
Studying E-mail Graphs for Intelligence

Monitoring and Analysis in the Absence of

Semantic Information

Petros Drineas, Mukkai S. Krishnamoorthy, Michael D. Sofka
Bülent Yener

Department of Computer Science, RPI, Troy, NY 12180, USA.
{drinep, moorthy, sofkam, yener}@rpi.edu ?

Abstract. This work describes a methodology that can be used to iden-
tify structure and communication patterns within an organization based
on e-mail data. The first step of the method is the construction of an
e-mail graph; we then experimentally show that the adjacency matrix
of the graph is well approximated by a low-rank matrix. The low-rank
property indicates that Principal Component Analysis techniques may be
used to remove the noise and extract the structural information (e.g. user
communities, communication patterns, etc.). Furthermore, it is shown
that the e-mail graph degree distribution (both with respect to indegrees
and outdegrees) follows power laws; we also demonstrate that there exists
a giant component connecting 70% of the nodes.

1 Introduction and motivation

E-mail communications play an important role in information society as a means
for collaboration and knowledge exchange. It dominates business, social and
technical transactions and it is an attractive area for research on community
formation and evolution in the social networks context. Since individuals in an
organization create formal or adhoc groups, their e-mail communication pat-
terns usually carry implicit information regarding their common activities and
interests.

This paper describes an experiment conducted in our institution (RPI) using
e-mail message logs obtained over several days. Using this data we construct an
e-mail graph that captures the communication patterns. In our work we exam-
ine the properties of e-mail graphs and study a variety of metrics; first of all,
we validate that the distributions of the indegrees and outdegrees in our graph
follow power laws. Next, we present a spectral analysis of the graph based on
the Singular Value Decomposition (SVD) and demonstrate that the adjacency
matrix of the graph is quite low rank. The low-rank property and the existence
of power laws in the e-mail graph indicate that Principal Component Analysis
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techniques can be used for the discovery of user communities and communica-
tion patterns. Additionally, we observe that the graphs have a giant connected
component, which could be used to help reduce the complexity of our algorithms.

Our work essentially validates the use of models such as the ones proposed in
[1, 2] to model the e-mail graph. Thus, from such models, we can easily estimate
the probability that a user sends/receives k e-mails within a period of time T (i.e.
p(k) will be k−α for suitable choices of the exponent α, as we shall demonstrate
in the experimental results section). We can also predict how the e-mail graph
evolves over time, thus predicting future e-mail communications. Finally, such
models might be used to design and evaluate strategies for the spreading of
infectious software, such as worms and viruses, in the Internet via e-mail.

1.1 Related Work

Understanding on-line social networks and analyzing their structures has been a
focus of intense research in both Social Science and Computer Science (please see
[3] and references therein). E-mail is the predominant means of communication
in on-line society. Most works have focused on information flow via e-mail and, in
particular, the spread of a viral epidemic and the design of effective strategies to
prevent such a spread. In [4] the authors analyze e-mail logs and constructed the
corresponding e-mail graph over a period of 2 months for senders sending e-mail
to or from the HP lab e-mail server; they demonstrate a power law distribution
for the outdegrees of this graph (the exponent of the power law was close to 2.0).
Similar work was done in [5]; the e-mail graph was generated from the address
books of users in a large university system. The authors demonstrate that the
degree distributions follow exponential distributions; notice though that they
examine a different graph, since the address book of an e-mail user does not
necessarily generate links to all e-mail recipients.

In [6], the authors analyze e-mail communication between members of an
HP lab over a period of 2 months; their goal is to identify efficient strategies
for searching such networks for a specific individual (node). They form a “social
network” from this graph by putting an edge between two users if and only if
the two users exchanged at least 6 e-mail messages. The resulting graph exhibits
an exponential (and not a power law) distribution on the degrees of its nodes.
However, in [7], the authors analyze a similar e-mail log, again from the HP labs,
over a period of 2 months; they explicitly state that the “raw” data (namely, the
graph created by adding an edge between user i and user j if user i sent an e-
mail to user j) exhibits power-law degree distributions. Results of [8] imply that
such graphs consist of a giant connected component and many smaller isolated
components. Also, results of [9] imply that the eigenvalues of the adjacency
matrix of the graph follow a power law distribution; we expand on these points
in section 3.1.

Finally, we note that e-mail communications can be addressed at the orga-
nizational or workgroup level as suggested in [10]. Furthermore, application of



SVD to social networks are previously considered for discovering communities
[11] 1.

Our Contribution The main contribution of our work is the application of
SVD on a graph created from e-mail data and the spectral analysis of this
graph. By showing existence of the power law and low-rank properties on e-mail
graphs, we establish a basis for using SVD based data mining approaches to
discover hidden communities in e-mail communications.

2 Model and Methodology

2.1 Data Collection and Processing

Data for the e-mail samples were taken from a full SMTP (Simple Mail Transport
Protocol) feed at Rensselaer Polytechnic Institutes’ central mail servers from one
full week.

The SMTP protocol minimally identifies a connecting SMTP relay, the en-
velope sender, the envelope recipients and the DATA. The DATA contains the
e-mail message body and additional e-mail headers. Sendmail logs a “from” line
for the envelope sender and a series of “to” lines for each message recipient.
These appear in the log file in the order that multiple, parallel, sendmail dae-
mons processed the messages. When a new SMTP connection is established,
sendmail assigns a unique queue id to the message. The queue id can be used to
extract the linked log entries corresponding to a single e-mail message.

Logging is further complicated by e-mail forwarding, and alias expansion,
which result in “ctladdr” and “clone” entries, respectively. RPI’s e-mail logs also
record the results of virus and Unsolicited Commercial E-mail (spam) filtering.

It is important to make clear the distinction between envelope sender and
recipients, and the e-mail ”From” and ”To” headers. E-mail headers are DATA as
far as the SMTP protocol is concerned, and are not recorded sendmail. Sendmail
logs the envelope information, which appears in the SMTP dialog, and which
may differ from the message headers. For example, a message sent with a Blind
Carbon Copy (bcc) header will have envelope recipients which do not appear in
the message headers. Likewise, a mailing list may use a envelope sender which
is a special bounce detection address with a unique identification tag, while the
message header provides the true list name and reply-to address. The provided
data included only envelope information.

Personally identifiable information in the logs was obscured using the HMAC
message authentication protocol with a 128bit SSH1 hash. Identifying informa-
tion included the envelope sender and recipients, the connecting mail relay, the
message id (a unique id generated by e-mail clients), and delivery status infor-
mation.

1 The authors thank to the anonymous referees for pointing out additional references.



Information about spam scores and viruses were not included in the logs used
for the study. The format of virus and spam messages has gone through numer-
ous changes over the past year, making relatively safe obfuscation error prone. In
addition, messages from spammers and virus infected machines is intentionally
misleading, and attempt to exploit bugs in client e-mail readers. As a result, the
log entries often contain non-standard characters (especially in envelope sender,
and message id and attachment names) making consistent parsing difficult. How-
ever, such messages can often be inferred from delivery status errors, unknown
users and missing recipients (when the spam is dropped by Rensselaer’s spam
filter).

2.2 The e-mail graph

From the e-mail data we construct a graph represented by an adjacency matrix
A. In the graph each node corresponds to a concealed e-mail address (i.e., the
rows and columns of A) and there is an edge (i, j) in the graph if node i sends
an e-mail to node j.

2.3 SVD and Spectral Analysis

We briefly review the singular value decomposition of matrices; we will use some
of its properties in our discussion in Section 3.1. Any m × n matrix A can be
expressed as

A =

r∑

t=1

σt(A)u(t)v(t)T

,

where r is the rank of A, σ1(A) ≥ σ2(A) ≥ . . . ≥ σr(A) > 0 are its singular
values and u(t) ∈ Rm, v(t) ∈ Rn, t = 1, . . . , r are its left and right singular
vectors respectively. The u(t)’s and the v(t)’s are orthonormal sets of vectors;

namely, u(i)T

u(j) is one if i = j and zero otherwise. We also remind the reader
that

‖A‖2
F =

∑

i,j

A2
ij =

r∑

i=1

σ2
i (A),

‖A‖2 = max
x∈Rn:‖x‖=1

‖Ax‖ = max
x∈Rm:‖x‖=1

‖xT A‖ = σ1(A).

In matrix notation, SVD is defined as A = UΣV T where U and V are or-
thogonal (thus UT U = I and V T V = I) matrices of dimensions m × r and
n × r respectively, containing the left and right singular vectors of A. Σ =
diag(σ1(A), . . . , σr(A)) is an r × r diagonal matrix containing the singular val-
ues of A.

One of numerous applications of SVD is in recovering the structure of ma-
trices and in noise removal in a variety of settings. The underlying idea is very

simple: since A =
∑r

t=1 σt(A)u(t)v(t)T

, we can create approximations to A by



keeping only the top k “principal components” (i.e. the top k σt(A)u(t)v(t)T

)
for various values of k. Essentially, discarding the “smallest” principal compo-
nents (the ones corresponding to the smallest singular values), results in a small
loss in accuracy, and we might justifiably consider these components as “noise”.
This procedure is commonly referred to as “Principal Component Analysis” and
the following theorem (usually attributed to Eckart and Young [12]) quantifies
the loss of accuracy incurred by keeping only the top k components for various
values of k.

Theorem 1. Let Ak =
∑k

t=1 σtu
(t)v(t)T

(for any 1 ≤ k ≤ r). Ak is the “best”
rank k approximation to A with respect to the 2-norm and the Frobenius norm;
namely, for any matrix D of rank at most k,

‖A − Ak‖2 ≤ ‖A − D‖2 and ‖A − Ak‖F ≤ ‖A − D‖F .

Also,

‖A − Ak‖
2
F =

r∑

t=k+1

σ2
t (A) and ‖A − Ak‖2 = σk+1(A).

We say that a matrix A has a “good” rank k approximation if the 2-norm and
the Frobenius norm of A−Ak is small; for a detailed treatment of Singular Value
Decomposition see [12].

3 Experimental Results

3.1 Spectral Analysis of the e-mail graph

Not surprisingly, the e-mail graphs exhibit low-rank structure. As a result, Princi-
pal Component Analysis techniques would be successful if applied on such graphs
to extract communities of users, remove noise, etc. In Figure 3 we plotted the
spectral characteristics of the 3 graphs. The graphs are obtained from splitting
one week mail logs into three sets for managing the complexity of SVD algorithm.
More specifically, the plot demonstrates how accurately we can approximate the
given graphs by keeping a small percentage of the maximal number of principal
components (see Section 2.3 for background) that comprise the graphs; notice
that for a graph with n vertices, we might have up to n principal components.

We now describe the findings of Figure 3. Notice that the x-axis represents
the percentage of principal components (out of the maximal possible number of
principal components) that are kept, while the y-axis represents the percentage
of the spectrum of the graph contained within these principal components; more
specifically, let A denote the adjacency matrix of a graph. Then, the y-axis
represents the ratio

‖A − Ak‖
2
F

‖A‖2
F

,



which may be viewed as the relative error of the approximation Ak to A using a
certain percentage of the maximal number of principal components. Recall that
the above ratio is equal to ∑r

t=k+1 σ2
t (A)

∑r

t=1 σ2
t (A)

.

Thus, in order to compute the ratio, we computed a large number of singular
values for the adjacency matrix A of each graph using MatLab. Notice that a
very small percentage (say 5%) of the principal components is enough to cover
almost 80% of the spectrum for all three graphs. Thus, we conclude that the
graphs have a low-rank property, which directly implies that Principal Compo-
nent Analysis could be used to remove the noise and extract their structure. We
should also mention that our findings are consistent with the power-law distri-
bution of the indegrees and outdegrees of the graph nodes. In [9], the authors
studied the distribution of the eigenvalues of graphs whose degree distributions
(on the nodes) follow power laws, and they demonstrated that the eigenvalues
exhibit a power law distribution themselves; we defer a more thorough analysis
of this connection to the full version of the paper.

3.2 Power Laws in E-mail Graph

In this section we show that (i) degree distribution of e-mail graph obeys power
laws, (ii) there is a giant component within each graph that spans approximately
70% of the nodes, (iii) the diameter of the giant component is small, and (iv)
the neighborhood connectivity of a node is quite sparse.

The diameter is the longest shortest path between any pair of nodes in a
connected graph. It reflects how far apart two nodes are (from each other) in
the e-mail graph. We computed the diameter of the giant component and the
results are shown in Table 1.

The clustering coefficient reflects the connectivity information in the neigh-
borhood environment of a node [13]. It provides the transitivity information [14],
since it controls whether two different nodes are connected or not, assuming that
they are connected to the same node. The clustering coefficient Ci is defined as
the percentage of the connections between the neighbors of node i, i.e.

Ci =
2 · Ei

k · (k − 1)
, (1)

where k is the number of neighbors of node i and Ei is the number of existing
connections between its neighbors. We compute Ci for all nodes i in the giant
component and take the average to get a global value. Table 1 shows that the
overall clustering coefficient is quite low.

In Figures 1 and 2 we show that there exists a giant component, and that
both the whole graph and the giant component have power law degree distribu-
tions. For the whole graph, the in-degree exponent is around 1.9, while for the
giant component it is approximately 1.7. The out degree exponents of the giant
component and the whole graph are also close (3.1 and 3.2, respectively).



E-mail Giant GC GC
Graph Component Clustering Diameter
Size (GC) Size Coefficient

22776 15260 0.0013 23

21614 14996 0.0025 20

21732 15400 0.0012 26

Table 1. E-mail Graph Properties.

The power-law distribution and the in-degree, out-degree exponent differ-
ence intuitively emerge from the observation that there are a few individuals
inside the organization getting many external e-mails (e.g., member of mailing
lists), and there are also some individuals inside the organization sending out
announcements to many people, thus having very high outdegrees (e.g., program
committee members for a conference, etc.).

4 Discussion and Conclusions

This work establishes a basis for applying Principal Component Analysis (PCA)
to e-mail communication graphs, to discover groups and communication pat-
terns, by showing existence of the low-rank property and power laws in these
graphs. It also shows existence of the giant component property which helps
identifying the groups in other connected components thus reduces the com-
plexity of the data mining algorithms. Based on the power laws one can now
determine the probability that a user sends/receives k e-mails with in a period
of time T . This probability can be used to model how e-mail graphs evolve over
time (i.e., prediction of future e-mail communications).

However, we also note the limited applicability of this approach to discov-
ering malicious groups such as terrorist cells (a.k.a., the adversary in security
jargon). In particular, the adversary may use freely available e-mail servers like
Yahoo or Hotmail with fake e-mail IDs. Furthermore, the adversary can conceal
its communication patterns by inducing noise into the system in the form of
unsolicited mail or self e-mailing.
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