong scaling as a function of the num

omparably when the time to construct the sketching matrix is not
ncluded (see Fig. 3b).

.3.2. Scalability evaluation for terascale matrices
The key objective of our work here is to evaluate the Blendenpik

lgorithm as a solver for terascale overdetermined least-squares
roblems. As seen in Section 4.3.1, using the RDCT transform in
he Blendenpik algorithm outperforms the other randomized trans-
orms even for moderately sized matrices. Hence, we only evaluate
he scalability of Blendenpik using the RDCT for terascale matri-
es. Fig. 4a and b shows the scalability of our solver on 512 nodes
nd 1024 nodes respectively on AMOS. As discussed earlier, the
ase Elemental least-squares solver scales quite well for highly
verdetermined dense matrices. Hence the speedup observed for
he Blendenpik solver compared to the baseline solver is not as
ignificant as seen in Fig. 4a. However, for matrices that are less
verdetermined, the runtime and thus the speedup of the Blenden-
ik algorithm improves considerably. This observation is obvious
or the ESOC Springer matrix, shown in Fig. 4b.

One observation that is particularly significant is the effect of
atchwise RDCT on the speedup as the matrix size increases. The
umber of columns transformed in a single batch depends on the
umber of rows of the matrix as well as on the minimum space
vailable across all processes to allocate the columns. Thus, as the
umber of rows increases, fewer and fewer columns fit in a batch
aking the batchwise transformation step slower. This is the rea-

on underlying the observation that the speedup peaks at the point
here the entire transformed matrix is able to fit into memory and

eyond this stage, the batchwise processing slowdown kicks in.
his effect is more pronounced for an increasing number of repli-
ations of the ESOC Springer matrix and the Rucci matrix in Fig. 4b
n 1024 BG/Q nodes.

In general, the Blendenpik algorithm scales excellently as com-
ared to the baseline Elemental solver. While the baseline solver
ails to execute for the Yoshiyasu-192 (see Table 2) on 512 nodes,
Please cite this article in press as: C. Iyer, et al., A randomized least sq
Comput. Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.09.007

s well as for the ESOC-36 (ESOC matrix with 36 replications) in
12 nodes and the ESOC-68 (ESOC matrix with 68 replications) in
024 nodes, the Blendenpik solver is able to scale to such matrix
izes. Another important aspect of the Blendenpik algorithm for
f Blue Gene/Q nodes used in our evaluation.

the terascale matrices from Table 2 is that the steps 11–12 is never
performed as the densification step of constructing these matri-
ces generates moderately well-conditioned matrices, and hence the
preconditioner constructed is also well-conditioned.

4.3.3. Performance evaluation
We also evaluate the strong and weak scaling performance of

the Blendenpik algorithm as a function of the (increasing) number
of the Blue Gene/Q nodes. Fig. 5a and b shows the strong scaling
performance of the four randomized sketching transforms on the
Yoshiyasu-4 matrix (i.e., the base Yoshiyasu Mesh matrix replicated
four times), as well as on the base ESOC Springer dense matrix,
respectively. We observe that the speedup of the Blendenpik solver
increases marginally with an increasing number of BG/Q nodes;
this effect is more pronounced in the case of the Yoshiyasu Mesh
matrix rather than the ESOC Springer matrix. However, this advan-
tage is offset as the baseline Elemental solver performs comparably
to the batchwise Blendenpik solver for 512 BG/Q nodes. This slow-
down in the batchwise Blendenpik solver is mainly because of the
QR preconditioning phase that does not scale as well as the ran-
domized sketching matrices and the LSQR stages of the Blendenpik
algorithm, as the number of BG/Q nodes increases. The RDCT out-
performs the other sketching transforms by at least a factor of two
for all BG/Q node configurations.

Finally, the weak scaling performance of the Blendenpik algo-
rithm on the Yoshiyasu Mesh and ESOC Springer matrices for the
four randomized sketching transforms that we evaluate in this
work is shown in Fig. 6a and b, respectively. We observe that the
runtime for the RDCT on the Yoshiyasu Mesh matrix increases sub-
linearly as the matrix size increases and as the number of BG/Q
nodes increases; at the same time, there is a significant bump in the
running time of the baseline solver. Also, the runtimes for the other
randomized sketching transforms (GRT, RSM, and SRSM) remain
approximately constant as the matrix size and the number of BG/Q
nodes both increase. Furthermore, the runtimes for the random-
uares solver for terabyte-sized dense overdetermined systems, J.

ized sketching transforms are much better than the runtime of the
baseline solver. Interestingly, the runtime of the RDCT for the ESOC
matrix keeps diminishing, even as the number of rows and the
number of BG/Q nodes keeps increasing. As we already discussed in

dx.doi.org/10.1016/j.jocs.2016.09.007

ARTICLE IN PRESSG Model
JOCS-547; No. of Pages 11

8 C. Iyer et al. / Journal of Computational Science xxx (2016) xxx–xxx

trix s

t
i
w
s
t
o
B
t
r
a
m

4

a
T
(
B
r
a
O
g
p
o
F
s
W
f
s
i
i
o
w
c
t
i

4

u
a
t
s
t
o
b
i
p
b
fi
d
t
b

Fig. 6. Weak scaling as a function of ma

he strong scaling analysis, the primary bottleneck for the reduction
n performance as the number of BG/Q nodes increases has to do

ith the runtime of the QR decomposition at the preconditioning
tage. However, the size of the sampled matrix, which is the input to
he QR decomposition at the preconditioning stage, is independent
f the number of rows of the original input matrix. As additional
G/Q nodes are allocated, the performance of the QR decomposi-
ion at the preconditioning stage improves. This boosts the overall
untime of the Blendenpik algorithm, an effect that is observed for
ll four randomized sketching transforms, even though it is much
ore pronounced for the RDCT.

.3.4. Numerical stability evaluation
We evaluate the numerical stability of the Blendenpik solver for

ll randomized sketching transforms as the matrix size increases.
he numerical stability is captured by the relative error (see Eq.
2)) and the backward error (see Eq. (3)). Our evaluations on 128
G/Q nodes show a relative error within 11-12 digits of accu-
acy for all randomized sketching transforms for both the ESOC
nd Yoshiyasu matrices. Thus, these values are much better than
(
√

�machine), which is well within the bounds on the relative error
uarantees given by Drineas et al. [6]. We skip the relative error
lots in the interest of space and describe the numerical stability
f the Blendenpik solver captured by the backward error instead.
ig. 7a and b captures the behavior of the backward error as the
ize of the Yoshiyasu Mesh and ESOC Springer matrices increases.

e observe that the backward error for all randomized trans-
orms is roughly two orders of magnitude worse than the baseline
olver. Furthermore, the backward error for all transforms, includ-
ng the baseline solver for the ill-conditioned ESOC Springer matrix,
s several orders of magnitude worse (approximately five orders
f magnitude worse) than the backward error for the relatively
ell-conditioned Yoshiyasu Mesh matrix. While the relative error

aptures the stability of the solution, the backward error captures
he stability of the system, and the more ill-conditioned the system
s, the worse the error will be.

.3.5. Numerical stability evaluation for terascale matrices
We evaluate the numerical stability for the Blendenpik solver

sing the relative error metric of Eq. (2) for increasing matrix sizes
nd for 512 Blue Gene/Q nodes, for both the Yoshiyasu Mesh and
he ESOC matrices; see Fig. 8a. We only show results for the RDCT,
ince all four randomized sketching transforms have approximately
he same behavior for both the relative and the backward error. We
bserve that the relative error is again well within the O(

√
�machine)

ounds. The numerical stability defined by backward error is shown
n Fig. 8b for both the baseline Elemental solver and the Blenden-
ik solver. We observe that the ESOC Springer matrix has worse
ackward error than the Yoshiyasu Mesh matrix (approximately
Please cite this article in press as: C. Iyer, et al., A randomized least sq
Comput. Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.09.007

ve orders of magnitude worse) for increasing matrix sizes; this is
ue to its high condition number. However, the backward error of
he Blendenpik solver is comparable to the backward error of the
aseline solver. This error could potentially be improved by either
izes and number of Blue Gene/Q nodes.

using more than one preprocessing stages or by selecting larger
sample sizes for the preconditioning stage. The latter choice would
lead to worse running times and reduced speedups as the size of
the input matrices increases. Another approach to overcome this
tradeoff is to apply a random sketching transform matrix F as pro-
posed in the ground-breaking paper of Clarkson and Woodruff [20]
and then apply the RDCT to FA. We refer the reader to [20] for a
detailed description of their original construction and simply note
that applying the resulting matrix SF on the input matrix A takes
time proportional to the sparsity of the input matrix A.

4.4. The effect of the oversampling factor �

An important choice in the construction of an efficient precon-
ditioner in the context of the Blendenpik algorithm is the value of
the oversampling factor � that decides the number of rows (equal,
in expectation, to �n) of the preconditioner. Of particular interest
is an analysis of the behavior of the various randomized sketch-
ing transforms in the Blendenpik solver with respect to the metrics
described in Section 4 as a function of � . We evaluate the Blenden-
pik solver on the Yoshiyasu-12 and the ESOC-4 matrices on 128
BG/Q nodes as a function of � , where � ranges between 1.5 and six
in increments of 0.5. We seek to understand the effect of � on the
scalability and the numerical stability of the Blendenpik algorithm.

Fig. 9a and b shows the speedup of the Blendenpik algorithm
for increasing values of the oversampling factor � for the vari-
ous randomized sketching transforms on the Yoshiyasu-12 and the
ESOC-4 matrices, respectively. Fig. 9a reveals several interesting
observations as the oversampling factor � increases. The speedup
of the RDCT increases marginally as the value of � increases. This is
because the computational cost of applying the RDCT dominates the
QR preconditioning and the LSQR stages for highly overdetermined
matrices. As the oversampling factor increases, the transformation
time remains the same, while the computational time of the QR
decomposition, which is comparatively much smaller, increases.
Furthermore, as the oversampling factor � increases, a better pre-
conditioner is constructed, which leads to a faster convergence time
for LSQR. However, the speedups of the other randomized sketch-
ing transforms decrease, mainly due to the dominant cost of the
time that it takes to apply the random sketching transformation as
the oversampling factor � increases.

Fig. 9b shows the monotonically decreasing speedup of the RDCT
as the oversampling factor � increases for the ESOC-3 matrix. This
is due to the computational cost of the QR preconditioning stage,
which dominates the computational time needed to apply the ran-
domized sketching matrix as well as the LSQR solver stage, since the
input matrix is not as overdetermined as the Yoshiyasu-12 matrix.
As the oversampling factor � increases, the time to compute the QR
uares solver for terabyte-sized dense overdetermined systems, J.

decomposition in the preconditioning stage also increases, lead-
ing to an overall reduced speedup. This behavior is also exhibited
by the other randomized sketching transforms. Furthermore, the
speedup of the RDCT easily overwhelms the speedup of the other

dx.doi.org/10.1016/j.jocs.2016.09.007

ARTICLE IN PRESSG Model
JOCS-547; No. of Pages 11

C. Iyer et al. / Journal of Computational Science xxx (2016) xxx–xxx 9

Fig. 7. Numerical stability (backward error analysis) as a function of (increasing) matrix sizes for the Yoshiyasu Mesh and the ESOC Springer matrices for 128 BG/Q nodes.

oshiy

r
s

i
e
f
o
o

f
E
e
i
t
k
A
a
c

4

w
C
f

Fig. 8. Numerical stability as a function of matrix size for the Y

andomized sketching transforms for increasing values of the over-
ampling factor � .

As discussed in Section 4.3.4, the numerical stability is measured
n terms of relative and backward error. Also, again as discussed
arlier, the relative error for all randomized sketching transforms
or both the ESOC and the Yoshiyasu matrices is within 11-12 digits
f accuracy, and hence we measure the numerical stability in terms
f the backward error only.

Fig. 10a and b shows the behavior of the backward error as a
unction of the oversampling factor � for the Yoshiyasu-12 and the
SOC-3 matrix, respectively. It is worth noting that the backward
rror for both matrices sharply decreases for all randomized sketch-
ng transforms at � = 2 and monotonically continues to decrease as
he oversampling factor � increases. Thus, � equal to two acts as a
nee point validating our choice for � for our tera-scale evaluations.
ll the randomized sketching transforms exhibit errors that are
pproximately within the same order of magnitude for the various
hoices of the oversampling factor � .

.5. Summarizing our empirical evaluations
Please cite this article in press as: C. Iyer, et al., A randomized least sq
Comput. Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.09.007

To help the reader parse our extensive empirical evaluations,
e briefly summarize our findings. (i) The Randomized Discrete
osine Transform (RDCT) outperforms the Gaussian Random Trans-
orm (GRT), the Random Sign Matrix Transform (RSM) and the

Fig. 9. Speedup as a function of the (increasing) oversampling factor � for
asu Mesh and the ESOC Springer matrices on 512 BG/Q nodes.

Sparse Random Sign Matrix Transform (SRSM) in terms of scal-
ability and performance. (ii) The computational cost of the various
stages of the Blendenpik solver is determined by how overdeter-
mined the input matrix is. The more overdetermined the matrix, the
higher the computational cost of the random sketching transform
stage. As the matrix becomes less overdetermined, the running
time of the QR decomposition in the preconditioning stage becomes
more and more dominant. This is especially true for the RDCT.
(iii) The scalability of the batchwise Blendenpik implementation
is determined by the number of columns in each batch of the
RDCT transform, which in turn is determined by the number of
rows of the matrix. As the number of rows increases, the run-
time of the batchwise sketching transform stage worsens, leading
to reduced speedups. (iv) The batchwise Blendenpik solver using
the RDCT demonstrates significant strong and weak scaling for
all matrices. (v) The Blendenpik solver demonstrates excellent
numerical stability in terms of the forward error for increasing
matrix sizes. The backward error is somewhat worse yet compa-
rable to the backward error achieved by the baseline Elemental
solver. (vi) The oversampling factor � determines the quality of
the preconditioner for the Blendenpik solver. Choosing a higher
uares solver for terabyte-sized dense overdetermined systems, J.

oversampling factor leads to better numerical stability. However,
higher oversampling factors lead to a reduced performance. This
tradeoff becomes less significant as the input matrix becomes more
overdetermined.

the Yoshiyasu-12 matrix and the ESOC-3 matrix on 128 BG/Q nodes.

dx.doi.org/10.1016/j.jocs.2016.09.007

ARTICLE IN PRESSG Model
JOCS-547; No. of Pages 11

10 C. Iyer et al. / Journal of Computational Science xxx (2016) xxx–xxx

F rsamp

5

d
p
o
v
p
w
c
s
r
c

R

[

[

[

[

[

[

[

[

[

[

[

Research Center in Rueschlikon, Switzerland. His research
interests include: High Performance Computing, Opti-
mization, Numerical Linear Algebra, Compiler Design,
Programming Languages. Yves is a recipient of the PRACE
ig. 10. Accuracy analysis in terms of backward error as a function of increasing ove

. Conclusions and future work

We implemented and thoroughly evaluated a highly scalable,
istributed memory, least-squares solver based on the Blenden-
ik algorithm. Our solver, which is based on an implementation
f the Blendenpik algorithm in a distributed setting coupled with
arious batchwise transformations in order to construct an appro-
riate preconditioner, beats state-of-the-art least-squares solvers
ith respect to running time and scales to much larger matrices

ompared to prior work. In future work, we plan to explore the pos-
ibility of reducing the communication overhead involved in the
andomized transformations that are used in the preconditioner
onstruction.

eferences

[1] K.A. Gallivan, R.J. Plemmons, A.H. Sameh, Parallel algorithms for dense linear
algebra computations, SIAM Rev. 32 (1990) 54–135.

[2] J. Demmel, L. Grigori, M. Hoemmen, J. Langou, Communication-optimal
parallel and sequential QR and LU factorizations. UC Berkeley Technical
Report EECS- 2008-89, Aug 1, 2008, Submitted to SIAM. J. Sci. Comp., 2008.

[3] J. Demmel, K. Yelick, Communication Avoiding (CA) and Other Innovative
Algorithms, The Berkeley Par Lab: Progress in the Parallel Computing
Landscape, 2014, pp. 243–250.

[4] P. Drineas, M.W. Mahoney, RandNLA: Randomized numerical linear algebra,
Commun. ACM 59 (2016) 80–90.

[5] T. Sarlos, Improved approximation algorithms for large matrices via random
projections, in: Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science, FOCS’06, IEEE Computer Society,
Washington, DC, USA, 2006, pp. 143–152.

[6] P. Drineas, M.W. Mahoney, S. Muthukrishnan, T. Sarlós, Faster least squares
approximation, Numer. Math. 117 (2011) 219–249.

[7] V. Rokhlin, M. Tygert, A fast randomized algorithm for overdetermined linear
least-squares regression, Proc. Natl. Acad. Sci. U.S.A. 105 (2008) 13212–13217.

[8] H. Avron, P. Maymounkov, S. Toledo, Blendenpik: Supercharging LAPACK’s
least-squares solver, SIAM J. Sci. Comput. 32 (2010) 1217–1236.

[9] J. Yang, X. Meng, M.W. Mahoney, Implementing Randomized Matrix
Algorithms in Parallel and Distributed Environments, CoRR abs/1502.03032,
2015.

10] X. Meng, M.A. Saunders, M.W. Mahoney, LSRN: A parallel iterative solver for
strongly over- or under-determined systems, CoRR abs/1109.5981, 2011.

10] M.P. Forum, MPI: A Message-Passing Interface Standard, Technical Report,
Knoxville, TN, USA, 1994.

12] L. Dagum, R. Menon, OpenMP: an industry-standard API for shared-memory
programming, IEEE Comput. Sci. Eng. 5 (1998) 46–55.

13] C.C. Paige, M.A. Saunders, LSQR: an algorithm for sparse linear equations and
sparse least squares, ACM Trans. Math. Softw. 8 (1982) 43–71.

14] D. Achlioptas, Database-friendly random projections: Johnson-Lindenstrauss
with binary coins, J. Comput. Syst. Sci. 66 (2003) 671–687.

15] J. Poulson, B. Marker, R.A. van de Geijn, J.R. Hammond, N.A. Romero,
Elemental: a new framework for distributed memory dense matrix
computations, ACM Trans. Math. Softw. 39 (2013), 13:1–13:24.

16] M. Frigo, S.G. Johnson, FFTW: an adaptive software architecture for the FFT,
in: Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing, volume 3, Seattle, Washington, 1998, pp. 1381–1384.

17] J.R. Hammond, A. Schäfer, R. Latham, To INT MAX.. and beyond!: Exploring
large-count support in MPI, in: Proceedings of the 2014 Workshop on
Exascale MPI, ExaMPI’14, IEEE Press, Piscataway, NJ, USA, 2014, pp. 1–8.

18] T.A. Davis, Y. Hu, The University of Florida sparse matrix collection, ACM
Please cite this article in press as: C. Iyer, et al., A randomized least sq
Comput. Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.09.007

Trans. Math. Softw. 38 (2011), 1:1–1:25.
19] C. Lattner, V. Adve, LLVM: a compilation framework for lifelong program

analysis & transformation, in: Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04), Palo Alto,
California, 2004.
ling factors for the Yoshiyasu-12 matrix and the ESOC-3 matrix on 128 BG/Q nodes.

20] K.L. Clarkson, D.P. Woodruff, Low rank approximation and regression in input
sparsity time, in: Proceedings of the Forty-fifth Annual ACM Symposium on
Theory of Computing, STOC’13, ACM, New York, NY, USA, 2013, pp. 81–90.

Chander Iyer is currently a 4th year Ph.D. student
in the Department of Computer Science at Rensselaer
Poly-technic Institute. He received his B.E. from Mum-
bai University, Mumbai, India, in 2003 and received his
M.Tech. in 2010 from Indian Institute of Technology, Bom-
bay. He is currently being advised by Prof. Petros Drineas,
with Prof. Chris Carothers as his co-advisor. His research
interests lie at the intersection of Randomized Algorithms
for large scale datasets, High Performance Computing and
Machine Learning.

Haim Avron did his Ph.D. at the School of Computer Sci-
ence at Tel Aviv University under the supervision of Prof.
Sivan Toledo. Afterwards he spent two years as a Postdoc-
toral Researcher in the Business Analytics & Mathematical
Sciences department at the IBM T.J. Watson Research Cen-
ter. From 2012 to 2015 he was a Research Sta Member in
the Mathematical Sciences & Analytics department at the
IBM T.J. Watson Research Center. He joined the Depart-
ment of Applied Mathematics, School of Mathematical
Sciences at Tel Aviv University as a Senior Lecturer (equiv-
alent to assistant professor) in 2015. His research focuses
on numerical computing and high performance comput-
ing and their applications in scientific computing and

machine learning. His interests and work range from mathematical and compu-
tational foundations to end-to-end implementation aspects.

Georgios Kollias received the B.Sc. in Physics in 2000
and the M.Sc. in Computational Science in 2002 from the
University of Athens, Greece, and the PhD in Computer
Science from the University of Patras, Greece, in 2009.
He moved to Purdue University, USA in October 2009
and worked as a Postdoctoral Researcher in the Com-
puter Science Department and the Center for Science of
Information till May 2013. Then he joined IBM T.J. Wat-
son Research Center, USA and in August 2014 he moved
to IBM Zurich Research Lab. He returned back in IBM T.J.
Watson Research Center in April 2015 as a Research Sta
Member in the area of Big Data Management and Analyt-
ics. His research interests include Parallel, Distributed and

High Performance Computing, Numerical Linear Algebra and Matrix Computations,
Graph Mining, Data Analytics and Problem Solving Environments.

Yves Ineichen received his M.Sc. in Computer Science
in 2008, and the Phd in Computer Science in 2013
from the Federal Institute of Technology Zurich (ETHZ),
Switzerland. In the beginning of 2013 he joined the IBM
uares solver for terabyte-sized dense overdetermined systems, J.

(2012) and ACM Gordon Bell (2015) award.

dx.doi.org/10.1016/j.jocs.2016.09.007
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0005
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0010
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0015
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0020
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0025
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0030
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0035
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0040
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0045
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0050
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0055
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0060
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0065
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0070
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0075
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0080
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0085
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0090
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0095
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100
http://refhub.elsevier.com/S1877-7503(16)30150-8/sbref0100

 ING Model
J

tation

A
h
N
L

f
I
o
c
c
8

Foundation (NSF) as a Program Director in the Information and Intelligent Systems
(IIS) Division and the Computing and Communication Foundations (CCF) Division
(2010–2011). Prof. Drineas has published over 90 articles in conferences and jour-
nals in Theoretical Computer Science, Numerical Linear Algebra, and statistical data
ARTICLEOCS-547; No. of Pages 11

C. Iyer et al. / Journal of Compu

Professor Chris Carothers is a faculty member in the
Computer Science Department at Rensselaer Polytech-
nic Institute. He received the Ph.D., M.S., and B.S. from
Georgia Institute of Technology in 1997, 1996, and 1991,
respectively. Prior to joining RPI in 1998, he was a
research scientist at the Georgia Institute of Technology.
His research interests are focused on massively paral-
lel computing which involve the creation of high fidelity
models of extreme-scale networks and computer sys-
tems. These models have executed using nearly 2,000,000
processing cores on the largest leadership class supercom-
puters in the world. Professor Carothers is an NSF CAREER
Award winner as well as Best Paper award winner at the

CM-SIGSIM PADS Conference for 1999, 2003 and 2009. Since joining Rensselaer,
e has developed a world-class research portfolio which includes funding from the
SF, the U.S. Department of Energy, Army Research Laboratory, Air Force Research
aboratory, as well as several companies, including IBM, General Electric, and AT&T.

Additionally, Professor Carothers serves as the Director for the Rensselaer Center
or Computational Innovations (CCI). CCI is a partnership between Rensselaer and
Please cite this article in press as: C. Iyer, et al., A randomized least sq
Comput. Sci. (2016), http://dx.doi.org/10.1016/j.jocs.2016.09.007

BM. The center provides computation and storage resources to diverse network
f researchers, faculty, and students from Renssleaer, government laboratories, and
ompanies across a number of science and engineering disciplines. The agship super-
omputer is a 1 petaFLOP IBM Blue Gene/Q system with 80 terabytes of memory,
1,920 processing cores and over 2 petabytes of disk storage.
 PRESS
al Science xxx (2016) xxx–xxx 11

Professor Petros Drineas is an Associate Professor at the
Computer Science Department of Rensselaer Polytechnic
Institute. Prof. Drineas earned a PhD in Computer Science
from Yale University in May of 2003, and a BS in Computer
Engineering and Informatics from the University of Patras,
Greece, in July of 1997. Prof. Drineas’ research interests
lie in the design and analysis of randomized algorithms
for linear algebraic problems, as well as their applications
to the analysis of modern, massive datasets. Prof. Drineas
received an NSF CAREER in 2006; was a Visiting Professor
at the US Sandia National Laboratories during the fall of
2005; was a Visiting Fellow at the Institute for Pure and
Applied Mathematics at the University of California, Los

Angeles in the fall of 2007; and was a Visiting Professor at the University of California
Berkeley in the fall of 2013. Prof. Drineas has also served the US National Science
uares solver for terabyte-sized dense overdetermined systems, J.

analysis.

dx.doi.org/10.1016/j.jocs.2016.09.007

	A randomized least squares solver for terabyte-sized dense overdetermined systems
	1 Introduction
	2 The Blendenpik Algorithm for dense overdetermined systems
	2.1 The randomized transform F

	3 Implementing our algorithm on the Blue Gene/Q
	4 Evaluation
	4.1 AMOS environment setup
	4.2 Runtime environment evaluation
	4.3 Evaluating the four randomized transforms
	4.3.1 Scalability evaluation
	4.3.2 Scalability evaluation for terascale matrices
	4.3.3 Performance evaluation
	4.3.4 Numerical stability evaluation
	4.3.5 Numerical stability evaluation for terascale matrices

	4.4 The effect of the oversampling factor γ
	4.5 Summarizing our empirical evaluations

	5 Conclusions and future work
	References

