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Abstract—In semiconductor device fabrication, continual de-
mand for high performance, high yield devices has caused
designers to look to post-production tunable circuits as the next
logical step in analog/RF design and test development. These
approaches have not yet achieved the maturity necessary for
industrial adoption, primarily due to complexity and cost. In
this work, we develop a general model which systematically
outlines several key observations constraining the complexity
of performance calibration in analog/RF devices. Moreover, we
develop a detailed cost model permitting direct comparison of
performance calibration methods to industry standard specifica-
tion testing. Our analysis is demonstrated on a tunable RF LNA
device simulated in 0.18um RFCMOS.

I. INTRODUCTION

In modern analog/RF device fabrication, circuits are typi-
cally designed conservatively to ensure high yield. Otherwise,
yields may be low due to process variation driving devices
beyond specifications. Thus, analog designers often find them-
selves doubly constrained by performance and yield concerns.

However, the demand for high performance, high yield
analog/RF devices is relentless. As such, recent interest has
been shown in producing analog/RF devices that are tun-
able after fabrication by introducing “knobs” (post-production
tunable components) into the circuit design. By adjusting
the knobs, some devices that would simply be discarded
under the traditional analog/RF test regime can be tuned to
meet specification limits and thereby function correctly. These
tunable devices would permit analog/RF designers to create
aggressively high-performance integrated circuits (ICs) with
expectations of reasonable yield. Alternatively, conservative
designs could be produced with nearly-perfect yields.

To date, post-production performance calibration has not
achieved widespread use due to the perceived complexity and
cost of implementation. This is not an unreasonable percep-
tion: knobs have apparently complex interdependent effects
on performances, and iterative specification test-tune cycles
to explore the large space of knob settings are prohibitively
costly. In this work, we outline several key observations which
appropriately constrain the free parameters of performance cal-
ibration methodologies to enable straightforward cost-effective
implementation. Moreover, we develop and present a cost
model which permits direct comparison of performance cali-
bration to specification test and other state-of-the-art practices.

II. TEST AND PERFORMANCE CALIBRATION METHODS

In this section, we present the state-of-the-art in ana-
log/RF device testing and contextualize performance calibra-
tion within this domain.
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A. Specification Testing

The current industry-standard practice for determining the
functional health of analog/RF devices is specification testing.
As shown in Figure 1, each fabricated device under test (DUT)
undergoes a series of tests designed to compare a measured set
of performances to a corresponding list of specification limits.
Circuits are classified as passing if they perform within these
specification limits.
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Fig. 1.

Specification Test

B. Cost Reduction via Test Compaction and Alternate Test

One of the biggest limitations of specification testing
is cost—analog/RF device specifications are often complex
derivations which are expensive to measure, and require costly
automated testing equipment (ATE) to obtain at operating
frequencies. This cost has motivated development of test-cost
reduction methods, which largely fall into two categories. The
first is test compaction, which aims to reduce the number
of specification tests which must be explicitly measured by
leveraging correlations amongst the specification tests [1]-[5].
The second is alternate test, where expensive specification
tests are replaced with low-cost “alternate tests” [6], as shown
in Figure 2. These alternate tests are specifically designed to
be well-correlated with the specification tests while consuming
significantly fewer test resources to collect. This method
requires a pre-production stage where we set aside a small
training set of devices on which we collect both the low-
cost alternate tests and the performances of the devices in
the training set. From this training data, regression models
correlating alternate tests to performances are constructed. In
production, only the alternate tests are explicitly measured
on every device and used in conjunction with the trained
regression models to predict performances.

Although alternate test substantially reduces cost, it has not
achieved widespread industry adoption due to the incurred
misclassification error: small errors in the predicted values of
performances occassionally result in defective devices being
labeled as passing (test escapes) or passing devices being
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labeled as failing (yield loss). In general, alternate and machine
learning-based test methods that have been proposed to date
all involve some exploration of this tradeoff between cost and
error [7].
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Fig. 2. Alternate Test

C. Performance Calibration and Healability

Alternate test finds an immediate home in performance cali-
bration, however. As noted previously, the constraints of mod-
ern analog/RF design require high-yield, high-performance
devices in the presence of increasing process variation, moti-
vating a search for better control of process variation beyond
traditional approaches. To this end, designers have looked to
healable architectures to provide additional control over pro-
cess variation effects. With performance calibration, devices
without catastrophic faults can be recovered to meet specifi-
cation limits by performing post-manufacture optimization of
their performances.

Implementation of performance calibration requires selec-
tion of key parameters of the circuit (voltage, capacitance,
etc.) as knobs. Additional circuit elements are added to en-
able post-production modulation and on-chip storage of these
parameters. By setting knob values, the performances of the
circuit can be dynamically modified and improved to meet
specification limits.

After the knobs are in place, a method for circuit tuning
must be devised. In this work, we focus specifically on
addressing this problem. A naive approach is shown in Figure
3, where all performances are iteratively tested across all knob
settings until a setting that results in a passing device is found.
Knob setting selection can also be performed by attempting to
find some optimum for the circuit, i.e. searching for the lowest
possible power setting. While such exhaustive specification
test approaches are unrealistically expensive, we collect these
results in our experiments as a ground-truth reference point:
with exhaustive specification test we know a priori the true
healable/unhealable statistics of the device population. This
enables us to establish an upper bound on yield improvement
due to performance calibration methods if cost were not a
factor.
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Fig. 3.

Performance Calibration: Exhaustive Specification Test

D. Alternate Test-Based Performance Calibration

Clearly, these approaches are suboptimal given the high cost
of specification test. As modern analog/RF device testing can
comprise a substantial percentage of total device production
cost, exhaustive specification testing is not economically fea-
sible. Herein lies the distinct benefit of adopting alternate test
during the performance calibration process: alternate tests can
be an order of magnitude less costly to perform, yet offer
reasonable accuracy.

We observe that the straightforward naive approach to
alternate test-based performance calibration would be to ex-
haustively apply tests as before, substituting alternate tests
for specification testing, as shown in Figure 4. As in Section
II-B we employ a training set, building a large number of
regression models (one per knob setting) instead of the single
model used in the knob-free alternate test methodology. In
production, we no longer exhaustively measure performances,
instead collecting alternate test measurements at various knob
settings until we find a knob with performances predicted to
produce a passing device. This provides a second point of
reference for more sophisticated methods by sidestepping the
need to model knob variation; each knob setting is given an
individual alternate test regression model.
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Fig. 4. Performance Calibration: Exhaustive Alternate Test

Note that as with traditional alternate test, employing this
method for performance calibration again introduces a trade-
off: lower cost at the expense of added misclassification error,
in this case comprised of three components:
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1) Test Escapes: An unhealable device may be labeled as
healable.

2) Yield Loss: A healable device may be labeled as unheal-
able.

3) Incorrect Heal: A predicted-to-heal knob setting may be
chosen which does not actually heal the device.

E. Proposed Method: Midpoint Alternate Test-Based Perfor-
mance Calibration

In this work we propose a novel performance calibration
method, entitled midpoint alternate test-based performance
calibration. To manage the cost of alternate test-based perfor-
mance calibration, we must modify exhaustive test to reduce
the large number of measurements (alternate test or otherwise)
which must be collected on a given device. We do this by
making an important observation: knob variation and process
variation orthogonally act on device performances. Thus, we
can separately model each axis of variation and build a
composite model which accounts for both.

We have already stated that alternate tests are designed to
correlate well with device performances. Implicitly, this means
that we can already model process variation from the alternate
tests. To model knob variation, we must understand knob
effects in a process variation-free space: the ideal device, a
process variation-free simulated device. A detailed account of
how these axes are modeled is provided in Section IV.

By appropriately modeling the knob- and performance-
variation axes, we are able to achieve an extreme reduction in
the number of alternate tests which must be collected. Instead
of collecting alternate test measurements at all knob settings,
we only explicitly measure alternate tests at a single knob
setting, where all knobs are set to their respective midpoint
values. This set of midpoint alternate test measurements can
be used to predict performances at all of the knob settings, as
shown in Figure 5.
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Fig. 5. Proposed Method: Midpoint Alternate Test Performance Calibration

Note that midpoint alternate test-based performance cali-
bration is also subject to the three sources of error outlined in
Section II-D due to the use of alternate test. By only collecting
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a single set of alternate tests instead of the naive approach
of exhaustively testing for each knob setting, we introduce a
slight increase in error, which is well-justified by the extremely
large reduction in test cost achieved.

FE. Optional Step: Validation

As we have discussed, both exhaustive alternate test and
midpoint alternate test performance calibration methods can
result in misclassification error. Depending on the constraints
of the specific application, the alternate-test based performance
calibration stage of testing can be followed by a final spec-
ification testing stage to eliminate error due to test escapes
or incorrect heals, albeit at higher cost. The validation step is
illustrated in Figure 6.

Select Knob

Setting Pass,

Measured
Performances

Fig. 6. Performance Calibration: Validation

If deemed necessary, this validation stage should be per-
formed for only high-risk devices, with risk of misclassi-
fication determined by a confidence estimation method, as
employed in [3], [4]. Only a small fraction of devices actually
require validation with this constraint, thereby moderating the
added cost.

I1I. CoST MODEL

As we have observed, one of the most significant roadblocks
to performance calibration adoption is cost. Unless the cost-
benefit ratio of deploying tunable architectures is on par with
or lower than that of existing design and test methods, it
will not be implemented. Here, we develop an inclusive cost
model which compares our midpoint alternate test-based per-
formance calibration method to the various baseline methods:
specification testing, alternate testing, and exhaustive testing.
The notation of Table I is employed for the remainder of this
section.

Variable Definition

Co Baseline cost of device development and production.

Cp Design cost to add knobs and implement device as a tunable
architecture.

Néﬂ Number of devices in the training set.

N Number of devices in the test set.

Nk Number of knob settings.

P Relative cost for measuring all performances.

A Relative cost for measuring all alternate tests.

F Fraction of devices undergoing validation test.

TABLE I

COST MODEL NOTATION

A complete list of the cost models is presented in Table
II. The reference case for cost is specification testing, where
only baseline design cost Cy and the cost of performing
specification test once on every device Np P are included.
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Configuration Cost Model
Specification Testing C=0Cy + NP
Alternate Test C=Co + NrA + NL(A+P)
Exhaustive Specification Test C = Cp + Cp + NpNgkgP

. Exhaustive Alternate Test.  C=Co+Cp ____+_ NrNgd +_ NpNg (A+P)
Midpoint Alternate Test C=Cy+Cp + NrA + NLNg(A+P)
Validation C=Co+Cp + Npr(A+F-P) + NpNg(A+P)

Baseline Term

Test Set Term Training Set Term

TABLE I
COST MODELS FOR TEST AND PERFORMANCE CALIBRATION METHODS

As discussed in the previous section, alternate test replaces
expensive specification tests with a set of low-cost alternate
tests. Thus, our cost model for alternate test substitutes the
N7 P term with the cost of running alternate tests on every
device Ny A. As the models to predict performances from
alternate tests must be learned, we also require a small training
set where both alternate and specification tests are performed,
NJ. (A + P). Note that typically, Ny > N7..

We include for reference the two exhaustive test perfor-
mance calibration methods. For both of these approaches,
we include Cp, the design cost of adding tunable elements
to an analog/RF circuit design. The exhaustive specification
test option does not require a training set, so the cost of
testing performances at every knob setting for every device is
simply NNy P. Recall that for exhaustive alternate test, we
construct individual regression models at every knob setting.
This requires exhaustively collecting alternate tests in the
test set, NNk A, as well as collecting both alternate and
specification test measurements exhaustively in the training
set, N7 N (A+ P).

Lastly, we include our midpoint alternate test performance
calibration methodology. This maintains the knob-design cost
term, Cp, but reduces the test set cost from NpNgA to
NrA. As Ng scales, the exhaustive test performance cali-
bration methods become unreasonably expensive, whereas the
midpoint alternate test methodology retains constant cost in the
test set. However, note that the midpoint test method maintains
a training set cost N.- N (A + P) that is proportional to N
In Section VI-H we address constraining this test set cost via
uniform sampling, decoupling training set cost from Ny

If midpoint alternate test is paired with a validation stage of
specification test to verify a correct tune, we replace the test
set term Ny A with Np(A + F - P). This adds a cost F'- P
to the test set, proportional to the fraction F' of devices which
undergo traditional specification test validation.

IV. PROCESS AND KNOB VARIATION MODELING
A. Knob Effect Modeling

Test engineers are well-acquainted with variation in cir-
cuit performances due to uncontrollability in the fabrication
process. By introducing knobs to a circuit design, a second
dimension of variability is introduced, such that circuit perfor-
mances are no longer simply a function of process variation,
but knob positions as well. To effectively use tuning knobs to
do performance calibration, variation in both dimensions must
be understood and modeled appropriately.
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To achieve the objective of healing devices without ex-
plicitly measuring device performances at every knob setting,
we must make certain assumptions about how knob and
process variations affect device performances. We theorize
that we can capture the knob effects by studying the “ideal”
device, or simulated performances of the circuit at each knob
setting without process variation. As this simulated device
does not contain process variation, the N x k matrix P of &
performances across N knob settings provides us the necessary
information to model how the ideal device responds to changes
in knob position.

Analog/RF design closely approximates a zero-sum game,
and is a careful balance of various trade-offs. Adding post-
production tunable elements to a circuit simply postpones
a portion of this trade-off optimization process until after
device fabrication. Thus, any non-trivial knob circuit element
will affect more than a single performance, some positively,
others negatively. Ideally, knobs would also be designed to
be totally independent. The two papers [8], [9] argue for the
original knob designs to be designed to be near-completely
independent so that a simple linear model will approximate
knob effects on performances well.

However, the non-idealities of analog/RF design make com-
plete independence impossible to achieve. More importantly,
this is an unnecessary constraint. Although seeking knob
independence remains a laudable objective, we can better
model knob effects on performances by acknowledging and
accommodating for knob interdependence through the inclu-
sion of second-order knob interaction terms along with knob
main effects in our model.

Thus, we model the performance responses of the ideal
device as functionally dependent on the knob settings via a
model that is linear in the parameters but includes the pairwise
quadratic interaction terms of explanatory variables in the
design matrix:

P=p+K"B+e (D
where Bg is an intercept term representing the variation-free
performances of the device, K is the 1 X (p + (’2’)) vector of
knob settings and interaction terms:

K = (K, Ks,..., K, K1 Ky, K1 K3, ..., K, 1K,) (2

main effects interaction terms

and 3 is the the knob effect parameter vector, also (p + (£)) x
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1, estimated by our model:

B: (617/627"'757717/61:2?61537'"7ﬁ(p71):p) (3)
————

interaction terms

main effects

Including BO in our vector of parameters B and prepending a
constant 1 to our vector K permits us to formulate the equation
as traditional least-squares:

P=fK)=K"B+¢ @)

where we solve for the knob effects using the standard least-
squares solution:

f=(K'K)'K'P (5)

given the N x (p+ (§)) + 1 design matrix K. This process is
repeated for all k£ of the ideal device performances, allowing
us to individually model each of the device performances.

Justification was provided earlier for including second order
interaction terms in the knob effect model. The astute reader
may inquire why third-order or higher-order interaction terms
were not considered. For our work, we found that second order
interaction terms are sufficient for successful performance
calibration; moreover, we observe that the number of free
parameters |3| becomes very large as we add higher-order
terms to the model:

- ere () Q)+ (]~

(6)

exponentially increasing model complexity and substantially
reducing model interpretability.

B. Process Variation Modeling

Were we to apply the knob-effect model described in the
previous section to data from a real device, the prediction
error would be large as the model does not account for
process variation at all. We argue a surprising result: given the
orthogonality of process variation and knob variation, process
variation is a constant offset from the presented knob effect
model. That is, we can jointly model both knob and process
variation effects by adding a single term to our model:

P=f(D,K)=0fo+5D+K"3+e (7)

where we have simply added an additional device-specific
scalar value D and a parameter Bl to represent process
variation-induced perturbation of performances.

The immediate challenge is obtaining an appropriate esti-
mate for D. For this, we look to alternate tests. Each alternate
test A gives us a measure of the magnitude of process variation
effects. Of course, each performance shows high correlation
with different subsets of the alternate test set. Thus, we can
include all of the alternate tests collected to improve our
estimate, resulting in the following complete model:

P=f(AK)=F+AT3 + KBt +¢ (8)
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Finally, we concatenate the vectors A and K as X (follow-
ing convention and prepending a constant term as before), and
concatenate $' and 3T as 3 to arrive at the equation:

P=fX)=XTB+¢ 9)

and solve for (3 via the least-squares solution in Equation 5.
Thus, Equation 9 provides a complete joint model for knob and
process variation effects on a single performance. We follow
this approach to generate individual models for each of the &
performances P € P.

C. Incremental Model Improvements

To further improve performance on actual device data, we
make several enhancements to our model. First, we slightly
modify the design matrix: Instead of predicting device per-
formances from knob settings, knob interaction terms, and a
set of alternate test measurements, we replace the knob terms
with a data frame of ideal device performances. Thus, when
building the models on a training set, we construct the model
frame shown in Table III for each device. This model frame
is then repeated and concatenated row-wise to form the model
training set X on which we regress P.

| Ideal Device |
Power and Performances

Test Set Device
Alternate Tests

Knob Setting

1 Simulated Mealured
Values Constant Columns
N !
TABLE III

MODEL FRAME DIAGRAM

For our reported experimental results we employ a second
change, replacing ordinary least-squares with the Multivariate
Adaptive Regression Splines (MARS) algorithm [10]. This
choice was driven by an experimentally-observed small im-
provement in residual error versus the least-squares regression
models. However, using MARS is not ideal, as the coeffi-
cients and split points of spline basis functions are not easily
interpretable. The least-squares model in Equation 9 should be
constructed alongside any more sophisticated models to pro-
vide the test engineer with the important parameter estimates
B, so that the knob effect models can be understood.

D. Knob Setting Selection

Once we have modeled both knob effects and process
variation effects, the models must be employed to inform knob
setting selection decisions on each device in the test set, where
limited information about the device is available to us. In
our work, we have chosen to predict performances for each
knob setting for every device. This allows us to accomplish
two things. First, we partition the test set into unhealable and
healable regions by determining for every device in the test
set whether at least one knob setting is available which will
heal it. Second, for every healable device in the test set we
predict a family of knob settings which will heal it.
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Given this family of predicted-to-heal knob settings, we
need to employ some method to make an appropriate selection.
As a baseline reference case, we report a probability of correct
heal by random selection, picking a knob setting uniformly at
random:

#PH(\#AH
#PH

That is, the number of knob settings predicted to heal
(#PH) which actually heal (#AH) as a percentage of the
total number of knob settings predicted to heal. We intuitively
expect that we can devise some knob setting selection method
which improves on simple random selection. Here, we present
two such methods.

1) Mahalanobis Distance: In terms of error, the most
conservative approach is to order potential knob settings on
the basis of Mahalanobis distance from specification planes
in a normalized performance space!. We then select the
knob setting which maximizes the Mahalanobis distance from
specification planes. Optimality is contingent on the type of
specification limits provided: For single-sided limits, optimal-
ity is distance maximization with respect to the plane iteself,
whereas optimality for double-sided limits is minimization of
distance with respect to the midpoint of the specification lim-
its. Our metric m is therefore a composite of these two cases,
given a mixed set of single- and double-sided specification

Pr(Correct Heal) = (10)

limits for the K performances s = {s1, s2,...,SK }:
m = mliix an
where each d; is given by:
1-Sided

d; = {(sz - 51’)7 (12)

1/ [pzk — (Silower =+ Simnge/2)] s 2-Sided

in normalized space, and each k is a predicted-to-heal setting
for the given device, generated via our prediction model.
This approach minimizes the probability of a mistake due to
marginal prediction error at the specification limit boundaries,
at the expense of tending towards large increases in power
consumption.

2) Power: An ever-important constraint of analog/RF de-
sign is power. Given a set of predicted-to-heal knob settings
for a device, power is a natural optimizer for selection.

However, following the logic presented earlier, exhaustively
testing power at every knob setting is impractical. Therefore,
to use power as a knob setting selection metric, we must add
power to the list of predicted device performances during the
model-construction stage of our midpoint alternate test-based
performance calibration. This enables us to predict device
power consumption for every knob setting of every device
in the test set. Significantly, we found that the prediction error
for power was very low, such that predicted power and actual

'Mahalanobis distance is simply a covariance-scaled version of Euclidean

distance. We use Mahalanobis distance instead of Euclidean distance as our
distance metric to ensure each specification is uniformly weighted.
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power produced the same knob setting rankings. This enables
us to use predicted power for ranking knob settings.

Once we have used our trained regression models to predict
power values, we employ two selection metrics: minimum
power and median power. Minimizing power while meeting
specification limits would appear to be the global optimum;
indeed, this would be the case were we to have performed
exhaustive specification test giving ground truth pass/fail for
every knob setting. However, using statistical models intro-
duces slight errors in the pass/fail boundary. By minimizing
power, performances are pushed closer to their specification
limits, thereby increasing the apparent misclassification error.
By optimizing for median power, we mitigate some of this
error, while avoiding the high power consumption of the
Mahalanobis distance metric presented previously.

V. COMPARISON TO PRIOR WORK

Several previous publications [8], [9], [11]-[14] attack the
problem of performance calibration in analog/RF devices.
These papers fall into two categories, namely optimization
and prediction. The former is employed in [11]-[14], where
gradient descent-based methods are used to iteratively perform
test-tune-test cycles and heal the device. This method operates
on the assumption that knob effects cannot be characterized in
closed-form requiring use of iterative optimization methods.
As we demonstrate, we can make much stronger assertions
about how knobs interact with device performances. Moreover,
using an iterative approach is overly expensive, requiring
multiple test-tune-test cycles, whereas our proposed midpoint
alternate test-based performance calibration methodology re-
quires only a single test-tune step. The latter category, which
is employed in [8], [9], recognizes that knob effects can be
approximately characterized by first-order linear models, and
a series of models are built to perturb baseline alternate test
MARS model predictions. The effective cost of such methods
is equivalent to our proposed method. However, these models
are built on the assumption that designers can effectively
build knobs that are near-perfectly independent. As complete
independence is not achievable, we avoid the error introduced
by this oversimplification and include knob interaction effects
in our model. Moreover, instead of implementing a two-model
approach (MARS and linear regression), we handle knob and
process variation jointly in a single model.

VI. EXPERIMENTAL VALIDATION
To validate our methods, we designed a cascode low-
noise amplifier (LNA) in 0.18um CMOS. In this section, we
document our design choices and show experimental results
for the proposed midpoint alternate test-based performance
calibration method.

A. Tunable Low-Noise Amplifier

We selected the RF LNA as our platform for experimental
validation, as it is one of the most frequently used compo-
nents in commercial transceiver RFICs. Among the numerous
possible LNA architectures, we chose one of the most widely-
adopted designs, the cascode topology.
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To perform post-production performance calibration, we
must modify the DUT to include tunable circuit elements.
In our device design, we selected three key bias voltages to
include as tuning knobs, as these provided maximal control
over performances. The device schematic, including our se-
lected knobs, is shown in Figure 7 along with the layout of
the DUT.

1) On-Chip Amplitude Sensor: Along with the LNA, we
designed and implemented an on-chip amplitude sensor and
on-chip signal generator, for collecting alternate test data [15].
With an appropriate choice of input signals, the alternate
test measurements produced by the amplitude sensor/signal
generator pair have been demonstrated to be well-correlated
with performances. The schematic and performances of the
proposed RF on-chip amplitude sensor are shown in Figure 8.

Parameter Performance
Operation Frequency  1.575 GHz
Dynamic Range 50 dBm
Power Consumption 3.7 uW

Area Overhead 42 pm x 80 pm

i1 1

Fig. 8. Amplitude Sensor Schematic

2) On-Chip Signal Generator: The schematic and perfor-
mances of the proposed CMOS LC-tuned VCO are shown in
Figure 9.

Parameter Performance

Frequency Tuning Range 1.4 - 1.9 GHz

Phase Noise -111.3 600 kHz
-116.2 1 MHz

S11 -19.3 dB

Power Consumption 25 mW

Fig. 9. Signal Generator Schematic
The layout-level LNA was used to collect performance data
across all knob settings of each device. For alternate test data,

two amplitude detectors were added at the input and output of
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LNA Design

the LNA, and both were measured with stimuli provided by
the RF signal generator. Two different frequencies of the RF
signal generator were employed, for a total of 4 alternate test
measurements collected per knob setting per device.

B. Dataset

For our experiments, we created 1,000 instances of the
LNA with process variation effects included to simulate a
production environment. The 3 knobs in the LNA designed
for our experiment were assigned 3 discrete settings (i.e., 1.6V,
1.8V, 2.0V) for a total of 3% = 27 possible knob positions.

On every device in our dataset, we collected four per-
formances: S11, Noise Figure (NF), Gain, and S22. We
also collected a power measurement and the four low-cost
amplitude sensor (peak detector) alternate test measurements.
Thus, for every device there are 9 figures of merit.

As noted in the introduction, process variation effects per-
turb circuit performances such that some devices exceed speci-
fication limits and fail specification test. However, the knobs in
a tunable circuit also affect this 9-tuple performance vector.
Clearly, this is a requirement of our knob circuit elements;
otherwise the knobs are useless for performance calibration.
Thus, the entire dataset is a 1,000 x 27 x 9 tensor, as shown in
Figure 10. In production it is infeasible to measure all circuit
performances on every device at every knob setting, so only
some circuit performances are explicitly measured. Essentially,
all of the performance calibration methods proposed to date
reduce to slicing away pieces of this 3-dimensional matrix and
then determining the capability to do performance calibration
with severely constrained information about the performance
of a given device.

As stated previously, if we are to model the circuit response
to knob and process variation, an initial training set must be
generated which includes the relationships we wish to model.
For example, if we wish to predict circuit performances at
every knob setting, these performances must be explicitly
measured for a small training set in order to construct our
models. Once these models are constructed, they can be used
to predict circuit performances for the remaining circuits. For
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Fig. 10. Graphical depiction of dataset

the experiments which required training statistical models, we
split the dataset 50/50, training on data from 500 devices and
predicting on the remaining 500. We also performed 10 cross-
validations to ensure statistical stability of the reported results.

C. Specification Test

As shown in Figure 11, we use the center knob position
to emulate a knob-free device, and compare the performances
measured at the center knob position to specification limits to
obtain a pass/fail value for every device in the dataset. Of the
1,000 devices, 851 pass specification testing and 149 devices
fail, translating to 85.1% yield.

Knob Variation
000
E) i
-3 1M
i H
g H
3 H
2 H
i ’
H R
H 14.9% Fail
1| s
H 85.1% Pass
Fig. 11. Specification Test

D. Alternate Test

We also performed simple alternate test (no guard-banding
or other derivative performance improvements) by considering
only data from the midpoint knob setting, emulating a knob-
free device. We constructed prediction models correlating
each of the 4 device performances with peak detector mea-
surements. The results of this experiment are shown in the
confusion matrix of Table IV.

Actual
Fail Pass
. Fail | 10.86% 1.52%
Predicted  poos | 3.54%  84.08%
TABLE IV

ALTERNATE TEST RESULTS

That is, employing standard alternate test results in a 3.54%
test escape rate and a 1.52% yield loss rate. This is consistent
with state-of-the-art alternate test literature, excluding sophis-
ticated error compensation techniques such as guard banding.
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E. Performance Calibration: Exhaustive Specification Test

As noted previously, exhaustive specification test provides
a useful reference point for the absolute ceiling on yield
improvement possible by using performance calibration tech-
niques. As shown in Figure 12, we exhaustively measure all
circuit performances to determine a ground truth pass/fail label
for every knob setting for every device.
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Fig. 12. Exhaustive Specification Test

Instead of simply looking at pass/fail labels for devices,
using performance calibration permits us to extend the simple
paradigm of pass/fail and label devices as healable or unheal-
able. A healable device is defined as a device with at least
one knob setting which produces passing performances. We
can use the matrix of Figure 12 to assign healable/unhealable
labels to our test devices. For our data, 973 of the devices are
healable, and 27 are unhealable. That is, by our definition of
healability, 973 of the devices have at least one knob setting
which enables passing all specification limits. Recall that when
the tuning is not used, 851 of the devices meet specification
limits and pass. Therefore, the maximum possible benefit from
performance calibration methods for this device is 122 devices,
or a 12.2% gain in yield. Note that in all, approximately two-
thirds (18,092) of the 1,000 x 27 = 27,000 total number
of knob settings produce passing performances, which clearly
indicates that performing random knob setting selection would
introduce unacceptably-high error.

Actual
Unhealable  Healable
Predicted Unhealable 1.56% 0.34%
Healable 1.04% 97.06%
TABLE V

EXHAUSTIVE ALTERNATE TEST

FE. Performance Calibration: Exhaustive Alternate Test

Here we provide results for the reference case of exhaustive
alternate test approach detailed in Section II-D. Again, as
this is a performance calibration method, we label devices
as healable or unhealable instead of pass/fail. Recall that
the use of alternate test introduces some error, and for al-
ternate test-based performance calibration, this error presents
as unhealable/healable misclassification error. The confusion
matrix in Table V shows the error for unhealable and healable
classification using exhaustive alternate test regression models.
That is, due to the use of alternate test we introduce an
approximately 1.04% test escape rate and a 0.34% yield loss
rate, for a slightly over 1% total error rate.
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For the devices that were correctly labeled as healable,
we examined the predictions to determine the probability of
correct heal vis-a-vis Equation 10. This number gives us an
estimate of the quality of our knob setting pass/fail classifi-
cations across the healable devices. For exhaustive alternate
test-based performance calibration, the probability of correct
heal is 95.9% using a uniform random selection amongst the
predicted-to-heal knob settings for each device.

G. Performance Calibration: Midpoint Alternate Test

As noted earlier, exhaustive test methods, even when alter-
nate tests are used, are prohibitively expensive to adopt for
practical performance calibration. In contrast, the proposed
midpoint alternate test technique outlined in II-E is a viable
option, as we demonstrate herein.

1) Knob Effect Modeling: To justify our model choice in
Section IV-A, we evaluate the model using simulation data
from a process variation-free ideal device, using least squares
to estimate the parameters B to provide us with the model of
Equation 4. Table VI displays the R-squared values for the
ideal device models. This conclusively verifies our assertion
that ideal device performances can be expressed solely as a
function of knobs and knob interaction terms.

S11 Gain NF S22
0941 098 099 098
TABLE VI

KNOB EFFECT MODELS: R?

2) Process Variation Modeling: To visualize how process
variation perturbation affects the knob effect model, we di-
rectly applied the ideal-device regression models of Section
IV-A to data from a sampled subset of simulated devices. In
Figure 13 we show predicted vs. actual gain, where each line
trace represents the 27 knob settings for a single device. Note
that data from only a handful of devices is presented for clarity.

230
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220
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215 220 225 230

Actual Gain

Fig. 13.  Process Variation Effects

We immediately observe that process variation modulates
the knob-effect model via a simple constant offset, again
verifying our prior assertions that a joint model of knob and
process variation simply requires adding a device constant to
the knob effect model.
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3) Prediction Results: Given that we can model knob ef-
fects with a linear model (Section IV-A) and process variation
by modifying the linear model of knob effects and interaction
terms to include a process variation term (Section IV-B),
we are justified in our adoption of midpoint alternate test-
based performance calibration to predict device performances
across knob settings. Using the midpoint alternate test-based
performance calibration methodology outlined in Section II-E,
we again classified devices as healable or unhealable, with a
success rate demonstrated in the confusion matrix of Table
VIIL

Thus, due to the use of alternate test an approximately
0.62% test escape rate and a 0.48% yield loss rate are
introduced, for a slightly over 1% total error rate. We also
evaluated the probability of correct heal using Equation 10
as in Section VI-F, which was reduced from 95.9% in the
previous section to 94.3% for our midpoint alternate test
method. Therefore, with respect to exhaustive alternate test
we have achieved a lower test escape rate, a similar yield
loss and probability of correct heal, and most significantly, a
substantial cost reduction.

Actual
Unhealable  Healable
Predicted Unhealable 1.98% 0.48%
Healable 0.62% 96.92%
TABLE VII

MIDPOINT ALTERNATE TEST

4) Knob Setting Selection: As we outlined in Section IV-D,
once the performances have been predicted using midpoint
alternate test, knob setting selection is performed by employ-
ing the Mahalanobis distance or the predicted power knob
setting selection metric. Presented in Figure 14 is the power vs.
correct-heal tradeoff for the knob setting selection optimality
metrics: minimum power, median power, and maximum Ma-
halanobis distance. As can be seen from the figure, the Maha-
lanobis distance metric achieves a near-perfect 99.2% correct-
heal rate, at the expense of high power consumption, whereas
minimizing power (as expected) substantially improves power
consumption, while increasing error.

24

MAXIMAL
SPEC
DISTANCE

Power
18 20 22

16

.
/ MEDIAN POWER

«” MINIMUM POWER
T T T T T

0.90 0.92 0.94 0.96 0.98

Correct Heal Rate

Fig. 14. Power-Prediction Quality Tradeoff

H. Training Set Cost Reduction

As discussed in Section III, the proposed midpoint alternate
test-based performance calibration method incurs an initial
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training set cost N.-Ng (A + P) proportional to the number
of knob settings Nx. We found that this cost is far too pes-
simistic, and for real devices the number of training instances
required to adequately learn the statistics of knob and process
variation is actually much smaller.

To demonstrate this, we used uniform sampling to reduce
the size of the training set from the initial 13,500 observations
(500 devices x 27 knob settings) to 25, 50, 100, 250, 500,
1,000, and 10,000 observations. In Figure 15, we show the
percentage of correct heal vs. the number of training set
observations for the knob setting selection methods. For both
methods, error bars are displayed for the 10 cross-validations.
The horizontal dashed lines present the baseline values ob-
tained by building models from the complete training set.

Note that in both cases, training on just 500 observations
(3.7% of the original 13,500 observations) provides prediction
quality on par with models constructed from the full training
set. Thus, for our midpoint alternate test-based performance
calibration method we can decouple the training cost from
N, resulting in a total cost (pre-production training and
production testing) that achieves low costs and total error on
par with traditional alternate test, while gaining the benefits
of post-production performance calibration.

VII. CONCLUSION

We have demonstrated that appropriate modeling of knob
and process variation enables highly successful perfor-
mance calibration. The proposed midpoint alternate test is a
cost-effective means of introducing performance calibration
methodologies into an analog/RF device test flow. Indeed, it
overcomes the limitations of both iterative approaches and
two-model approaches by implementing a single model requir-
ing a single alternate test measurement step to perform tuning.
This method achieves highly accurate healable/unhealable
classification, with a 0.62% test escape rate and a 0.48% yield
loss rate, and a 99.2% correct-heal rate using the Mahalanobis
distance metric to select a knob setting on the healable devices.
Finally, we have demonstrated experimentally that we can
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decouple the training set size from the number of knob settings
N, requiring only a small random sample of alternate tests
and performances from a handful of devices to sufficiently
learn the statistics of knob and process variation.
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