
A Mixed Precision Randomized Preconditioner
for the LSQR Solver on GPUs

Vasileios Georgiou1 , Christos Boutsikas2 , Petros Drineas2

, and Hartwig Anzt1,3

1 Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe,
Germany {vasileios.georgiou, hartwig.anzt}@kit.edu

2 Purdue University, West Lafayette, USA {cboutsik,pdrineas}@purdue.edu
3 Innovative Computing Lab, University of Tennessee, Knoxville, Tennessee, USA

Abstract. Randomized preconditioners for large-scale regression prob-
lems have become extremely popular over the past decade. Such pre-
conditioners are known to accelerate large-scale regression solvers both
from a theoretical and a practical perspective. In this paper, we present a
mixed precision randomized preconditioner for LSQR solvers, focusing on
overdetermined, dense least squares problems. We implement and eval-
uate our method on GPUs and we demonstrate that it outperforms the
standard double precision version of randomized, preconditioned LSQR
by up to 20% on the NVIDIA A100. We present extensive numerical
experiments utilizing the half-precision and tensorcore units to demon-
strate that, in many cases, constructing the preconditioner in reduced
precision does not affect the convergence of LSQR solvers. This leads to
important speedups without loss of accuracy.

Keywords: Mixed Precision · Randomized Preconditioners · Over-determined
Least Squares · LSQR · GPUs

1 Introduction

Solving overdetermined least squares problems is a common yet computation-
ally expensive challenge in scientific computing. Standard approaches include a
variety of direct and iterative methods. The former rely either on computing the
QR factorization of the input matrix or on solving the so-called normal equa-
tions. Orthogonalization methods used for factorization utilize variants of the
Gram-Schmidt algorithm [5,8,10,33], Householder reflectors [21,32,41], or Givens
rotations [7,25]. Additionally, the Cholesky factorization is often used to solve
the normal equations [42]. Among the iterative solvers that have been proposed
to tackle least squares, LSQR [38] is one of the most popular methods mainly
because of its numerical robustness. Alternatives include GMRES [28,37] and
CGLS [9,23,35]. The main factor determining the runtime of iterative methods
is the number of iterations required in order to converge to the specified toler-
ance. Several techniques for transforming the original problem to one which is
easier to solve, i.e., one that requires fewer iterations, have been developed over

https://orcid.org/0009-0000-6169-3195
https://orcid.org/0000-0002-6977-5934
https://orcid.org/0000-0003-1994-8670
https://orcid.org/0000-0003-2177-952X


2 Authors Suppressed Due to Excessive Length

the years. The most important family of such techniques are the preconditioning
methods, which are essential in both theory and practice of least-squares solvers.

Preconditioning includes a spectrum of techniques ranging from those tai-
lored to a specific application to general purpose, “black-box” methods, which
are broadly applicable but more inefficient in special cases. It is worth noting
that constructing the preconditioner could be relatively expensive compared to
the overall runtime of the solver, which often argues against using the “tailored”
approach, unless the problem input has very specific characteristics. Iterative
least squares solvers are often popular for solving sparse problems, which has
led to a variety of preconditioners based on sparse approximations [16,17] and
incomplete factorizations [6,11,18]. On the other hand, there are significantly
fewer results for preconditioning dense overdetermined least squares problems.
Over the past decade, randomized “black-box” preconditioners have emerged
as a robust way to solve large-scale regression problems, outperforming dense
QR-based approaches [3,4].

Randomization has often been used as a resource in tackling data-intensive
linear algebra problems. A popular example is performing principal components
analysis (PCA) on massive datasets by sketching or sampling the input matrix.
Another example has been randomized preconditioning, which first creates a
“sketch” of the input matrix that is used to compute the preconditioner [3].
Theoretical analyses of such methods provide error guarantees that depend on
the number of samples or the size of the sketch, which are typically indepen-
dent of the data size. Such methods effectively reduce the dimensionality of the
original data, a process that is somewhat akin to processing a noisy version
of the input matrix. This makes randomized linear algebra algorithms perfect
candidates for incorporating elements of mixed precision computations, taking
advantage of modern hardware to achieve speedups without significant loss of
accuracy.

The introduction of native support for 16-bit precision formats on modern
GPUs has led to increased interest in mixed-precision versions of numerical
methods. Mixed precision algorithms use at least two different precision for-
mats, performing the most computationally intensive steps in lower precision to
benefit from faster execution on hardware accelerators. Another way to speedup
memory-bound computations is by communicating the data in reduced precision
while executing the computations in the original (or higher) precision [2,27]. This
is beneficial since for memory-bounded problems the cost of communicating data
across devices dominates the overall runtime.

Even though early work on mixed precision numerical algorithms was mostly
focused on the solution of linear systems of equations, this has changed over
time. Some notable mixed precision methods for solving least squares problems
include [15,29], as well as iterative refinement approaches [14] and scaling tech-
niques [30] for recovering (at least partially) the accuracy which is inevitably lost
when converting to lower precision. There has also been some work on mixed
precision preconditioners in [22,26]. However, to the best of our knowledge, there



Mixed Precision LSQR 3

has not been much progress in the development and implementation of mixed
precision randomized preconditioners for least-squares problems.

In this paper, we address the aforementioned gap. We develop a mixed preci-
sion randomized preconditioner to be used with our novel LSQR implementation
for solving dense overdetermined least squares problems on GPUs. Despite con-
structing the preconditioner in lower precision, our results show that this loss
in precision does not negatively affect the convergence of LSQR. This leads to
significant speedups of up to 140% in terms of the runtime required for con-
structing the preconditioner, and up to to 20% in terms of the overall runtime,
without any loss of accuracy. In our analysis we provide some insights, regarding
the factors that affect the performance of the preconditioner. Both the random-
ized preconditioner and the LSQR solver are implemented in C++ using the
MAGMA and the CUDA runtime libraries and operate exclusively on the GPU.
This is the first implementation and systematic evaluation of mixed-precision,
randomized preconditioned LSQR on GPUs.

The rest of the paper is structured as follows: In Section 2, we provide some
background on randomized preconditioners. In Section 3, we explain the details
of the implementation of our method, and in Section 4 we showcase performance
results from our experiments on different datasets. Lastly, in Section 5, we sum-
marize our findings and discuss potential extensions.

2 Background

Given a coefficient matrix A ∈ Rm×n, and a right-hand side vector b ∈ Rm,
the overdetermined (m ≥ n) least-squares (LS) solution is the vector x⋆ which
minimizes the Euclidean norm residual

x⋆ = arg min
x∈Rn

∥b−Ax∥2. (1)

For large linear systems, iterative solvers are usually preferred for solving (1).
However, such solvers can become impractical and exhibit slow convergence if the
condition number of the input matrix A is large (ill-conditioned systems). One
potential remedy for this challenge is to transform (1) into a mathematically
equivalent problem with more favorable properties. Such a transformation is
called preconditioning, and in particular, the right preconditioned LS system is
given by

y⋆ = arg min
y∈Rn

∥b−AM−1y∥2, y∗ = Mx⋆. (2)

The matrix M ∈ Rn×n is called the preconditioner. We can design M having
various requirements in mind (e.g., spectral properties, approximating the pseu-
doinverse, etc.). In practice, we are mostly interested in decreasing the condition
number of AM−1 (at least compared to the condition number of A) and be-
ing able to solve linear systems with M inexpensively. In this paper, we solve
(2) using the LSQR (Algorithm 1), which is theoretically equivalent to applying
conjugate gradients on ATA, but with better numerical properties [38].



4 Authors Suppressed Due to Excessive Length

Algorithm 1 Preconditioned LSQR

Input: matrix A, initial solution x0, right-hand side b, tolerance tol, maximum
number of iterations maxiter, preconditioner M

Output: solution x, relative residual relres
1: procedure [x, relres] = LSQR(A, x0, b, tol, maxiter, M)
2: β = ∥b∥2,u = b/β
3: v = (M⊤)\(A⊤u)
4: α = ∥v∥2,v = v/α
5: w = v
6: ϕ̄ = β, ρ̄ = α, iter = 0
7: while (1) do
8: u = A(M\v)− αu
9: β = ∥u∥2,u = u/β
10: v = M⊤\(A⊤u)− βv
11: α = ∥v∥2,v = v/α
12: ρ =

√
ρ̄2 + β2

13: c = ρ̄/ρ
14: s = β/ρ
15: θ = s · α
16: ρ̄ = −c · α
17: ϕ = c · ϕ̄
18: ϕ̄ = s · ϕ̄
19: x = x+M\((ϕ/ρ)w)
20: w = v − (θ/ρ)w
21: r = b−Ax, relres = ∥r∥2/∥b∥2, iter + = 1
22: if ((iter == maxiter)∥(relres < tol)) then
23: break
24: end if
25: end while
26: end procedure

2.1 Related work

Over the last two decades, Randomized Linear Algebra has left its mark on con-
structing preconditioners through sketching-based methods. Rokhlin and Tygert
[40] developed a preconditioner for overdetermined systems by applying a Sub-
sampled Randomized Fourier Transform (SRFT) on the input matrix and then
pivoted-QR on the preconditioned system. Similar to that setting, Avron et al.
[3] constructed the randomized solver Blendenpik which consists of four steps:

1. Mix the rows of A by premultiplying it by an appropriate random ma-
trix (i.e., the Randomized Hadamard Transform matrix, the Randomized
Discrete Cosine Transform matrix, etc.). Let G ∈ Rm×m be this random
matrix.

2. Sample s rows (uniformly at random) from the “mixed” matrixGA to create
the sampled matrix (GA)s ∈ Rs×n.

3. QR factorization on (GA)s to construct the preconditioner M .



Mixed Precision LSQR 5

4. Call Algorithm 1 to solve (2).

Intuitively, the “mixing” procedure of step (1) distributes the importance of
the rows, thus improving the accuracy guarantees of uniform sampling in the
following steps. In other words, the mixing procedure uniformizes the so-called
leverage scores of the rows of the input matrix A; leverage scores play a crucial
role in regression problems and random sampling and sketching [20,31]; It is
known that the aforementioned transformation reduces the maximum leverage
score (coherence). The Blendenpik algorithm is actually a general template for
designing randomized preconditioners. For example, [36] proposes the use of
a Gaussian matrix instead of the Randomized Hadamard Transform, followed
by an alternative approach to the QR decomposition using the Singular Value
Decomposition. More recently, Tropp et al. [24] described a preconditioner for
Conjugate Gradient (CG) via a randomized low-rank Nyström approximation.

The concept of employing mixed-precision arithmetic to improve perfor-
mance has been recently applied to a range of problems [1]. Furthermore, it
has been a well-established approach for linear systems. The recent work of
Carson and Dauickait, [13] provides an analysis of a Nyström mixed-precision
preconditioner for CG. In [12], the authors use a combination of 32-bit and 64-bit
floating point arithmetic for iterative refinement of dense linear systems. Also
recently, Lindquist et al. [34] presented mixed-precision restarted GMRES for
sparse linear systems. However, their work differs from ours in various ways: they
provide a mix of single and double-precision implementation but do not focus on
half precision. Moreover, they construct each preconditioner in double precision
and then store it in single precision for the reduced-precision algorithm, unlike
our work (see Section 3).

3 Design and implementation of the mixed precision
preconditioner

Our mixed precision implementation uses a Gaussian random matrix G ∈ Rs×m

in order to sketch the input matrix by computing As = G · A. For the pre-
conditioner we use the triangular factor of the economy qr factorization of the
matrix As, following the approach proposed in [3]. In Matlab notation, this is
computed as [∼,M ] = qr(As, 0). In Algorithm 2, we present the mixed precision
version of this preconditioner. The demote and promote functions convert the
matrix entries between the required precisions. All the steps of the algorithm
are executed on the GPU, using MAGMA [43] routines for the linear algebraic
operations and custom CUDA kernels to perform the conversions to different
precisions. The Gaussian matrices are generated using the cuRAND functions 4.
You can access our implementation at https://github.com/vasilisge0/randLS/.

In Algorithm 2, we store matrices in high or low precision, as indicated by the
types high prec and low prec. The only floating point format for high precision

4 cuRand v12.0.0 https://docs.nvidia.com/cuda/curand/index.html

https://github.com/vasilisge0/randLS/
https://docs.nvidia.com/cuda/curand/index.html


6 Authors Suppressed Due to Excessive Length

we consider in this paper is double, or fp64. For the low precisions, we experi-
mented with the following types: single or fp32; half or fp16; and TensorFloat-32
or tf32. The latter is a 19-bit representation for which NVIDIA provides native
support on the Ampere architecture. It uses eight bits for representing the ex-
ponent (the same as fp32), but only ten bits for the mantissa (the same as fp16).
An additional bit is required to store the sign. Table 1 depicts the precisions
used by our implementations of the preconditioner and the solver.

high precision low precision

preconditioner fp64 fp64, fp32, tf32, fp16
solver fp64 fp64

Table 1: Precisions used in implementing our preconditioner and the LSQR
solver.

Algorithm 2 Mixed precision gaussian preconditioner

Input: m× n matrix A, number of samples s, precision types high prec, low prec
Output: s× n preconditioner M
1: procedure [M ] = generate precond(A, s, high prec, low prec)
2: generate s×m Gaussian matrix G
3: Ĝ = demote(G, low prec)
4: Â = demote(A, low prec)
5: Âs = ĜÂ
6: As = promote(Âs, high prec)
7: [∼,M ] = qr(As, 0)
8: end procedure

The central components underlying the construction of the preconditioner and
the solver are BLAS operations. The dominant computation for generating the
preconditioner is one matrix-matrix multiplication, while the dominant compu-
tation for the solver are dense matrix-vector multiplications. For this purpose,
we decided to use the MAGMA library [19,43], which ports BLAS operations on
various GPU architectures. In this paper, we want to target specifically NVIDIA
devices following the Ampere architecture, in order to test the fp16 and tf32
precision formats. Choosing MAGMA instead of vendor-specific libraries like
cuBLAS 5 will allow us to extend our implementation to different architectures
in future work. It should be noted that MAGMA provides BLAS functionality
either by calling custom CUDA kernels or by directly calling cuBLAS. Mecha-
nisms to make such decision on the fly are also provided.

5 cuBlas v12.0 https://developer.nvidia.com/cublas

https://developer.nvidia.com/cublas


Mixed Precision LSQR 7

The following code snippet is our implentation of Algorithm 2. We use
value type internal as the reduced precision type for performing the compute-
intensive operations and value type for the original precision of the input data.
When value type internal and value type are different, the entries of the
input matrix and the sketch matrix are converted to the precision indicated by
value type internal and the matrix multiplication dmtx rp = sketch mtx ×
mtx is performed. The output is then converted back into the original precision.
If value type internal is the same as value type then no conversion is re-
quired. Afterwards, the economy QR factorization is computed in value type

precision and the preconditioner is stored in dr factor.

– preconditioner::gaussian::generate()

1 // Gene ra t e s the p r e c o n d i t i o n e r and measures runt ime .
2 template <typename value_type_internal , typename value_type ,
3 typename index_type >
4 void generate(index_type num_rows_sketch , index_type num_cols_sketch ,
5 value_type* dsketch , index_type ld_sketch ,
6 index_type num_rows_mtx , index_type num_cols_mtx ,
7 value_type* dmtx , index_type ld_mtx , value_type* dr_factor ,
8 index_type ld_r_factor ,
9 state <value_type_internal , value_type , index_type >&

precond_state ,
10 detail :: magma_info& info , double* runtime , double* t_mm ,
11 double* t_qr)
12 {
13 // Per fo rms matr ix−mat r i x m u l t i p l i c a t i o n i n v a l u e t y p e i n t e r n a l
14 // p r e c i s i o n and promotes output to v a l u e t y p e p r e c i s i o n .
15 i f (!std::is_same <value_type_internal , value_type >:: value) {
16 cuda:: demote(num_rows_mtx , num_cols_mtx , dmtx , num_rows_mtx ,

precond_state.dmtx_rp , num_rows_mtx);
17 cuda:: demote(num_rows_sketch , num_cols_sketch , dsketch ,

num_rows_sketch , precond_state.dsketch_rp , num_rows_sketch);
18 blas::gemm(MagmaNoTrans , MagmaNoTrans , num_rows_sketch ,

num_cols_mtx , num_rows_mtx , 1.0, precond_state.dsketch_rp ,
num_rows_sketch , precond_state.dmtx_rp , num_rows_mtx , 0.0,
precond_state.dresult_rp , num_rows_sketch , info);

19 cuda:: promote(num_rows_sketch , num_cols_mtx , precond_state.
dresult_rp , num_rows_sketch , dr_factor , num_rows_sketch);

20 } else {
21 // v a l u e t y p e i n t e r n a l == va l u e t y p e −> no c o n v e r s i o n s r e q u i r e d
22 blas::gemm(MagmaNoTrans , MagmaNoTrans , num_rows_sketch ,

num_cols_mtx , num_rows_mtx , 1.0, dsketch , num_rows_sketch ,
dmtx , num_rows_mtx , 0.0, dr_factor , ld_r_factor , info);

23 }
24
25 // Per fo rms qr f a c t o r i z a t i o n i n v a l u e t y p e p r e c i s i o n .
26 magma_int_t info_qr = 0;
27 blas:: geqrf2_gpu(num_rows_sketch , num_cols_mtx , dr_factor ,

ld_r_factor , tau , &info_qr);
28 i f (info_qr != 0) {
29 magma_xerbla("geqrf2_gpu", info_qr);
30 }
31 }

Listing 1.1: Generate preconditioner.

The object state<value type internal, value type, index type> is a struct
containing the input matrix, the sketch matrix and their product computed in
value type internal precision. It also contains the array tau, which is allo-
cated on the cpu and used by the QR factorization.



8 Authors Suppressed Due to Excessive Length

– state<value type internal, value type, index type>

1 template <typename value_type_internal , typename value_type ,
2 typename index_type >
3 struct state{
4 value_type_internal* dmtx_rp = nullptr;
5 value_type_internal* dsketch_rp = nullptr;
6 value_type_internal* dresult_rp = nullptr;
7 value_type* tau = nullptr;
8
9 void allocate(index_type ld_mtx , index_type num_cols_mtx ,

10 index_type num_rows_sketch , index_type num_cols_sketch ,
index_type ld_sketch ,

11 index_type ld_r_factor) {
12 memory :: malloc (&dmtx_rp , ld_mtx * num_cols_mtx);
13 memory :: malloc (&dsketch_rp , ld_sketch * num_cols_sketch);
14 memory :: malloc (&dresult_rp , ld_r_factor * num_cols_mtx);
15 memory :: malloc_cpu (&tau , num_rows_sketch);
16 }
17
18 void free() {
19 memory ::free(dmtx_rp);
20 memory ::free(dsketch_rp);
21 memory ::free(dresult_rp);
22 memory :: free_cpu(tau);
23 }
24 };

Listing 1.2: State used for storing reduced precision information.

The following code snippet is a our high level implementation of Algorithm 1.

– solver::lsqr::run()

1 template <typename value_type_internal , typename value_type ,
2 typename index_type >
3 void run(index_type num_rows , index_type num_cols , value_type* mtx ,
4 value_type* rhs , value_type* init_sol , value_type* sol ,
5 index_type max_iter , index_type* iter , value_type tol ,
6 double* resnorm , value_type* precond_mtx ,
7 index_type ld_precond , magma_queue_t queue)
8 {
9 temp_scalars <value_type , index_type > scalars;

10 temp_vectors <value_type_internal , value_type , index_type > vectors;
11 initialize(num_rows , num_cols , mtx , rhs ,
12 precond_mtx , ld_precond , iter , scalars ,
13 vectors , queue , t_solve);
14 while (1) {
15 step_1(num_rows , num_cols , mtx , precond_mtx , ld_precond , scalars ,
16 vectors , queue);
17 step_2(num_rows , num_cols , mtx , rhs , sol , precond_mtx ,
18 ld_precond , scalars , vectors , queue);
19 i f (check_stopping_criteria(num_rows , num_cols , mtx , rhs , sol ,
20 vectors.temp , iter , max_iter , tol ,
21 resnorm , queue)) {
22 break;
23 }
24 }
25 finalize(vectors);
26 }

Listing 1.3: High level implementation of the LSQR solver.



Mixed Precision LSQR 9

Similar to preconditioner::gaussian::generate() the type value type internal

is associated with the precision used in computing the most compute-intensive
operations, which, in this case, are the MV operations. In this paper, we consider
value type internal and value type to be the same for the solver. The vari-
ables scalars and vectors contain all linear algebraic objects associated with
the LSQR algorithm. From an implementation standpoint, Algorithm 1 can be
dissected into three consecutive parts: lines 8-11 are implemented in step 1

and compute the new basis vectors; lines 12-20 are implemented by step 2

and update the current solution; finally, lines 21-24 are implemented by the
check stopping criteria function, which tests whether convergence has been
reached.

4 Numerical Experiments

4.1 Experiment setup

We evaluate the effectiveness and performance of our preconditioned LSQR im-
plementation as follows: We use a selection of m × n (with m ≫ n) matrices
A and we set the “true” least squares solution to x = randn(n, 1), in Matlab
notation, with b = Ax. This allows us to modify the tolerance in the LSQR
algorithm, in order to stress-test the effectiveness of the preconditioner. For our
numerical experiments, we use the following datasets (Table 2): (a) a human
genetics dataset from the Human Genome Diversity Panel and (b) the CIFAR
image dataset.

HGDP: HGDP 1 dataset has emerged from a population genetics application;
see [39] and references therein for details. The coefficient matrix related to the
regression problem is a tall-and-thin matrix whose entries are −1, 0, 1, 2. Exact
details of the underlying genetic application are not relevant for our work here,
since the matrix is only used for numerical evaluations. As regards HGDP 2, we
modify HGDP 1 to get an ill-conditioned matrix (κ(A) ≈ 106) with different
dimensions as follows: Initially, we get the first 6000 rows of HGDP 1 and sub-
sequently, we add a few columns by randomly picking existing ones and change
a tiny fraction of their elements (< 1%). We carefully act on every change to
preserve each entry to be {-1,0,1,2}. The dimensions of the respective datasets
are in Table 2.

CIFAR: The CIFAR dataset consists of 60, 000 32× 32 color images belonging
in ten (non-overlapping) classes. In our setting, each row represents an image
(we vectorize each 32 × 32 × 3 = 3, 072 matrix). Our CIFAR 2 dataset consists
of 20, 000 randomly chosen images. We normalize all grayscale values to belong
in the [0, 1] interval. For the CIFAR 1 dataset, we created a somewhat “thinner”
tall and thin matrix by randomly choosing for each image 1, 000 pixels out of
the 3, 072.



10 Authors Suppressed Due to Excessive Length

datasets rows columns cond aspect ratio

HGDP 1 643,862 425 O(103) 1.5e3
HGDP 2 60,000 1,000 O(106) 6.0e1
CIFAR 1 20,000 1,000 O(103) 2.0e1
CIFAR 2 20,000 3,072 O(104) 6.5e0

Table 2: Matrices used in experimental evaluation.

Our experiments were conducted on a system, equipped with AMD EPYC
7742 64-Core Processor cluster CPUs and A100 80GB SXM NVIDIA GPUs. Our
tests were run exclusively on a single node and utilized one GPU. The NVIDIA
A100, which we ran our tests on, has native support for operations in fp16 and
tf32 formats, and features tensor cores for matrix operations in fp64, fp16, and
tf32. We used as termination criterion for LSQR, the relative residual norm
∥b−Ax(i)∥

∥b∥ , setting the tolerance to 10−10 for our numerical experiments with the

HGDP and 10−12 for the experiments with the CIFAR dataset. For the reported
results, GCC 11.3.0, CUDA 14.4.4 and MAGMA 2.6.2 were used.

The goals of our experiments are three-fold: We seek to demonstrate that (i)
constructing the preconditioner in reduced precision does not severely affect the
convergence of the LSQR solver, and (ii) modest speedups can be achieved in
constructing the preconditioner, which eventually lead to reductions of the total
runtime of the preconditioned solver. In our analysis we also attempt to (iii)
determine the factors that affect the performance of preconditioned LSQR. Those
factors are related to properties of the input matrix, but also on implementation
choices and underlying hardware.

For each matrix, we report (for varying values of the sampling coefficient) (a)
the breakdown into preconditioner generation cost and solver iteration cost. This
plot forms a runtime profile for each test matrix; (b) the iteration count of the
LSQR solvers using different preconditioners; (c) the corresponding runtimes;
and (d) the speedup with regard to the double precision reference precondi-
tioned LSQR solver. The sampling coefficient controls the number of rows of
the sketched matrix (and of the resulting preconditioner) as rows sampled =

sampling coeff × rows mtx. As the value of the sampling coefficient increases,
more random samples are generated leading to preconditioners which are more
effective, but also more expensive to generate. The data presented in the plots
have been averaged over five executions and collected after five warmup runs.

4.2 Discussion

Figures 1, 2, 3, 4 correspond to a problem with a unique combination of run-
time profile and matrix aspect ratio, i.e., the fraction #rows

#columns . The matrices in
descending aspect ratio order are, HGDP 1, HGDP 2, CIFAR 1 and CIFAR 2,
(HGDP 1 having the largest and CIFAR 2 the smallest aspect ratio). Their run-
time profiles, as indicated by the solver to preconditioner-generation runtimes,



Mixed Precision LSQR 11

range from the solver dominating the total runtime (HGDP 1), runtimes be-
ing proportional (HGDP 2, CIFAR 1) and preconditioner-generation dominating
the total runtime (CIFAR 2). In all of our tests, computing the preconditioner
in fp32 is slower than the fp64 implementation. This is related to the lack of
specialized hardware units for executing single precision matrix operations (the
A100 GPU features tensor cores for fp64, fp16, and tf32 operations but not fp32).

Figure 1 depicts the outcomes of our experimental evaluation for matrix
HGDP 1. Firstly, we observe that the convergence of preconditioned LSQR is
not affected when the preconditioner is generated in fp32, tf32 or fp16 formats,
as depicted in the top-right plot. The corresponding runtimes of the precondi-
tioner generation step are shown in the bottom-left plot. For scaling coefficients

Fig. 1: Evaluation of the mixed precision preconditioner for the HGDP 1 test
matrix. Top left: Runtime breakdown of the LSQR algorithm; Top right: Conver-
gence of LSQR using a mixed precision preconditioner; Number of iterations for
the 4 precisions overlap. Bottom left: Runtime of the preconditioner generation;
Bottom right: Speedup when generating the preconditioner in fp16. Tolerance:
1e-10.

greater than 1.5, we notice a significant reduction in the preconditioner gener-
ation runtime when tf32 and fp16 are used. The bottom-right plot depicts the



12 Authors Suppressed Due to Excessive Length

speedup for the preconditioner generation and the overall runtime of the fp16
implementation. Despite the 2.4× speedup for the preconditioner generation, we
only see a moderate 1.20× overall algorithm speedup. This is because of the
costly solver iteration phase for the HGDP 1 problem (see top-left plot).

Figure 2 presents the evaluation results for the HGDP 2 matrix. This matrix
is generated by manipulating HGDP 1 as described in Section 4.1. Computing
the preconditioner in fp32 and tf32 formats does not affect the convergence of
LSQR but generating the preconditioner in fp16 requires 3× as many LSQR
iterations to reach convergence. In the bottom-left plot, we present the runtimes
for preconditioner generation and on bottom right the speedup for generating the
preconditioner in the tf32 format. The observed speedups of the preconditioner
generation step for HGDP 2 are smaller in comparison to HGDP 1. However,
the preconditioner overtakes the solver runtime for sampling coefficients greater
than 2.5. As a result, the overall speedups are similar to those reported for
HGDP 1.

Fig. 2: Evaluation of the mixed precision preconditioner for the HGDP 2 test
matrix. Top left: Runtime breakdown of the LSQR algorithm; Top right: Con-
vergence of LSQR using a mixed precision preconditioner; Number of iterations
overlap for fp64, fp32 and tf32 precisions; Bottom left: Runtime of the precon-
ditioner generation; Bottom right: Speedup when generating the preconditioner
in tf32. Tolerance: 1e-10



Mixed Precision LSQR 13

In Figures 3 and 4, we present experimental results for CIFAR 1 and CI-
FAR 2 matrices. In both cases, for moderate and large sampling coefficients, the
preconditioner generation step becomes more expensive than the solver itera-
tion phase. Convergence is not affected for CIFAR 1 when changing the preci-
sion format. Conversely, for CIFAR 2, the convergence suffers when generating
the preconditioner in fp16. For CIFAR 2, the preconditioner generation cost

Fig. 3: Evaluation of the mixed precision preconditioner for the CIFAR 1 test
matrix. Top left: Runtime breakdown of the LSQR algorithm; Top right: Con-
vergence of LSQR using a mixed precision preconditioner; Iteration plots overlap
across different formats; Bottom left: Runtime of the preconditioner generation;
Bottom right: Speedup when generating the preconditioner in fp16. Tolerance:
1e-12

is almost independent of the precision format used. This behaviour can be ex-
plained by taking into consideration the following; Firstly the aspect ratio of
the matrix is too small (approximately 6.5 for CIFAR 2 compared to over 1,500
for HGDP 1), making the theoretical complexity of qr, O(sn2), similar to that
of the matrix multiplication, O(smn), since m becomes proportional to n.
This effect is further amplified by the implementation of the preconditioner on
GPU. Even though those components (i.e. matrix multiply and qr) have sim-
ilar complexity, implementations of matrix-matrix multiplication achieve



14 Authors Suppressed Due to Excessive Length

Fig. 4: Evaluation of the mixed precision preconditioner for the CIFAR 2 test
matrix. Top left: Runtime breakdown of the LSQR algorithm; Top right: Con-
vergence of LSQR using a mixed precision preconditioner; Iteration plots overlap
for fp64, fp32 and tf32 precisions; Bottom left: Runtime of the preconditioner
generation; Bottom right: Speedup when generating the preconditioner in tf32.
Tolerance: 1e-12

better performance on GPUs. On the other hand, qr is harder to parallelize,
because it requires operating on the columns of a matrix in a sequential fashion.
The above suggest that QR factorization becomes the dominant component of
the preconditioner generation when the aspect ratio of the matrix is small, and
since it is always computed in double precision, the speedup observed is modest
at best. This is also evident from Figure 5, where the runtimes of the the major
preconditioner components, namely the matrix-matrix multiplication and the qr
factorization are presented. We observe that only for the case of HGDP 1 the
matrix multiplication is the dominant operation of the preconditioner generation
stage.



Mixed Precision LSQR 15

Fig. 5: Runtimes of preconditioner components. Top left: HGDP 1; Top right:
HGDP 2; Bottom left: CIFAR 1; Bottom right: CIFAR 2.

5 Conclusion

In this paper, we describe a mixed precision implementation of a randomized
preconditioner for solving the dense overdetermined least squares problem and
present results on the NVIDIA A100 GPU. In our numerical experiments with
matrices from the HGDP and CIFAR datasets, we show that convergence is not
affected when using the tf32 format for generating the preconditioner, but we
may experience delayed convergence when using fp16 in the preconditioner gen-
eration step. Part of our analysis explores how performance is affected by the
properties of the input matrix. Attractive runtime savings can be achieved for
matrices with high aspect ratio, since mixed precision is applied on the dominant
operation of the preconditioner generation stage. Speedups can also be achieved
for matrices with balanced row/column ratio, because the preconditioner gener-
ation stage requires a significant portion of the total runtime.

In future work, we are interested in combining our preconditioner with a
mixed precision implementation of the LSQR solver. This will allow us to fur-
ther investigate the effect of mixed precision computations on the solution of
regression problems. Lastly, we would like to explore the use of mixed preci-



16 Authors Suppressed Due to Excessive Length

sion randomized preconditioning for potentially accelerating sparse least squares
solvers and uncovering the factors that impact performance on GPUs.

Acknowledgements. PD and CB were partially supported by NSF grants
CCF-2209509, CCF- 1814041, DMS-1760353, and DOE grant DE-SC0022085.
This research was also supported by the Exascale Computing Project (17-SC-
20-SC), a collaborative effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration. The authors would like to
thank the Innovative Computing Lab at University of Tennessee, for providing
access to their compute cluster, to run the numerical experiments. They are
also grateful to the reviewers for their insightful comments that helped improve
this paper. CB and VG would like to thank Eugenia Kontopoulou for motivating
them to pursue the topic of this paper and Efstratios Gallopoulos for introducing
them to the Blendenpik algorithm.

References

1. Abdelfattah, A., Anzt, H., Boman, E.G., Carson, E., Cojean, T., Dongarra, J.,
Fox, A., Gates, M., Higham, N.J., Li, X.S., et al.: A survey of numerical linear
algebra methods utilizing mixed-precision arithmetic. The International Journal
of High Performance Computing Applications 35(4), 344–369 (2021)

2. Aliaga, J.I., Anzt, H., Grtzmacher, T., Quintana-Ort, E.S., Toms, A.E.:
Compressed basis gmres on high-performance graphics processing units. The
International Journal of High Performance Computing Applications 0(0),
10943420221115140 (0). https://doi.org/10.1177/10943420221115140, https://doi.
org/10.1177/10943420221115140

3. Avron, H., Maymounkov, P., Toledo, S.: Blendenpik: Supercharging lapack’s least-
squares solver. SIAM Journal on Scientific Computing 32(3), 1217–1236 (2010).
https://doi.org/10.1137/090767911, https://doi.org/10.1137/090767911

4. Baboulin, M., Becker, D., Bosilca, G., Danalis, A., Dongarra, J.:
An efficient distributed randomized algorithm for solving large dense
symmetric indefinite linear systems. Parallel Computing 40(7), 213–
223 (2014). https://doi.org/https://doi.org/10.1016/j.parco.2013.12.003,
https://www.sciencedirect.com/science/article/pii/S0167819113001488, 7th
Workshop on Parallel Matrix Algorithms and Applications

5. Balabanov, O., Grigori, L.: Randomized gram–schmidt process with application
to gmres. SIAM Journal on Scientific Computing 44(3), A1450–A1474 (2022).
https://doi.org/10.1137/20M138870X, https://doi.org/10.1137/20M138870X

6. Benzi, M., Tuma, M.: A robust preconditioner with low memory requirements for
large sparse least squares problems. SIAM Journal on Scientific Computing 25(2),
499 –512 (2003). https://doi.org/10.1137/S106482750240649X, https://doi.org/10.
1137/S106482750240649X

7. Bindel, D., Demmel, J., Kahan, W., Marques, O.: On computing givens rota-
tions reliably and efficiently. ACM Trans. Math. Softw. 28(2), 206238 (jun 2002).
https://doi.org/10.1145/567806.567809, https://doi.org/10.1145/567806.567809

8. Björck, A.: Solving linear least squares problems by gram-schmidt
orthogonalization. BIT Numerical Mathematics 7, 1–21 (1967).
https://doi.org/10.1007/BF01934122, https://doi.org/10.1007/BF01934122

https://doi.org/10.1177/10943420221115140
https://doi.org/10.1177/10943420221115140
https://doi.org/10.1177/10943420221115140
https://doi.org/10.1137/090767911
https://doi.org/10.1137/090767911
https://doi.org/https://doi.org/10.1016/j.parco.2013.12.003
https://www.sciencedirect.com/science/article/pii/S0167819113001488
https://doi.org/10.1137/20M138870X
https://doi.org/10.1137/20M138870X
https://doi.org/10.1137/S106482750240649X
https://doi.org/10.1137/S106482750240649X
https://doi.org/10.1137/S106482750240649X
https://doi.org/10.1145/567806.567809
https://doi.org/10.1145/567806.567809
https://doi.org/10.1007/BF01934122
https://doi.org/10.1007/BF01934122


Mixed Precision LSQR 17

9. Björck, r., Elfving, T., Strakos, Z.: Stability of conjugate gradient and lanczos
methods for linear least squares problems. SIAM Journal on Matrix Analysis and
Applications 19(3), 720–736 (1998). https://doi.org/10.1137/S089547989631202X,
https://doi.org/10.1137/S089547989631202X

10. Björck, .: Numerics of gram-schmidt orthogonalization. Lin-
ear Algebra and its Applications 197-198, 297–316 (1994).
https://doi.org/https://doi.org/10.1016/0024-3795(94)90493-6, https:
//www.sciencedirect.com/science/article/pii/0024379594904936

11. Björk, A.: Ssor preconditioning methods for sparse least squares problems. p. 2125
(1979)

12. Buttari, A., Dongarra, J., Langou, J., Langou, J., Luszczek, P., Kurzak, J.: Mixed
precision iterative refinement techniques for the solution of dense linear systems.
The International Journal of High Performance Computing Applications 21(4),
457–466 (2007)

13. Carson, E., Daužickaitė, I.: Single-pass nyström approximation in mixed precision
(2022). https://doi.org/10.48550/ARXIV.2205.13355, https://arxiv.org/abs/2205.
13355

14. Carson, E., Higham, N.J.: Accelerating the solution of linear systems by it-
erative refinement in three precisions. SIAM Journal on Scientific Computing
40(2), A817–A847 (2018). https://doi.org/10.1137/17M1140819, https://doi.org/
10.1137/17M1140819

15. Carson, E., Higham, N.J., Pranesh, S.: Three-precision gmres-based iterative re-
finement for least squares problems. SIAM Journal on Scientific Computing 42(6),
A4063–A4083 (2020). https://doi.org/10.1137/20M1316822, https://doi.org/10.
1137/20M1316822

16. Cui, X., Hayami, K.: Generalized approximate inverse preconditioners for least
squares problems. Japan Journal of Industrial and Applied Mathematics 26(1)
(2008). https://doi.org/https://doi.org/10.1007/BF03167543

17. Cui, X., Hayami, K., Yin, J.F.: Grevilles method for preconditioning
least squares problems. Advances in Computational Mathematics 35
(2011). https://doi.org/10.1007/s10444-011-9171-x, https://doi.org/10.1007/
s10444-011-9171-x

18. Davis, T.A.: Algorithm 915, suitesparseqr: Multifrontal multithreaded rank-
revealing sparse qr factorization. ACM Trans. Math. Softw. 38(1) (dec 2011).
https://doi.org/10.1145/2049662.2049670, https://doi.org/10.1145/2049662.
2049670

19. Dongarra, J., Gates, M., Haidar, A., Kurzak, J., Luszczek, P., Tomov, S., Yamazaki,
I.: Accelerating numerical dense linear algebra calculations with gpus. Numerical
Computations with GPUs pp. 1–26 (2014)

20. Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Sampling algorithms for l 2 re-
gression and applications. In: Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm. pp. 1127–1136 (2006)

21. Dubrulle, A.A.: Householder transformations revisited. SIAM Jour-
nal on Matrix Analysis and Applications 22(1), 33–40 (2000).
https://doi.org/10.1137/S0895479898338561, https://doi.org/10.1137/
S0895479898338561

22. Flegar, G., Anzt, H., Cojean, T., Quintana-Ort́ı, E.S.: Adaptive precision block-
jacobi for high performance preconditioning in the ginkgo linear algebra software.
ACM Trans. Math. Softw. 47(2) (apr 2021). https://doi.org/10.1145/3441850,
https://doi.org/10.1145/3441850

https://doi.org/10.1137/S089547989631202X
https://doi.org/10.1137/S089547989631202X
https://doi.org/https://doi.org/10.1016/0024-3795(94)90493-6
https://www.sciencedirect.com/science/article/pii/0024379594904936
https://www.sciencedirect.com/science/article/pii/0024379594904936
https://doi.org/10.48550/ARXIV.2205.13355
https://arxiv.org/abs/2205.13355
https://arxiv.org/abs/2205.13355
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/20M1316822
https://doi.org/10.1137/20M1316822
https://doi.org/10.1137/20M1316822
https://doi.org/https://doi.org/10.1007/BF03167543
https://doi.org/10.1007/s10444-011-9171-x
https://doi.org/10.1007/s10444-011-9171-x
https://doi.org/10.1007/s10444-011-9171-x
https://doi.org/10.1145/2049662.2049670
https://doi.org/10.1145/2049662.2049670
https://doi.org/10.1145/2049662.2049670
https://doi.org/10.1137/S0895479898338561
https://doi.org/10.1137/S0895479898338561
https://doi.org/10.1137/S0895479898338561
https://doi.org/10.1145/3441850
https://doi.org/10.1145/3441850


18 Authors Suppressed Due to Excessive Length

23. Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Watson, G.A.
(ed.) Numerical Analysis. pp. 73–89. Springer Berlin Heidelberg, Berlin, Heidelberg
(1976)

24. Frangella, Z., Tropp, J.A., Udell, M.: Randomized nyström preconditioning. arXiv
preprint arXiv:2110.02820 (2021)

25. George, A., Liu, J.W.: Householder reflections versus givens rotations in sparse
orthogonal decomposition. Linear Algebra and its Applications 88-89, 223–
238 (1987). https://doi.org/https://doi.org/10.1016/0024-3795(87)90111-X, https:
//www.sciencedirect.com/science/article/pii/002437958790111X

26. Göbel, F., Grützmacher, T., Ribizel, T., Anzt, H.: Mixed precision incomplete and
factorized sparse approximate inverse preconditioning on gpus. In: Sousa, L., Roma,
N., Tomás, P. (eds.) Euro-Par 2021: Parallel Processing. pp. 550–564. Springer
International Publishing, Cham (2021)

27. Grtzmacher, T., Anzt, H., Quintana-Ort, E.S.: Using ginkgo’s mem-
ory accessor for improving the accuracy of memory-bound low pre-
cision blas. Software: Practice and Experience 53(1), 81–98 (2023).
https://doi.org/https://doi.org/10.1002/spe.3041, https://onlinelibrary.wiley.
com/doi/abs/10.1002/spe.3041

28. Hayami, K., Yin, J.F., Ito, T.: Gmres methods for least squares problems.
SIAM Journal on Matrix Analysis and Applications 31(5), 2400–2430 (2010).
https://doi.org/10.1137/070696313, https://doi.org/10.1137/070696313

29. Higham, N.J., Pranesh, S.: Exploiting lower precision arithmetic in solv-
ing symmetric positive definite linear systems and least squares prob-
lems. SIAM Journal on Scientific Computing 43(1), A258–A277 (2021).
https://doi.org/10.1137/19M1298263, https://doi.org/10.1137/19M1298263

30. Higham, N.J., Pranesh, S., Zounon, M.: Squeezing a matrix into half precision,
with an application to solving linear systems. SIAM Journal on Scientific Com-
puting 41(4), A2536–A2551 (2019). https://doi.org/10.1137/18M1229511, https:
//doi.org/10.1137/18M1229511

31. Ipsen, I.C., Wentworth, T.: The effect of coherence on sampling from matrices with
orthonormal columns, and preconditioned least squares problems. SIAM Journal
on Matrix Analysis and Applications 35(4), 1490–1520 (2014)

32. Kaufman, L.: The generalized householder transformation and sparse
matrices. Linear Algebra and its Applications 90, 221–234 (1987).
https://doi.org/https://doi.org/10.1016/0024-3795(87)90314-4, https:
//www.sciencedirect.com/science/article/pii/0024379587903144

33. Leon, S.J., Björck, ., Gander, W.: Gram-schmidt orthogonalization: 100
years and more. Numerical Linear Algebra with Applications 20(3), 492–532
(2013). https://doi.org/https://doi.org/10.1002/nla.1839, https://onlinelibrary.
wiley.com/doi/abs/10.1002/nla.1839

34. Lindquist, N., Luszczek, P., Dongarra, J.: Accelerating restarted gmres with mixed
precision arithmetic. IEEE Transactions on Parallel and Distributed Systems
33(4), 1027–1037 (2021)

35. Ludwig, R.: Ausgleichung vermittelnder und bedingter Beobachtungen, pp. 58–79.
Vieweg+Teubner Verlag, Wiesbaden (1969). https://doi.org/10.1007/978-3-322-
98459-3 4, https://doi.org/10.1007/978-3-322-98459-3 4

36. Meng, X., Saunders, M.A., Mahoney, M.W.: Lsrn: A parallel iterative solver for
strongly over- or underdetermined systems. SIAM Journal on Scientific Computing
36(2), C95–C118 (2014). https://doi.org/10.1137/120866580, https://doi.org/10.
1137/120866580

https://doi.org/https://doi.org/10.1016/0024-3795(87)90111-X
https://www.sciencedirect.com/science/article/pii/002437958790111X
https://www.sciencedirect.com/science/article/pii/002437958790111X
https://doi.org/https://doi.org/10.1002/spe.3041
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3041
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3041
https://doi.org/10.1137/070696313
https://doi.org/10.1137/070696313
https://doi.org/10.1137/19M1298263
https://doi.org/10.1137/19M1298263
https://doi.org/10.1137/18M1229511
https://doi.org/10.1137/18M1229511
https://doi.org/10.1137/18M1229511
https://doi.org/https://doi.org/10.1016/0024-3795(87)90314-4
https://www.sciencedirect.com/science/article/pii/0024379587903144
https://www.sciencedirect.com/science/article/pii/0024379587903144
https://doi.org/https://doi.org/10.1002/nla.1839
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.1839
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.1839
https://doi.org/10.1007/978-3-322-98459-3_4
https://doi.org/10.1007/978-3-322-98459-3_4
https://doi.org/10.1007/978-3-322-98459-3_4
https://doi.org/10.1137/120866580
https://doi.org/10.1137/120866580
https://doi.org/10.1137/120866580


Mixed Precision LSQR 19

37. Paige, C.C., Rozlozńık, M., Strakos, Z.: Modified gram-schmidt (mgs), least
squares, and backward stability of mgs-gmres. SIAM Journal on Matrix Analy-
sis and Applications 28(1), 264–284 (2006). https://doi.org/10.1137/050630416,
https://doi.org/10.1137/050630416

38. Paige, C.C., Saunders, M.A.: Lsqr: An algorithm for sparse linear equations and
sparse least squares. ACM Transactions on Mathematical Software (TOMS) 8(1),
43–71 (1982)

39. Paschou, P., Lewis, J., Javed, A., Drineas, P.: Ancestry informative markers for
fine-scale individual assignment to worldwide populations. Journal of Medical Ge-
netics 47(12) (2010). https://doi.org/10.1136/jmg.2010.078212

40. Rokhlin, V., Tygert, M.: A fast randomized algorithm for overdetermined lin-
ear least-squares regression. Proceedings of the National Academy of Sciences
105(36), 13212–13217 (2008). https://doi.org/10.1073/pnas.0804869105, https://
www.pnas.org/doi/abs/10.1073/pnas.0804869105

41. Rotella, F., Zambettakis, I.: Block householder transformation for
parallel qr factorization. Applied Mathematics Letters 12(4), 29–34
(1999). https://doi.org/https://doi.org/10.1016/S0893-9659(99)00028-2,
https://www.sciencedirect.com/science/article/pii/S0893965999000282

42. Terao, T., Ozaki, K., Ogita, T.: Lu-cholesky qr algorithms for
thin qr decomposition. Parallel Computing 92, 102571 (2020).
https://doi.org/https://doi.org/10.1016/j.parco.2019.102571, https://www.
sciencedirect.com/science/article/pii/S0167819119301620

43. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parallel Computing 36(5-6), 232–240 (Jun
2010). https://doi.org/10.1016/j.parco.2009.12.005

https://doi.org/10.1137/050630416
https://doi.org/10.1137/050630416
https://doi.org/10.1136/jmg.2010.078212
https://doi.org/10.1073/pnas.0804869105
https://www.pnas.org/doi/abs/10.1073/pnas.0804869105
https://www.pnas.org/doi/abs/10.1073/pnas.0804869105
https://doi.org/https://doi.org/10.1016/S0893-9659(99)00028-2
https://www.sciencedirect.com/science/article/pii/S0893965999000282
https://doi.org/https://doi.org/10.1016/j.parco.2019.102571
https://www.sciencedirect.com/science/article/pii/S0167819119301620
https://www.sciencedirect.com/science/article/pii/S0167819119301620
https://doi.org/10.1016/j.parco.2009.12.005

	A Mixed Precision Randomized Preconditioner for the LSQR Solver on GPUs

