
Concurrent Fault Detection in Random Combinational Logic

Petros Drineas and Yiorgos Makris
Departments of Computer Science and Electrical Engineering

Yale University

Abstract

We discuss a non-intrusive methodology for concurrent
fault detection in random combinational logic. The proposed
method is similar to duplication, wherein a replica of the
circuit acts as a predictor that immediately detects poten-
tial faults by comparison to the original circuit. However,
instead of duplicating the circuit, the proposed method se-
lects a small number of prediction logic functions which only
partially replicate it. Selection is guided by the objective of
minimizing the incurred hardware overhead at the cost of in-
troducing fault detection latency. To achieve this, the pro-
posed method replicates only a reduced width output func-
tion for every input combination, yet without compromising
the ability to detect all faults. In contrast to concurrent error
detection schemes which presume the ability to re-synthesize
the circuit, the proposed method does not interfere with the
implementation of the original design. As compared to pre-
vious approaches, the proposed method achieves significant
hardware overhead reduction, while detecting all faults with
very low average fault detection latency.

1. Introduction

Concurrent test provides circuits with the ability to self-
examine their operational health during normal functionality
and indicate potential malfunctions. While such an indica-
tion is highly desirable, designing concurrently self-testable
circuits which also conform to the rest of the specifications
is not trivial. Issues to be addressed include the hardware
cost and design effort incurred, performance degradation due
to interaction between the circuit and the self-test logic, as
well as the level of assurance required. In this paper, we de-
vise a non-intrusive concurrent test methodology for random
combinational logic. Non-intrusiveness implies that hard-
ware is only added in parallel to the original circuit, which is
assumed to be optimized and may not be modified. The addi-
tional logic detects all faults in the circuit, therefore render-
ing a self-testable design. Moreover, self-test is performed
concurrently and does not degrade normal functionality.

Concurrent test is based on the addition of hardware that
monitors the inputs and generates an a priori known prop-
erty that should hold for the outputs. A property verifier is
utilized to indicate any violation of the property, thus detect-
ing circuit malfunctions. The simplest approach is to dupli-
cate the circuit, imposing an identity property between the
original output and the replica output, which may be simply
examined by a comparator. With the exception of common-

mode failures [1], duplication will immediately detect all er-
rors. However, it also incurs significant hardware overhead
that exceeds 100% of the cost of the original circuit.

Since electronic circuits are employed in a wide range of
applications, concurrent test methods of various cost and effi-
ciency are required. Towards this end, we devise a concurrent
fault detection method for random combinational logic that
reduces hardware overhead at the cost of introducing fault
detection latency. The method is based on Reduced Observa-
tion Width Replication (ROWR) of the circuit, sufficient to
detect all structural faults, as opposed to duplication which
detects all functional errors. After reviewing related work
in section 2, the proposed method is presented and analyzed
in section 3. Experimental results regarding hardware over-
head, fault coverage, and fault detection latency of the pro-
posed method are provided in section 4.

2. Related Work

Almost all previous efforts in concurrent test share the ob-
jective of being able to detect all faults. What typically dis-
tinguishes them, however, is their position within the trade-
off space between hardware overhead and fault detection la-
tency. Most approaches fall in one of two ends of this space.

Towards the low end, low cost self-test approaches have
been proposed for combinational circuits. C-BIST [2] em-
ploys input monitoring and existing off-line Built-In Self-
Test hardware, such as LFSRs and MISRs, to perform con-
current self-test. While hardware overhead is very low, the
method relies on an ordered appearance of all possible input
vectors before a signature indicating circuit correctness can
be calculated, resulting in very long fault detection latency.
This problem is alleviated in the R-CBIST method described
in [3], where the requirement for a uniquely ordered appear-
ance of all input combinations is relaxed at the cost of a small
RAM. Nevertheless, all input combinations still need to ap-
pear before any indication of circuit correctness is provided.

Towards the high end, we find expensive concurrent er-
ror detection methods for sequential circuits that check the
circuit functionality at every clock cycle, therefore guaran-
teeing zero error detection latency. However, reducing the
area overhead below the cost of duplication typically re-
quires redesign of the original circuit, thus leading to in-
trusive schemes. One of the first attempts is described in
[4], where resynthesis is employed to encode the states of
the circuit, incorporating parity and employing totally self-
checking (TSC) checkers [5]. Limitations such as structural

Proceedings of the Fourth International Symposium on Quality Electronic Design (ISQED’03)

0-7695-1881-8/03 $17.00 © 2003 IEEE

CIRCUIT

TEST VECTOR
LOGIC

REPLICA

INEQUALITY
COMPARATOR

OUT

IN

TEST OUTPUT

TEST
VECTORS

ATPG

SYNTHESIS
IS INPUT
A TEST

VECTOR?

Figure 1. Test Vector Logic Replication (TVLR)

constraints requiring an inverter-free design, are alleviated in
[6], where partitioning is employed to reduce the incurred
hardware overhead. Utilization of multiple parity bits is ex-
amined in [7]. While these methods render TSC circuits and
guarantee error detection with zero latency, they are intrusive
and only provide savings of up to 15% over duplication.

Among the few approaches in between the two ends, a
method that exploits properties of non-linear adaptive filters
is proposed in [8]. A similar technique introducing latency is
proposed in [9], where the frequency response of linear filters
is used as invariance. Additionally, an approach exploiting
transparency of RT-Level components is described in [10].

Finally, a concurrent fault detection method for combi-
national logic is described in [11]. This method, which we
will refer to as Test Vector Logic Replication (TVLR), is de-
picted in Figure (1). Since TVLR is similar to the method
proposed herein, we describe it briefly to provide a basis for
comparison. ATPG is employed to generate a complete set of
test vectors, capable of detecting all non-redundant faults in
the circuit. This set is subsequently synthesized to form the
prediction logic, which is now capable of generating the cor-
rect circuit response only for the complete set of test vectors.
Since the objective is to minimize the hardware cost of the
prediction logic, the remaining input combinations are used
as “don’t cares” during synthesis; therefore, the prediction
logic will not generate correctly the circuit output for these
combinations. To avoid false alarms, an additional function
is used to indicate whether the input combination is a test
vector, and consequently, whether the output of the compara-
tor should be considered or discarded through the additional
AND gate. TVLR is non-intrusive and assuming that ATPG
yields a complete set of test vectors, it is capable of detect-
ing all faults. However, it introduces latency in the detection
of an activated fault, which will remain undetected until a
corresponding test vector appears at the circuit inputs.

3. Reduced Observation Width Replication

While TVLR delivers hardware reduction over duplica-
tion at the cost of introducing fault detection latency, it is
only one possible solution from a wide array of choices. In
an effort to explore the solution space, we observe that for
every input combination, each output bit has the ability to
detect a subset of all faults in the circuit, as shown in Fig-
ure (2). Guaranteeing detection of all non-redundant faults
requires that the prediction logic be capable of generating an
adequate set of output bits, such that the union of detected

V0 0 0 1 0
V1 0 1 1 0
V2 1 0 0 1
V3 1 1 1 1

I1 I0 O1O0

Non-Redundant Fault List {F1,...,F10}
Faults Detected At Each Output Bit:

O1:{F1,F2,F3} O0:{F7,F9,F10}
O1:{F1,F3,F7} O0:{F4,F5,F6}
O1:{F1,F7,F8} O0:{F4,F5,F7}
O1:{F1,F2,F7} O0:{F4,F9,F10}

Figure 2. Reduced Observation Width Example

faults yields the complete non-redundant fault list. TVLR
selects such a set subject to the constraint that when an out-
put bit is included for a given input combination, all output
bits for this input combination are included. Subsequently,
the optimization objective is to minimize the number of se-
lected input combinations (test vectors), which is achieved
through the Test Compaction phase of ATPG. The underly-
ing assumption is that the output width of the prediction logic
has to be equal to the output width of the circuit.

As an example, the minimal test set for the simple logic of
Figure (2) comprises test vectors V0, V1, V2 and therefore the
prediction logic has to be able to generate a 2-bit function for
each of the 3 vectors, in total six bits. Notice, however, that
only four of these bits are sufficient to detect all faults, while
the remaining two are an additional overhead imposed by the
constraint of the method mentioned above. More specifically,
bits O1 and O0 for vector V0, bit O0 for vector V1 and bit O1

for vector V2 suffice to detect all faults. Furthermore, notice
that there exists a set of output bits capable of detecting all
faults that requires replication of only one circuit output for
every input combination. More specifically, bit O1 for vec-
tors V0 and V2, and bit O0 for vectors V1 and V3 suffice to
detect all faults. It is, therefore, possible that a less expensive
prediction logic, generating a 1-bit function for all 4 input
combinations, as opposed to a 2-bit function for 3 of the 4
input combinations, will suffice for detecting all faults. This
observation is the basis for ROWR, the proposed method.

3.1. Description

The optimization objective of ROWR is to minimize the
output width of the prediction logic. Based on the observa-
tion that a subset of output bits per input combination is typ-
ically sufficient to detect all faults, the method aims at iden-
tifying a minimal such set. More specifically, the prediction
logic now generates only k out of the n circuit output bits,
where k is the minimum number of predicted bits per vector
that detects all faults. Hardware savings are anticipated due
to the reduced output width of the predicted function.

The proposed scheme is depicted in Figure (3). For ev-
ery m-bit input combination, the prediction logic generates
k outputs that match a subset of k out of the n output bits of
the circuit. Consequently, a Selection Logic chooses which
of the n circuit outputs to drive to the comparator for each m-
bit input combination. Two key issues need to be addressed;
namely, identification of the output bits to be generated by
the prediction logic and cost-effective selection of the circuit
outputs to which they should be compared.

Proceedings of the Fourth International Symposium on Quality Electronic Design (ISQED’03)

0-7695-1881-8/03 $17.00 © 2003 IEEE

CIRCUIT PREDICTION
LOGIC

m

INEQUALITY
COMPARATOR

k

SELECTION
LOGIC

n

1

IN

TEST
OUTPUTOUT

n

m

n to 1

1

n

n to 1

1

nk MUXers

n

k

k

logn logn

ADDRESS
LOGIC

m

Figure 3. Reduced Observation Width Replication

Regarding the first issue, an ATPG tool capable of gener-
ating all test vectors and reporting both the good circuit and
the faulty circuit output for every fault is required. This infor-
mation indicates the faults that can be detected at each output
bit for each input combination and may be used to construct
a table similar to the one shown in Figure (4). Intuitively, it
may seem that the optimal solution should comprise a set of
columns that covers all faults, such that the maximum num-
ber of output bits to be observed for any input vector is min-
imized. This is not true, however, since the exact selection
of columns has a direct and significant impact on the cost
of the Selection Logic, bringing us to the second issue men-
tioned above. More specifically, since the prediction logic
only generates a k-bit function, additional logic is necessary
to select k among the n circuit outputs to which the predicted
k bits will be compared. As shown in Figure (3), this can
be viewed as k n-to-1 multiplexers, each of which requires
log n address bits. Therefore, if we allow all possible sub-
sets of size k for every m-bit input combination, the Address
Logic will comprise k · log n m-input functions. As com-
pared to duplication, the prediction logic would implement
n − k fewer m-input functions, at the cost of implementing
k · log n m-input functions and k n-to-1 multiplexers for the
Selection logic. Obviously, this is not a winning strategy if
k > n/(log n + 1), in which case k · log n > n− k. Further-
more, the cost of the Selection Logic is hard to estimate as
k increases, reducing to a zero-cost identity function in the
extreme case of k = n.

Therefore, restrictions need to be imposed on the com-
plexity permitted for the Address Logic and, by extension, to
the acceptable sets of columns to cover the faults in the table
of Figure (4). In the proposed methodology we eliminate the
Address Logic all together, therefore allowing that the log n
select inputs of each multiplexer may only be driven directly
by any log n out of the m inputs bits.

. . .

VECTOR 0

OUT0 OUTn-1...

VECTOR 2m-1

OUT0 OUTn-1...

Fault1
Fault2

1

.

.

.

FaultM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

1 1

1 1

. . .

. . .

Figure 4. Fault Detection Table

We now formally state the problem, assuming that we are
given the table (say A) described above. The first step parti-
tions the 2m input combinations in O(n) disjoint subsets, by
selecting O(log n) input bits (out of m). In each subset, we
include all inputs (0 . . . 2m) that have the same value in the
O(log n) selected bits. In the second step, for each subset,
a set of k (1 ≤ k ≤ n) output bits is selected. We empha-
size that k is fixed for all subsets. Thus, k · 2m columns of
A are selected (out of n · 2m). We seek an algorithm to se-
lect k bits for each subset so that all faults are covered and
k is minimized. The problem is NP-complete; we outline a
randomized algorithm to approximate it.

We solve the problem for a fixed k; finding the minimum
k is trivial using binary search and repeating the following
algorithm log n times. We assume that the inputs are split in
M subsets, denoted by S1 . . . SM and, for each Si, we seek
to identify a set Ri of k output bits.

Step 1: For each Si, find all faults Fi covered by exactly
one column of A. Include the bit corresponding to that
column in Ri. Remove all faults (rows of A) covered
by this bit and a vector in Si. Repeat until all remaining
faults are covered by two or more columns of A.

Step 2: For each Si, find all faults Fi that are covered by
vectors only in Si. Include in Ri the minimum number
of bits required to cover all these faults (this is done by
exhaustive enumeration in our experiments; elaborate
approximation algorithms exist [12]). Remove all faults
(rows of A) covered by these bits and a vector in Si.
Repeat until all remaining faults are covered by two or
more vectors in different subsets.

Step 3: If any |Ri| ≥ k report failure. Otherwise, randomly
pick values for the k−|Ri| remaining bits (i = 1 . . . M).
We repeat this step K times; if no combination covering
all faults is found, we report failure. We actually use an
adaptive scheme for the random sampling of values.

Similarly to TVLR, ROWR is non-intrusive and guaran-
tees 100% fault coverage. Furthermore, since ROWR pre-
dicts and compares the appropriate portion of the circuit out-
put for every input combination, no false alarm is possible.
ROWR also introduces latency in the detection of an acti-
vated fault, which will remain undetected until an appropri-
ate vector appears at the circuit inputs. We stress, however,
that ROWR checks for faults for every input combination,
unlike TVLR which checks more infrequently. Since most
stuck-at faults are detected by many input vectors, we expect
the average latency of ROWR to be less than that of TVLR.

Proceedings of the Fourth International Symposium on Quality Electronic Design (ISQED’03)

0-7695-1881-8/03 $17.00 © 2003 IEEE

CIRCUIT DUPLICATION TVLR ROWR COST COMPARISON
 COST VECTORS COST BITS COST TVLR vs DUPL. ROWR vs. DUPL.

4_4 38048 11 / 16 47792 2 / 4 22272 125.60 % 58.53 %
5_5 117856 21 / 32 113680 2 / 5 56608 96.45 % 48.03 %
6_6 126768 40 / 64 230144 3 / 6 137808 88.25 % 52.84 %
7_7 552624 66 / 128 419920 3 / 7 275472 75.98 % 49.84%
8_8 1219856 143 / 256 879744 3 / 8 527568 72.11 % 43.24 %
9_9 2467088 254 / 512 1766912 4 / 9 1285280 71.61 % 52.09 %

Figure 5. Hardware Overhead Comparison

4. Experimental Results

In this section, we compare TVLR and ROWR to dupli-
cation, in terms of hardware overhead, fault coverage, and
fault detection latency. We experimented with and report
results for random logic, synthesized using SIS [13], and
mapped to a standard cell library. ATPG is performed us-
ing ATALANTA [14]. The test vector set is synthesized,
rendering the prediction logic for TVLR. The prediction for
non-vectors is “don’t care”, allowing SIS [13] to minimize
the required hardware. ATALANTA [14] is used to generate
all possible vectors detecting each fault, and HOPE [15] is
employed to provide the good machine and the bad machine
responses for every (vector, fault) pair, revealing the output
bits at which each fault may be detected for every vector.
This information is used to construct the table and identify
the prediction function necessary for ROWR, which is also
synthesized using SIS [13]. The concurrently testable cir-
cuits are, then, constructed as described in sections 2 and 3.1
for TVLR and ROWR respectively. Comparison of the three
alternative methods, Duplication, TVLR, and ROWR is now
possible.

4.1. Hardware Overhead

Results are summarized in the table of Figure (5) for six
different sizes X Y of random circuits, where X is the num-
ber of inputs and Y is the number of outputs. The number
of TVLR test vectors and the width of the predicted ROWR
function are also reported. ROWR achieves significantly bet-
ter savings than TVLR, over duplication. Even for the small-
est circuit, ROWR incurs 58.53% overhead, while TVLR
costs more that duplication. For the above circuits, TVLR
saves on average around 16% over duplication, while ROWR
saves on average around 50%.

4.2. Fault Coverage

Both TVLR and ROWR detect all non-redundant faults
in the original circuit. To demonstrate this, we construct the
complete concurrently testable circuits as described in sec-
tions 2 and 3.1 for TVLR and ROWR respectively. Only
the test output is made observable, and ATALANTA [14] is
used to generate test vectors for all non-redundant faults in
the original circuit. The results are summarized in the table
of Figure (6), where as expected, all faults are detectable by
both the TVLR and the ROWR method. Also by construc-
tion, both methods are expected to detect all non-redundant

faults in the prediction logic circuit. For these faults, the orig-
inal circuit acts as a duplicate, thus detecting them through
the comparator. To demonstrate this, we performed ATPG
for all faults in the complete circuit using ATALANTA [14],
observing both the test output and the primary outputs of the
circuit, thus obtaining the list of all non-redundant faults in
the circuit. A final ATPG run for these faults, observing only
the test output, shows that all non-redundant faults in the cir-
cuit are detectable both by TVLR and by ROWR.

4.3. Fault Detection Latency

Although the exact latency introduced by TVLR and
ROWR may not be predicted, an experimentally obtained
indication is necessary for their evaluation. Similarly to
[2, 3, 11], we assume a uniform distribution at the circuit
inputs and employ fault simulation of randomly generated
input sequences. More specifically, for each method we use
HOPE [15] to perform two fault simulations of the same se-
quence of randomly generated inputs, once observing both
the test output and the circuit outputs, and a second time ob-
serving only the test output. The time step at which a fault is
detected during the first fault simulation is the Fault Activa-
tion time, while the time step at which a fault is detected dur-
ing the second fault simulation is the Fault Detection time.
Fault Detection Latency is defined as the time difference be-
tween Fault Activation and Fault Detection, therefore we can
easily calculate the Fault Detection Latency for each fault, as
well as the average Fault Detection Latency.

Results are summarized in the table of Figure (7) for both
TVLR and ROWR. We fault simulate a total of 5000 random
patterns and snapshots of the results are shown after 10, 50,
100, 500, 1000, and finally all 5000 patters have been ap-
plied. For each snapshot, we provide the number of faults
remaining non-activated, the number of faults activated and
detected, and the number of faults activated but not yet de-
tected. We also provide the maximum and the average fault
detection latency for the faults that are both activated and de-
tected. Based on the results, we observe the following:

TVLR ROWR
CIRCUIT ORIGINAL

FAULTS
ALL

FAULTS
ORIGINAL

FAULTS
ALL

FAULTS
4_4 60 / 60 184 / 184 60 / 60 150 / 150
5_5 181 / 181 417 / 417 181 / 181 348 / 348
6_6 387 / 387 830 / 830 387 / 387 676 / 676
7_7 819 / 819 1567 / 1567 819 / 819 1326 / 1326
8_8 1806 / 1806 3290 / 3290 1806 / 1806 2693 / 2693
9_9 3710 / 3710 6583 / 6583 3710 / 3710 5781 / 5781

Figure 6. Fault Coverage by TVLR and ROWR

Proceedings of the Fourth International Symposium on Quality Electronic Design (ISQED’03)

0-7695-1881-8/03 $17.00 © 2003 IEEE

REMAINING 6 6 0 0
DETECTED 52 53 60 60

MISSED 2 1 0 0
MAX LAT 1 9 24 24

4_4 0

AVG LAT 0.01 0.56 1.11 1.05
REMAINING 55 55 5 5 1 1 0 0
DETECTED 99 106 164 168 179 176 181 181

MISSED 27 20 12 8 1 4 0 0
MAX LAT 7 8 23 44 91 81 135 155

5_5 181

AVG LAT 0.53 0.43 2.79 3.17 6.17 4.47 6.85 7.24
REMAINING 179 179 37 37 10 10 0 0
DETECTED 148 177 328 330 368 372 387 387

MISSED 60 31 22 20 9 5 0 0
MAX LAT 8 9 43 43 72 80 372 137

6_6 387

AVG LAT 0.95 0.18 4.23 2.21 6.05 3.74 9.67 5.01
REMAINING 411 411 117 117 36 36 0 0
DETECTED 330 340 614 639 745 760 819 819

MISSED 78 68 88 63 38 23 0 0
MAX LAT 9 9 46 46 80 70 474 405

7_7 819

AVG LAT 1.35 0.52 4.67 2.10 7.91 4.00 17.04 8.41
REMAINING 1120 1120 459 459 222 222 11 11 0 2 0 0
DETECTED 512 523 1027 1184 1339 1493 1763 1782 819 1803 1806 1806

MISSED 174 163 320 163 245 91 32 13 0 1 0 0
MAX LAT 5 9 45 44 91 98 462 448 514 832 1910 1910

8_8 1806

AVG LAT 0.22 0.78 3.97 3.25 8.77 6.20 28.84 15.20 17.04 18.90 40.03 19.93
REMAINING 2541 2541 1243 1243 722 722 68 68 2 9 0 0
DETECTED 769 877 1690 2235 2471 2774 3473 3582 1799 3693 3710 3710

MISSED 400 292 777 232 517 214 169 60 5 8 0 0
MAX LAT 5 9 41 47 93 96 474 486 868 959 2075 1738

9_9 3710

AVG LAT 0.26 0.43 6.30 2.34 13.22 3.94 37.40 14.50 36.30 21.71 67.67 23.60
TVLR ROWR TVLR ROWR TVLR ROWR TVLR ROWR TVLR ROWR TVLR ROWR

CIRCUIT
TESTABLE

FAULTS
STATISTIC RANDOM

10
RANDOM

50
RANDOM

100
RANDOM

500
RANDOM

1000
RANDOM

5000

Figure 7. Fault Detection Latency for TVLR and ROWR

10 50 100 500 1000 5000
500

1000

1500

2000

Number of random inputs

D
et

ec
te

d
fa

ul
ts

Activated
Detected (ROWR)
Detected (TVLR)

Figure 8. Faults vs Number of Patterns for 8 8

10 50 100 500 1000 5000
500

1000

1500

2000

2500

3000

3500

4000

Number of random inputs

D
et

ec
te

d
fa

ul
ts

Activated
Detected (ROWR)
Detected (TVLR)

Figure 9. Faults vs Number of Patterns for 9 9

10 50 100 500 1000 5000
0

5

10

15

20

25

30

35

40

45

Number of random inputs

A
ve

ra
ge

 la
te

nc
y

ROWR
TVLR

Figure 10. Latency vs Number of Patterns for 8 8

10 50 100 500 1000 5000
0

10

20

30

40

50

60

70

Number of random inputs

A
ve

ra
ge

 la
te

nc
y

ROWR
TVLR

Figure 11. Latency vs Number of Patterns for 9 9

Proceedings of the Fourth International Symposium on Quality Electronic Design (ISQED’03)

0-7695-1881-8/03 $17.00 © 2003 IEEE

• While the MAX latency is O(N · log N) vectors, the
AVG latency ranges only up to 68 vectors for TVLR and
up to 24 vectors for ROWR. For example, once all faults
are detected in the 9 9 circuit, where N · log N=4608,
the MAX latency is 2075 vectors for TVLR and 1738
vectors for ROWR. However, the AVG latency is 67.67
vectors for TVLR and 23.60 vectors for ROWR, which
is only the 3.26% and 1.35% of the respective MAX
latency. Similar observations hold for all circuits.

• For both TVLR and ROWR most faults are detected
quickly and a 90-10 rule applies for the AVG latency:
90% of the faults are detected within 50% of the AVG
latency, while the other 50% is contributed by the re-
maining 10% of the faults. For example, once 500
vectors are applied to the 9 9 circuit, 98.17% of all
faults are activated, out of which 93.65% are detected
by TVLR and 96.54% by ROWR. The AVG fault detec-
tion latency at this point is 37.40 vectors for TVLR and
14.50 vectors for ROWR, which represents the 55.26%
and 61.44% of the AVG latency when all faults are de-
tected. Similar observations hold for all circuits.

Furthermore, a comparative latency examination of TVLR
and ROWR leads to the following two observations:

• ROWR detects more faults slightly faster than TVLR.
A plot of the faults activated, faults detected by TVLR,
and faults detected by ROWR as the number of ap-
plied random patterns increases is given in Figures 8
and 9 for circuits 8 8 and 9 9, respectively. As demon-
strated, ROWR consistently detects more faults faster
than TVLR, up to the convergence point where all faults
are detected by both methods. The observation holds
for all circuits and, interestingly, the gain is larger as the
size of the circuit increases.

• ROWR detects faults with significantly lower AVG la-
tency than TVLR. A plot of the AVG fault detection la-
tency of ROWR and TVLR as the number of applied
random patterns increases is given in Figures 10 and 11
for circuits 8 8 and 9 9 respectively. As demonstrated,
ROWR consistently detects faults with lower AVG la-
tency than TVLR. Once again, the observation holds
for all circuits and, interestingly, the gain is larger as
the size of the circuit increases.

5. Conclusions

Cost-effective concurrent fault detection requires careful
examination of the trade-offs between the conflicting objec-
tives of low hardware overhead, low fault detection latency,
and high fault coverage. ROWR explores the trade-off be-
tween fault detection latency and hardware overhead, under
the constraint that the original circuit may not be altered.
Thus, a comparison-based approach is employed, where the

original circuit is partially replicated into a prediction logic
that selectively tests the circuit during normal operation. The
problem of identifying cost-effective prediction logic func-
tions is theoretically formulated and an algorithm for effi-
cient partial replication is proposed. Experimental results
demonstrate that ROWR reduces significantly the hardware
overhead incurred by either duplication or TVLR, while pre-
serving the ability to detect all permanent faults in the circuit.
Further reduction of this overhead is anticipated as the size
of the circuit increases. While these savings come at the cost
of introducing fault detection latency, the experimentally ob-
served average latency is lower than the latency of TVLR and
scales sub-linearly with the size of the circuit. Thus, when
non-zero fault detection latency may be tolerated, ROWR is
a superior alternative to both duplication and TVLR.

References

[1] A. Avizienis and J. P. J. Kelly, “Fault tolerance by design
diversity: Concepts and experiments,” IEEE Computer, vol.
17, no. 8, pp. 67–80, 1984.

[2] K. K. Saluja, R. Sharma, and C. R. Kime, “A concurrent
testing technique for digital circuits,” IEEE TCAD, vol. 7, no.
12, pp. 1250–1260, 1988.

[3] I. Voyiatzis, A. Paschalis, D. Nikolos, and C. Halatsis, “R-
CBIST: An effective RAM-based input vector monitoring
concurrent BIST technique,” in ITC, 1998, pp. 918–925.

[4] N. K. Jha and S.-J. Wang, “Design and synthesis of self-
checking VLSI circuits,” IEEE TCAD, vol. 12, no. 6, pp.
878–887, 1993.

[5] D. Nikolos, “Optimal self-testing embedded parity checkers,”
IEEE TCOMP, vol. 47, no. 3, pp. 313–321, 1998.

[6] N. A. Touba and E. J. McCluskey, “Logic synthesis of mul-
tilevel circuits with concurrent error detection,” IEEE TCAD,
vol. 16, no. 7, pp. 783–789, 1997.

[7] C. Zeng, N. Saxena, and E. J. McCluskey, “Finite state ma-
chine synthesis with concurrent error detection,” in ITC,
1999, pp. 672–679.

[8] A. Chatterjee and R. K. Roy, “Concurrent error detection
in non-linear digital circuits with applications to adaptive fil-
ters,” in ICCD, 1993, pp. 606–609.

[9] I. Bayraktaroglu and A. Orailoglu, “Low-cost on-line test for
digital filters,” in VTS, 1999, pp. 446–451.

[10] Y. Makris, I. Bayraktaroglu, and A. Orailoglu, “Invariance-
based on-line test for RTL controller-datapath circuits,” in
VTS, 2000, pp. 459–464.

[11] R. Sharma and K. K. Saluja, “An implementation and analysis
of a concurrent built-in self-test technique,” in FTCS, 1988,
pp. 164–169.

[12] R. Motwani and P. Raghavan, Randomized Algorithms, Cam-
bridge University Press, 3rd edition, 1995.

[13] E. M. Sentovich et al., “SIS: a system for sequential circuit
synthesis,” ERL MEMO. No. UCB/ERL M92/41, EECS UC
Berkeley CA 94720, 1992.

[14] “ATALANTA combinational test generation tool,” Available
from http://www.ee.vt.edu/ha/cadtools.

[15] H. K. Lee and D. S. Ha, “HOPE: An efficient parallel fault
simulator for synchronous sequential circuits,” IEEE TCAD,
vol. 15, no. 9, pp. 1048–1058, 1996.

Proceedings of the Fourth International Symposium on Quality Electronic Design (ISQED’03)

0-7695-1881-8/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

