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Tensor sparsification via a bound on the spectral norm of random tensors
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Given an order-d tensor A ∈ Rn×n×...×n, we present a simple, element-wise sparsification algorithm
that zeroes out all sufficiently small elements of A , keeps all sufficiently large elements of A , and
retains some of the remaining elements with probabilities proportional to the square of their magnitudes.
We analyze the approximation accuracy of the proposed algorithm using a powerful inequality that we
derive. This inequality bounds the spectral norm of a random tensor and is of independent interest. As a
result, we obtain novel bounds for the tensor sparsification problem.
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1. Introduction

Technological developments over the last two decades (in both scientific and internet domains) permit the automatic genera-
tion of very large data sets. Such data are often modeled as matrices, since an m×n real-valued matrix A provides a natural
structure to encode information about m objects, each of which is described by n features. A generalization of this framework
permits the modeling of the data by higher-order arrays or tensors (e.g., arrays with more than two modes). A natural example
is time-evolving data, where the third mode of the tensor represents time [18]. Numerous other examples exist, including
tensor applications in higher-order statistics, where tensor-based methods have been leveraged in the context of, for example,
Independent Components Analysis (ICA), in order to exploit the statistical independence of the sources [26, 27, 25].

A large body of recent work has focused on the design and analysis of algorithms that efficiently create small “sketches” of
matrices and tensors. By sketches, we mean a new matrix or tensor with significantly smaller size than the original ones. Such
sketches are subsequently used in eigenvalue and eigenvector computations [19, 1], in data mining applications [31, 32, 16,
30], or even to solve combinatorial optimization problems [5, 13, 14]. Existing approaches include, for example, the selection
of a small number of rows and columns of a matrix in order to form the so-called CUR matrix/tensor decomposition [15, 31,
32], as well as random-projection-based methods that employ fast randomized variants of the Hadamard-Walsh transform [36]
or the Discrete Cosine Transform [33].

An alternative approach was pioneered by Achlioptas and McSherry in 2001 [1, 2] and leveraged the selection of a small
number of elements in order to form a sketch of the input matrix. A rather straight-forward extension of their work to
tensors was described by Tsourakakis in [40]. Another remarkable direction was pioneered in the work of Spielman, Teng,
Srivastava, and collaborators [9, 37], who proposed algorithms for graph sparsification in order to create preconditioners
for systems of linear equations with Laplacian input matrices. Partly motivated by their work, we define the following
matrix/tensor sparsification problem:

DEFINITION 1.1 [MATRIX/TENSOR SPARSIFICATION] Given an order-d tensor A ∈ Rn×n×...×n and an error parameter
ε > 0, construct a sketch ˜A ∈ Rn×n×...×n such that∥∥A − ˜A

∥∥
2 6 ε ‖A ‖2 (1.1)
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and the number of non-zero entries in ˜A is minimized. Here, the ‖A ‖2 norm is called the spectral norm of the tensor A (see
Section 2.1 for the definition).

A few comments are necessary to better understand the above definition. First, an order-d tensor is simply a d-way array
(obviously, a matrix is an order-2 tensor). We let ‖·‖2 denote the spectral norm of a tensor (see Section 2.1 for notation),
which is a natural extension of the matrix spectral norm. It is worth noting that exactly computing the tensor spectral norm is
computationally hard. Second, a similar problem could be formulated by seeking a bound for the Frobenius norm of A − ˜A .
Third, this definition places no constraints on the form of the entries of ˜A . However, in this work, we will focus on methods
that return matrices and tensors ˜A whose entries are either zeros or (rescaled) entries of A . Prior work has investigated
quantization as an alternative construction for the entries of ˜A , while the theoretical properties of more general methods
remain vastly unexplored. Fourth, the running time needed to construct a sketch is not restricted. All prior work has focused
on the construction of sketches in one or two sequential passes over the input matrix or tensor. Thus, we are particularly
interested in sketching algorithms that can be implemented within the same framework (a small number of sequential passes).

We conclude this section by discussing applications of the sparse sketches of Definition 1.1. In the case of matrices, there
are at least three important applications: approximate eigenvector computations, semi-definite programming (SDP) solvers,
and matrix completion. The first two applications are based on the fact that, given a vector x ∈ Rn, the product A x can be
approximated by ˜A x with a bounded loss in accuracy. The running time of the latter matrix-vector product is proportional to
the number of non-zeros in ˜A , thus leading to immediate computational savings. This fast matrix-vector product operation
can then be used to approximate eigenvectors and eigenvalues of matrices [1, 2, 7] via subspace iteration methods; yet another
application would be a quick estimate of the Krylov subspace of a matrix. Additionally [6, 12] argue that fast matrix-vector
products are useful in SDP solvers. The third application domain of sparse sketches is the so-called matrix completion
problem, an active research area of growing interest, where the user only has access to ˜A (typically formed by sampling a
small number of elements of A uniformly at random) and the goal is to reconstruct the entries of A as accurately as possible.
The motivation underlying the matrix completion problem stems from recommender systems and collaborative filtering and
was initially discussed in [8]. More recently, methods using bounds on A − ˜A and trace minimization algorithms have
demonstrated exact reconstruction of A under – rather restrictive – assumptions [10, 11]. We expect that our work here will
stimulate research towards generalizing matrix completion to tensor completion. More specifically, our tensor spectral norm
bound could be a key ingredient in analyzing tensor completion algorithms, just like similar bounds for matrix sparsification
were critical in matrix completion [10, 11]. Finally, similar applications in recommendation systems, collaborative filtering,
monitoring IP traffic patterns over time, etc. exist for the d > 2 case in Definition 1.1; see [40, 31, 32] for details.

1.1 Our algorithm and our main theorem

Our main algorithm (Algorithm 1) zeroes out “small” elements of the tensor A , keeps “large” elements of the tensor A , and
randomly samples the remaining elements of the tensor A with a probability that depends on their magnitude. The following
theorem is our main quality-of-approximation result for Algorithm 1.

Theorem 1 Let A ∈ Rn×...×n be an order-d tensor and let Ã be constructed as described in Algorithm 1. Assume that
n> 320. For d > 3, if the sampling parameter s satisfies

s = Ω

(
d3202dnd/2 lnd n

ε2 max

{
1,

lnd+1 n
nd/2−1

}
‖A ‖2

F

)
, (1.2)

then, with probability at least 1−n−2d , ∥∥∥A − Ã
∥∥∥

2
6 ε,

where the tensor spectral norm ‖·‖2 is defined in (2.1). For d = 2, the same spectral norm bound holds whenever the sampling
parameter s satisfies

s = Ω

(
n ln5 n

ε2 ‖A ‖2
F

)
. (1.3)

The number of samples s in Theorem 1 involves the tensor Frobenius norm. In the following corollary, we restate the theorem
by using the stable rank of a tensor, denoted by sr(A ). The stable rank of a tensor is defined analogously to the stable rank
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of a matrix, namely the ratio

sr(A ),
‖A ‖2

F

‖A ‖2
2

.

Corollary 1 Let A ∈ Rn×n (assume n> 320) be an order-d tensor and let Ã be constructed as described in Algorithm 1. If
n> ln8 n and the sampling parameter s is set to

s = Ω

(
d2202dnd/2 lnd n

ε2 sr(A )

)
,

then, with probability at least 1−n−2d , ∥∥∥A − Ã
∥∥∥

2
6 ε ‖A ‖2 .

For d = 2, the sampling parameter s is simplified to s = Ω

(
n ln5 n

ε2 sr(A)
)
.

In both Theorem 1 and Corollary 1, ˜A has, in expectation, at most 2s non-zero entries and the construction of ˜A can
be implemented in one pass over the input tensor/matrix A . Towards that end, we need to combine Algorithm 1 with the
SAMPLE algorithm presented in Section 4.1 of [2]. Finally, in the context of Definition 1.1, our result essentially shows that
we can get a sparse sketch ˜A with 2s non-zero entries. In Theorem 1 and Corollary 1, we have not made any attempt to
optimize the constants which could potentially be reduced. In addition, when n > ln8 n, the maximum value in (1.2) is at
most one and the sampling parameter can be simplified to s = Ω

(
nd/2 lnd n

ε2 sr(A )
)

. Ignoring the polylog factor, the theorem

implies that out of the nd entries of the tensor, the algorithm only needs to selectively keep Ω(nd/2sr(A )) entries and zero
out the rest, while accurately approximating the spectral norm of the original tensor.

Finally, we discuss our bound in light of the so-called Kruskal and Tucker rank of a tensor. Let kr(A ) be the Kruskal rank
of the d-mode tensor A ; see [23] for the definition of the Kruskal rank and notice that the Kruskal rank is equal to the matrix
rank when d is equal to two. It is known that the number of degrees of freedom of a tensor is of the order nkr(A ). While,
in general, the inequality sr(A )6 kr(A ) does not hold, it does hold for the d = 2 case as well as for some tensors that can
be orthogonally decomposed [22]. Another better way to bound the stable rank of a tensor is via the Tucker decomposition,
which is similar to singular value decomposition of a matrix (see [23] for the definition). Decompose the order-d tensor A
via

A =
k1

∑
i1=1
· · ·

kd

∑
id=1

gi1···id ui1 ×1 · · ·×d vid = G ×1 U · · ·×V

where U ,..., V are orthogonal matrices of size n× k1, ..., n× kd , respectively; G is the core tensor of size k1×·· ·× kd . Here,
the tensor-vector product is defined later in Section 2.1. The tuple (k1, ...,kd) is called the Tucker rank of the tensor A where
each ki is the column rank of the matrix A(i) constructed by unfolding A along the ith direction. It can be easily seen that the
degree of freedom of A is roughly n∑

d
i=1 ki +∏

d
i=1 ki. In addition, the tensor Frobenius norm is

‖A ‖2
F = ‖G ‖2

F 6

(
d

∏
i=1

ki

)
max

i1,...,id
g2

i1···id ,

and the spectral norm of A (see Section 2.1 for the definition) is crudely lower bounded by maxi1,...,id gi1···id . Combining
these two bounds and the fact that ‖A ‖F > ‖A ‖ yield

16 sr(A )6
d

∏
i=1

ki.

In these situations, Corollary 1 essentially implies that in order for the sampled tensor to be close to the original one, the
number of samples required is at most on the order of Ω(nd/2

∏
d
i=1 ki), which is proportional to Ω(nd/2) for low Tucker rank

tensor. This bound is substantially larger than the tensor’s degree of freedom n∑
d
i=1 ki +∏

d
i=1 ki. An open question is whether

the d/2 power in the number of samples can be removed?
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1: Input: order-d tensor A ∈ Rn×n...×n, sampling parameter s.
For all i1, ..., id ∈ [n]× . . .× [n] do

• If A 2
i1...id 6

lnd n
nd/2

‖A ‖2F
s then

Ãi1...id = 0,

• ElseIf A 2
i1...id >

‖A ‖2F
s then

Ãi1...id = Ai1...id ,

• Else

Ãi1...id =


Ai1 ...id
pi1 ...id

,with probability pi1...id =
sA 2

i1 ...id
‖A ‖2F

0 ,with probability 1− pi1...id

2: Output: Tensor Ã ∈ Rn×n...×n.

Algorithm 1: Tensor Sparsification Algorithm

1.2 Comparison with prior work

To the best of our knowledge, for d > 2, there exists no prior work on element-wise tensor sparsification that provides results
comparable to Theorem 1. It is worth noting that the work of [40] deals with the Frobenius norm of the tensor, which is
much easier to manipulate, and its main theorem is focused on approximating the so-called HOSVD of a tensor, as opposed
to decomposing the tensor as a sum of rank-one components.

For the d = 2 case, prior work does exist and we will briefly compare our results in Corollary 1 with current state-of-the-
art. In summary, our result in Corollary 1 outperforms prior work, in the sense that, using the same accuracy parameter ε in
Definition 1.1, the resulting matrix ˜A has fewer non-zero elements. In [1, 2] the authors presented a sampling method that
requires at least O(st(A )n ln4 n/ε2) non-zero entries in ˜A in order to achieve the proposed accuracy guarantee. (Here st(A )
denotes the stable rank of the matrix A that is always upper bounded by the rank of A .) Our result increases the sampling
complexity by a lnn factor. This increment is due to the more general model (tensor) we consider. In [37, 9] the authors
proposed sparsification schemes for structural Laplacian matrix and thus required smaller amount of non-zero entries, while
our method can apply for any matrix A with no restriction on its structure. It is harder to compare our method to the work
of [7], which depends on the ∑

n
i, j=1

∣∣Ai j
∣∣. The latter quantity is, in general, upper bounded only by n‖A ‖F , in which case

the sampling complexity of [7] is much worse, namely O(st(A )n3/2/ε). However, it is worth noting that the result of [7] is
appropriate for matrices whose “energy” is focused only on a small number of entries, as well as that their bound holds with
much higher probability than ours.

In parallel with our work, two related results appeared in ArXiv. First, [21] studied the ‖·‖
∞→2 and ‖·‖

∞→1 norms in
the matrix sparsification context. The authors also presented a sampling scheme for the problem of Definition 1.1. Addi-
tionally, [17] leveraged a powerful matrix Bernstein inequality and improved the sampling complexity of Corollary 1 by an
O(ln2 n) factor. Subsequently to our work, [3] presented an alternative approach to [17] that is based on `1 sampling, e.g.,
sampling with respect to the absolute values of the entries of a matrix as opposed to their squares. However, neither of the
aforementioned results generalizes to tensors. Indeed, establishing analogous bounds for d-mode tensors is a major open
problem.

1.3 Bounding the spectral norm of random tensors

An important contribution of our work is the technical analysis and, in particular, the proof of a bound for the spectral norm
of random tensors that is necessary in order to prove Theorem 1. It is worth noting that all known results for the d = 2
case of Theorem 1 are either combinatorial in nature (e.g., the proofs of [1, 2] are based on the result of [20], whose proof
is fundamentally combinatorial) or use simple ε-net arguments [7]. The only exceptions are the recent results in [17, 21]
which leverage powerful Bernstein and Chernoff-type inequalities for matrices [38]. It is also important to emphasize that
over the last few years, there are active research in establish sharp bound for the sum of random matrices [4, 34, 38] (see the
tutorial paper [39] of Tropp for more references). As stated above, none of these approaches can be extended to the d > 2
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case; indeed, the d > 2 case seems to require novel tools and methods. In our work, we are only able to prove the following
theorem using the so-called entropy-concentration tradeoff, an analysis technique that was originally developed by Latala
[24] and has been recently investigated by Mark Rudelson and Roman Vershynin [35, 41]. The following theorem presents a
spectral norm bound for random tensors and is fundamental in proving Theorem 1.

Theorem 2 Let Â ∈ Rn×...×n be an order-d tensor and let A be a random tensor of the same dimensions whose entries are
independent and EA = Â . For any λ 6 1

64 , assume that 16 q6 2dλn ln 5e
λ

. Then,

(
E
∥∥∥A − Â

∥∥∥q

2

) 1
q
6c8d

√
2d ln

(
5e
λ

)[log2

(
1
λ

)]d−1
(

d

∑
j=1

EA α
q
j

) 1
q

+
√

λn(EA β
q)

1
q

 ,

where

α
2
j , max

i1,...,i j−1,i j+1,...,id

(
n

∑
i j=1

A 2
i1...i j−1i j i j+1...id

)
and β = max

i1,...,id
|Ai1...id |.

In the above inequality, c is a small constant and ‖·‖2 refers to the tensor spectral norm defined in Section 2.1.

An immediate corollary of the above theorem emerges by setting tensor Â to zero.

Corollary 2 Let B ∈Rn×...×n be a random order-d tensor, whose entries are independent, zero-mean, random variables. For
any λ 6 1

64 , assume that 16 q6 2dλn ln 5e
λ

. Then,

(
E‖B‖q

2

) 1
q 6 c8d

√
2d ln

(
5e
λ

)[log2

(
1
λ

)]d−1
(

d

∑
j=1

EBα
q
j

) 1
q

+
√

λn(EBβ
q)

1
q

 ,

where

α
2
j , max

i1,...,i j−1,i j+1,...,id

(
n

∑
i j=1

B2
i1...i j−1i j i j+1...id

)
and β = max

i1,...,id
|Bi1...id |.

In the above inequality, c is a small constant and ‖·‖2 refers to the tensor spectral norm defined in Section 2.1.

As will be clear in the proof, the parameter λ defines the entropy-concentration tradeoff. Depending on particular properties
of the random tensor B, one can set the parameter λ so that the bound on the right-hand side is optimized. In particular,
when the entries of B are of similar magnitudes (formally, max j α2

j = c1nβ 2), we can choose λ to be a small constant. (Note
that we always have max j α2

j 6 nβ 2.) In this case, we have a simplified result.

Corollary 3 Let B ∈ Rn×...×n be a random order-d tensor, whose entries are independent, zero-mean, random variables.
Assume that 16 q6Cdn. Also, assume that c1nβ 2 6max j α2

j 6C1nβ 2. Then,

(
E‖B‖q

2

) 1
q 6 cd8d

√
d

 d

∑
j=1

EB max
i1,...,i j−1,i j+1,...,id

(
n

∑
i j=1

B2
i1...i j−1i j i j+1...id

) q
2


1
q

.

In the above inequality, cd is a small constant depending on d and ‖·‖2 refers to the tensor spectral norm defined in Section 2.1.

We note that this bound is optimal since ‖B‖ is always lower bounded by the maxi1,...,i j−1,i j+1,...,id

(
∑

n
i j=1 B2

i1...i j−1i j i j+1...id

) 1
2
.

We also note that for the matrix case (d = 2), the result of Corollary 3 has a very similar structure with the result of [24]. In
fact, our proof strategy is borrowed from [24], with significant modifications in order to adapt it to higher-order tensors. For

a general random tensor, we can use the crude bound β 6max j α j and also set λ = (lnn)2(d−1)

n . Then, the following corollary
provides a bound for the spectral norm of the random tensor.
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Corollary 4 Let B ∈ Rn×...×n be a random order-d tensor, whose entries are independent, zero-mean, random variables.
Assume that 16 q6Cd lnn. Then,

(
E‖B‖q

2

) 1
q 6 cd8d (lnn)d−1/2

 d

∑
j=1

EB max
i1,...,i j−1,i j+1,...,id

(
n

∑
i j=1

B2
i1...i j−1i j i j+1...id

) q
2


1
q

.

In the above inequality, cd is a small constant depending on d and ‖·‖2 refers to the tensor spectral norm defined in Section 2.1.

2. Preliminaries

2.1 Notation

We will use [n] to denote the set {1,2, . . . ,n}. c0, c1, c2, etc. will denote small numerical constants, whose values change
from one section to the next. EX will denote the expectation of a random variable X . When X is a matrix, then EX denotes
the element-wise expectation of each entry of X . Similarly, Var(X) denotes the variance of the random variable X and P(E )
denotes the probability of event E . Finally, lnx denotes the natural logarithm of x and log2 x denotes the base two logarithm
of x.

We briefly remind the reader of vector norm definitions. Given a vector x ∈ Rn the `2 norm of x is denoted by ‖x‖2 and
is equal to the square root of the sum of the squares of the elements of x. Also, the `0 norm of the vector x is equal to the
number of non-zero elements in x. Finally, given a Lipschitz function f : Rn 7→ R we define the Lipschitz norm of f to be

‖ f‖L = sup
x,y∈Rn

| f (x)− f (y)|
‖x− y‖2

.

For any d-mode or order-d tensor A ∈ Rn×...×n, its Frobenius norm ‖A ‖F is defined as the square root of the sum of the
squares of its elements. We now define tensor-vector products as follows: let x,y be vectors in Rn. Then,

A ×1 x =
n

∑
i=1

Ai jk...`xi,

A ×2 x =
n

∑
j=1

Ai jk...`x j,

A ×3 x =
n

∑
k=1

Ai jk...`xk, etc.

Note that the outcome of the above operations is an order-(d− 1) tensor. The above definition may be extended to handle
multiple tensor-vector products, e.g.,

A ×1 x×2 y =
n

∑
i=1

n

∑
j=1

Ai jk...`xiy j.

Note that the outcome of the above operation is an order-(d−2) tensor. Using this definition, the spectral norm of a tensor is
defined as

‖A ‖2 = sup
x1...xd∈Sn

|A ×1 x1 . . .×d xd | , (2.1)

where Sn is the unit sphere in n-dimensional space. In words, the vectors xi ∈Rn are unit vectors, i.e., ‖xi‖2 = 1 for all i∈ [d].
It is worth noting that A ×1 x1 . . .×d xd ∈ R and also that our tensor norm definitions when restricted to matrices (order-2
tensors) coincide with the standard definitions of matrix norms.

We also present an inequality that will be useful in our work. For any two d-mode tensors A and B of the same
dimensions and any scalar q> 1,

‖A +B‖q
2 6 2q−1(‖A ‖q

2 +‖B‖
q
2). (2.2)

The proof is quite simple. Notice that for nonnegative scalars x and y, (x+ y)q 6 2q−1 (xq + yq) for q> 1 (see Lemma 11 for
a more general proof). Thus, for any x1, ...,xd ∈ Sn,

|A ×1 x1 . . .×d xd +B×1 x1 . . .×d xd |q 6 2q−1 |A ×1 x1 . . .×d xd |q +2q−1 |B×1 x1 . . .×d xd |q .

Taking the maximum of both sides completes the proof.
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2.2 Measure concentration

We will need the following version of Bennett’s inequality.

Lemma 1 Let X1, X2,..., Xn be independent, zero-mean, random variables with |Xi|6 1. For any t > 3
2 ∑

n
i=1 Var(Xi)> 0

P

(
n

∑
i=1

Xi > t

)
6 e−t/2.

This version of Bennett’s inequality can be derived from the standard one, stating that

P

(
n

∑
i=1

Xi > t

)
6 e−σ2h(t/σ2).

Here σ2 = ∑
n
i=1 Var(Xi) and h(u) = (1+u) ln(1+u)−u. Lemma 1 follows using the fact that h(u)> u/2 for u > 3/2. We

also remind the reader of the following well-known result on measure concentration (see, for example, eqn. (1.4) of [29]).

Lemma 2 Let f : Rn 7→R be a Lipschitz function and let ‖ f‖L be its Lipschitz norm. If g ∈Rn is a standard Gaussian vector
(i.e., a vector whose entries are independent standard Gaussian random variables), then for all t > 0

P
(

f (g)> E f (g)+ t
√

2‖ f‖L

)
6 e−t2

.

The following lemma, whose proof may be found in the Appendix, converts a probabilistic bound for the random variable X
to an expectation bound for Xq, for all q> 1, and might be of independent interest.

Lemma 3 Let X be a random variable assuming non-negative values. For all t > 0 and non-negative a, b, and h:
(a) If P(X > a+ tb)6 e−t+h, then, for all q> 1,

EXq 6 2(a+bh+bq)q.

(b) If P(X > a+ tb)6 e−t2+h, then, for all q> 1,

EXq 6 3
√

q
(

a+b
√

h+b
√

q/2
)q

.

Finally, we present an ε-net argument that we will repeatedly use. Recall from Lemma 3.18 of [28] that the cardinality of an
ε-net on the unit sphere is at most (1+2/ε)n. The following lemma essentially generalizes the results of Lecture 6 of [42] to
order-d tensors.

Lemma 4 Let N be an ε-net for a set B associated with a norm ‖·‖. Then, the spectral norm of a d-mode tensor A is
bounded by

sup
x1...xd−1∈B

‖A ×1 x1 . . .×d−1 xd−1‖2 6

(
1

1− ε

)d−1

sup
x1...xd−1∈N

‖A ×1 x1 . . .×d−1 xd−1‖2 .

Notice that, using our notation, A ×1 x1 . . .×d−1 xd−1 is a vector in Rn. The proof of the lemma may be found in the Appendix.
An immediate implication of our result is that the spectral norm of a d-mode tensor A is bounded by

‖A ‖2 6

(
1

1− ε

)d−1

sup
x1...xd−1∈N

‖A ×1 x1 . . .×d−1 xd−1‖2 ,

where N is the ε-net for the unit sphere Sn−1 in Rn.

3. Bounding the spectral norm of random tensors

This section will focus on proving Theorem 2, which essentially bounds the spectral norm of random tensors. Towards that
end, we will first apply a symmetrization argument following the lines of [24]. This argument will allow us to reduce the
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task-at-hand to bounding the spectral norm of a Gaussian random tensor. As a result, we will develop such an inequal-
ity by employing the so-called entropy-concentration technique, which has been developed by Mark Rudelson and Roman
Vershynin [35, 41].

For simplicity of exposition and to avoid carrying multiple indices, we will focus on proving Theorem 2 for order-3
tensors (i.e., d = 3). Throughout the proof, we will carefully comment on derivations where d (the number of modes of the
tensor) affects the bounds of the intermediate results. Notice that if d = 3, then a tensor A ∈ Rn×n×n may be expressed as

A =
n

∑
i, j,k=1

Ai jk · ei⊗ e j⊗ ek. (3.1)

In the above, the vectors ei ∈ Rn (for all i ∈ [n]) denote the standard basis for Rn and ⊗ denotes the outer product operation.
Thus, for example, ei⊗ e j⊗ ek denotes an tensor in Rn×n×n whose (i, j,k)-th entry is equal to one, while all other entries are
equal to zero.

3.1 A Gaussian symmetrization inequality

The main result of this section can be summarized in Lemma 5. In words, the lemma states that, by losing a factor of
√

2π ,
we can independently randomize each entry of A via a Gaussian random variable. Thus, we essentially reduce the problem
of finding a bound for the spectral norm of a tensor A to finding a bound for the spectral norm of a Gaussian random tensor.

Lemma 5 Let Â ∈ Rn×n×n be any order-3 tensor and let A be a random tensor of independent entries and of the same
dimensions such that EA A = Â . Also let the gi jk be Gaussian random variables for all triples (i, j,k) ∈ [n]× [n]× [n]. Then
for any q> 1,

EA

∥∥∥A − Â
∥∥∥q

2
6
(√

2π

)q
EA Eg

∥∥∥∥∥∑
i, j,k

gi jkAi jk · ei⊗ e j⊗ ek

∥∥∥∥∥
q

2

. (3.2)

Proof. Let A ′ be an independent copy of the tensor A . By applying a symmetrization argument and Jensen’s inequality, we
get

EA

∥∥∥A − Â
∥∥∥q

2
= EA ‖A −EA A ‖q

2 = EA

∥∥A −EA ′A
′∥∥q

2 6 EA EA ′
∥∥A −A ′∥∥q

2 .

Note that the entries of the tensor A −A ′ are independent symmetric random variables and thus their distribution is the same
as the distribution of the random variables εi jk

(
Ai jk−A ′

i jk

)
, where the εi jk’s are independent, symmetric, Bernoulli random

variables assuming the values +1 and −1 with equal probability. Hence,

EA EA ′
∥∥A −A ′∥∥q

2 = EA EA ′Eε

∥∥∥∥∥∑
i, j,k

εi jk
(
Ai jk−A ′

i jk
)

ei⊗ e j⊗ ek

∥∥∥∥∥
q

2

6 2q−1EA Eε

∥∥∥∥∥∑
i, j,k

εi jkAi jkei⊗ e j⊗ ek

∥∥∥∥∥
q

2

+ 2q−1EA ′Eε

∥∥∥∥∥∑
i, j,k

εi jkA
′

i jkei⊗ e j⊗ ek

∥∥∥∥∥
q

2

.

Here the inequality follows from eqn. (2.2). Now, since the entries of the tensors A and A ′ have the same distribution, we
get

EA EA ′
∥∥A −A ′∥∥q

2 6 2qEA Eε

∥∥∥∥∥∑
i, j,k

εi jkAi jkei⊗ e j⊗ ek

∥∥∥∥∥
q

2

. (3.3)

We now proceed with the Gaussian symmetrization argument. Let gi jk for all i, j, and k be independent Gaussian random
variables. It is well-known that E

∣∣gi jk
∣∣=√2/π . Using Jensen’s inequality, we get

EA Eε

∥∥∥∥∥∑
i, j,k

εi jkAi jkei⊗ e j⊗ ek

∥∥∥∥∥
q

2

=
(

π

2

)q/2
EA Eε

∥∥∥∥∥∑
i, j,k

εi jkAi jk
(
Eg
∣∣gi jk

∣∣) · ei⊗ e j⊗ ek

∥∥∥∥∥
q

2
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6
(

π

2

)q/2
EA EεEg

∥∥∥∥∥∑
i, j,k

εi jkAi jk
∣∣gi jk

∣∣ · ei⊗ e j⊗ ek

∥∥∥∥∥
q

2

=
(

π

2

)q/2
EA Eg

∥∥∥∥∥∑
i, j,k

gi jkAi jk · ei⊗ e j⊗ ek

∥∥∥∥∥
q

2

.

The last equality holds since εi jk
∣∣gi jk

∣∣ and gi jk have the same distribution. Thus, combining the above with eqn. (3.3) we
have finally obtained the Gaussian symmetrization inequality. �

3.2 Bounding the spectral norm of a Gaussian random tensor

In this section we will seek a bound for the spectral norm of the tensor H whose entries Hi jk are equal to gi jkAi jk (we are
using the notation of Lemma 5). Obviously, the entries of H are independent, zero-mean Gaussian random variables. We
would like to estimate

Eg ‖H ‖q = Eg sup
x,y
‖H ×1 x×2 y‖q

2

over all unit vectors x,y ∈ Rn. Our first lemma computes the expectation of the quantity ‖H ×1 x×2 y‖2 for a fixed pair of
unit vectors x and y.

Lemma 6 Given a pair of unit vectors x and y

Eg ‖H ×1 x×2 y‖2 6
√

max
i, j

∑
k

A 2
i jk.

Proof. Let s = H ×1 x×2 y ∈ Rn and let sk = ∑i, j Hi jkxiy j for all k ∈ [n]. Thus,

‖s‖2
2 = ∑

k

(
∑
i, j

Hi jkxiy j

)2

= ∑
i, j,k

H 2
i jkx2

i y2
j +∑

k
∑

i, j 6=p,q
Hi jkHpqkxiy jxpyq.

Using EgHi jk = 0 and EgH 2
i jk = A 2

i jkEgg2
i jk = A 2

i jk we conclude that

Eg ‖s‖2
2 = ∑

i, j,k
A 2

i jkx2
i y2

j = ∑
i

x2
i ∑

j
y2

j ∑
k

A 2
i jk 6max

i, j
∑
k

A 2
i jk.

The last inequality follows since ‖x‖2 = ‖y‖2 = 1. Using Eg ‖s‖2 6
√

Eg ‖s‖2
2 we obtain the claim of the lemma. �

The next lemma argues that ‖H ×1 x×2 y‖2 is concentrated around its mean (which we just computed) with high probability.

Lemma 7 Given a pair of unit vectors x and y

P

(
‖H ×1 x×2 y‖2 >

√
max

i, j
∑
k

A 2
i jk + t

√
2max

k

√
∑
i, j

A 2
i jkx2

i y2
j

)
6 e−t2

. (3.4)

Proof. Consider the vector s = H ×1 x×2 y ∈ Rn and recall that Hi jk = gi jkAi jk to get

s = ∑
i, j,k

(
Hi jkxiy j

)
ek

= ∑
k

(
∑
i, j

Hi jkxiy j

)
ek

= ∑
k

(
∑
i, j

gi jkAi jkxiy j

)
ek.
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In the above the ek for all k ∈ [n] are the standard basis vectors for Rn. Now observe that all gi jkAi jkxiy j are Gaussian random
variables, which implies that their sum (over all i and j) is also a Gaussian random variable with zero mean and variance
∑i, j A

2
i jkx2

i y2
j . Let

q2
k = ∑

i, j
A 2

i jkx2
i y2

j for all k ∈ [n]

and rewrite the vector s as the sum of weighted standard Gaussian random variables:

s = ∑
k

zkqkek.

In the above the zk’s are standard Gaussian random variables for all k ∈ [n]. Let z be the vector in Rn whose entries are the
zk’s and let

f (z) =

∥∥∥∥∥∑k
zkqkek

∥∥∥∥∥
2

.

We apply Lemma 2 to f (z). It is clear that f 2(z) = ∑k z2
kq2

k 6 ‖z‖
2
2 maxk q2

k . Therefore, the Lipschitz norm of f is

‖ f‖L = max
k
|qk|= max

k

(
∑
i, j

A 2
i jkx2

i y2
j

)1/2

.

Applying Lemma 2 and Lemma 6 completes the proof. �

3.2.1 An ε-net construction: the entropy-concentration tradeoff argument. Given the measure concentration result of
Lemma 7, one might be tempted to bound the quantity ‖H ×1 x×2 y‖2 for all unit vectors x and y by directly constructing
an ε-net N on the unit sphere. Since the cardinality of N is well-known to be upper bounded by

(
1+ 2

ε

)n
, it follows that by

getting an estimate for the quantity ‖H ×1 x×2 y‖ for a pair of vectors x and y in N and subsequently applying the union
bound combined with Lemma 4, an upper bound for the norm of the tensor H may be derived. Unfortunately, this simple
technique does not yield a useful result: the failure probability of Lemma 7 is not sufficiently small in order to permit the
application of a union bound over all vectors x and y in N.

In order to overcome this obstacle, we will apply a powerful and novel argument, the so-called entropy-concentration
tradeoff, which was originally investigated by Latala [24] and has been recently developed by Mark Rudelson and Roman
Vershynin [35, 41]. To begin with, we express a unit vector x∈Rn as a sum of two vectors z,w∈Rn satisfying certain bounds
on the magnitude of their coordinates. Thus, x = z+w, where, for all i ∈ [n],

zi =

{
xi if |xi|> 1√

λn
0 ,otherwise

wi =

{
xi if |xi|< 1√

λn
0 ,otherwise

In the above λ ∈ (0,1] is a small constant that will be specified later. It is easy to see that ‖z‖2 6 1, ‖w‖2 6 1, and that the
number of non-zeros entries in z (i.e., the `0 norm of z) is bounded:

‖z‖0 6 λn.

Essentially, we have “split” the entries of x in two vectors: a sparse vector z with a bounded number of non-zero entries and
a spread vector w with entries whose magnitude is restricted. Thus, we can now divide the unit sphere into two sets:

B2,0 =

{
x ∈ Rn : ‖x‖2 6 1, |xi|>

1√
λn

or xi = 0
}
,

B2,∞ =

{
x ∈ Rn : ‖x‖2 6 1,‖x‖

∞
<

1√
λn

}
.
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Given the above two sets, we can apply an ε-net argument to each set separately. The advantage is that since vectors on
B2,0 only have a small number of non-zero entries, the size of the ε-net on B2,0 is small. This counteracts the fact that the
measure concentration bound that we get for vectors in B2,0 is rather weak since the vectors in this set have arbitrarily large
entries (upper bounded by one). On the other hand, vectors in B2,∞ have many non-zero coefficients of bounded magnitude.
As a result, the cardinality of the ε-net on B2,∞ is large, but the measure concentration bound is much tighter. Combining the
contribution of the sparse and the spread vectors results to a strong overall bound.

We conclude the section by noting that the above two sets are spanning the whole unit sphere Sn−1 in Rn. Using the
inequality (E(x+ y)q)1/q 6 (Exq)1/q +(Eyq)1/q we obtain(

E sup
x,y∈Sn−1

‖H ×1 x×2 y‖q
2

)1/q

6

(
E sup

x,y∈B2,0

‖H ×1 x×2 y‖q
2

)1/q

(3.5)

+

(
E sup

x,y∈B2,∞

‖H ×1 x×2 y‖q
2

)1/q

(3.6)

+

(
E sup

x∈B2,0,y∈B2,∞

‖H ×1 x×2 y‖q
2

)1/q

(3.7)

+

(
E sup

x∈B2,∞,y∈B2,0

‖H ×1 x×2 y‖q
2

)1/q

. (3.8)

3.2.2 Controlling sparse vectors. We now prove the following lemma bounding the contribution of the sparse vectors (term (3.5))
in our ε-net construction.

Lemma 8 Consider a d-mode tensor A and let H be the d-mode tensor after the Gaussian symmetrization argument as
defined in Section 3.2. Let α and β be

α
2 = max

{
max

i, j

n

∑
k=1

A 2
i jk,max

i,k

n

∑
j=1

A 2
i jk,max

j,k

n

∑
i=1

A 2
i jk

}
, (3.9)

β = max
i, j,k

∣∣Ai jk
∣∣ . (3.10)

For all q> 1, (
E sup

x,y∈B2,0

‖H ×1 x×2 y‖q
2

)1/q

6 (3
√

q)1/q2(d−1)

(
α +β

√
2dλn ln

5e
λ

+β
√

q

)
. (3.11)

The expectation bound has two components: the first one relates to the maximum tensor row or column energy and
the second one relates to largest entry of the tensor. While the first component involving α is fixed, the size of the set
B2,0 affects the second component which involves β . Roughly speaking, the above expectation bound is of the order of
α +β

√
λn ln1/λ . It is also clear that λ control the size of the set B2,0: smaller λ is associated with a smaller set B2,0. If

the entries of the tensor are spread out, then α ≈ β
√

n and we can set λ to be a large constant and the expectation bound is
optimal O(α). On the other hand, we can select a smaller value for λ = c/n to get the bound α +β

√
lnn. We also emphasize

that supx,y∈B2,0
‖H ×1 x×2 y‖2 is lower bounded by α , which can be seen by setting x and y to be basis vectors. Therefore,

the above expectation bound is tight.
Proof. Let K = λn and let B2,0,K be the K-dimensional set defined by

B2,0,K = {x ∈ RK : ‖x‖2 6 1}.

Then, the set B2,0 corresponding to vectors with at most K non-zero entries can be expressed as a union of subsets of dimension
K, i.e., B2,0 =

⋃
B2,0,K . A simple counting argument indicates that there are at most

(n
K

)
6
( en

K

)K such subsets. We now apply
the ε-net technique to each of the subsets B2,0,K whose union is the set B2,0. First, let us define NB2,0,K to be the 1/2-net of a
subset B2,0,K . Lemma 3.18 of [28] bounds the cardinality of NB2,0,K by 5K . Applying Lemma 4 with ε = 1/2 we get

sup
x,y∈B2,0,K

‖H ×1 x×2 y‖2 6 2d−1 sup
x,y∈NB2,0,K

‖H ×1 x×2 y‖2 .
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The right-hand side can be controlled by Lemma 7 which bounds the term H ×1 x×2 y for a specific pair of unit vectors x
and y. Noticing that

max
k

(
∑
i, j

A 2
i jkx2

i y2
j

)1/2

6max
i, j,k

∣∣Ai jk
∣∣(∑

i, j
x2

i y2
j

)1/2

6max
i, j,k

∣∣Ai jk
∣∣= β ,

we apply Lemma 7 and take the union bound over all x,y ∈ NB2,0,K to yield

P

(
sup

x,y∈B2,0,K

‖H ×1 x×2 y‖2 > 2d−1
(

α + t
√

2β

))
6
(
5K)d−1

e−t2
.

In the above α and β are defined in eqns. (3.9) and (3.10) respectively. We now explain the
(
5K
)d−1 term in the failure

probability. In general, the product H ×1 x×2 y · · · should be evaluated on d− 1 vectors x,y, . . .. Recall that the 1/2-net
NB2,0,K contains 5K vectors and thus there is a total of

(
5K
)d−1 possible vector combinations. A standard union bound now

justifies the above formula. Finally, taking the union bound over all possible subsets B2,0,K that comprise the set B2,0 and
using K = λn yields

P

(
sup

x,y∈B2,0

‖H ×1 x×2 y‖2 > 2d−1
(

α + t
√

2β

))
6

((en
K

)K
)d−1 (

5K)d−1
e−t2

=

(
5e
λ

)λn(d−1)

e−t2

6

(
5e
λ

)λnd

e−t2
. (3.12)

In the above, we again accounted for all d−1 modes of the tensor and also used d−1 6 d. Using eqn. (3.12) and applying
Lemma 3 (part (b)) with a = 2d−1α , b = 2d−1β

√
2, and h = dλn ln(5e/λ ) we get

E sup
x,y∈B2,0

‖H ×1 x×2 y‖q
2 6 3

√
q
(

2d−1
(

α +β
√

2dλn ln(5e/λ )+β
√

q
))q

.

Raising both sides to 1/q completes the proof. �

3.2.3 Controlling spread vectors. We now prove the following lemma bounding the contribution of the spread vectors (term (3.6))
in our ε-net construction.

Lemma 9 Consider a d-mode tensor A and let H be the d-mode tensor after the Gaussian symmetrization argument as
defined in Section 3.2. Let α be defined as in eqn. (3.9). For all q> 1,(

E sup
x,y∈B2,∞

‖H ×1 x×2 y‖q
2

)1/q

6 (3
√

q)1/q 4d−1
(

log2
1
λ

)d−1

α

(
1+

√
2d ln

2e
λ

+

√
q

λn

)
, (3.13)

assuming that λ 6 1/64.

It is worth noting that the particular choice of the upper bound for λ is an artifact of the analysis and that we could choose
bigger values for λ by introducing a constant factor loss in the above inequality.
Proof. Our proof strategy is similar to the one used in Lemma 8. However, in this case, the construction of the ε-net for the
set B2,∞ is considerably more involved. Recall the definition of B2,∞:

B2,∞ =

{
x ∈ Rn : ‖x‖2 6 1,‖x‖

∞
<

1√
λn

}
.

We now define the following sets of vectors Nk with k = 0,1, ...,2M−1 with M , d2+ log2 1/
√

λe, assuming that λ 6 1:

Nk = {z ∈ B2,∞ : for all i ∈ [n], zi =±
1

2k/2
√

λn
or zi = 0}.
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Our 1
2 -net for B2,∞ will be the set

NB2,∞ = {z ∈ B2,∞ : for all i ∈ [n], zi =±
1

2k/2
√

λn
with either k = 0,1, ...,2M−1 or zi = 0},

Our first lemma argues that NB2,∞ is indeed a 1
2 -net for B2,∞.

Lemma 10 Assuming λ 6 1. For all x ∈ B2,∞ there exists a vector z ∈ NB2,∞ such that

‖x− z‖
∞
6

1

2
√

λn
and ‖x− z‖2 6

1
2
.

Proof. Consider a vector x∈B2,∞ with coordinates xi for all i∈ [n]. If 1
2(k+1)/2

√
λn
6 |xi|< 1

2k/2
√

λn
for some k= 0,1, ...,2M−1,

then we set zi = sign(xi)
1

2(k+1)/2
√

λn
. It is clear from this construction that

|xi− zi|6
1

2k/2
√

λn
− 1

2(k+1)/2
√

λn
=

√
2−1

2(k+1)/2
√

λn
6 (
√

2−1)|xi|.

On the other hand, if |xi|< 1
2M
√

λn
then we set zi = 0. It is also clear that

|xi− zi|<
1

2d2+log2 1/
√

λe
√

λn
6

1

22+log2 1/
√

λ
√

λn
=

1
4
√

n
.

This choice of z is clearly in NB2,∞ and implies that for all i ∈ [n],

|xi− zi|6max
{
(
√

2−1)|xi|,
1

4
√

n

}
6

1

2
√

λn
.

In addition, (xi− zi)
2 6max{(

√
2−1)2x2

i ,
1

16n}6 (
√

2−1)2x2
i +

1
16n implies that

‖x− z‖2
2 6

n

∑
i=1

(
(
√

2−1)2x2
i +

1
16n

)
=

1
16

+(
√

2−1)2 ‖x‖2
2 <

1
4
,

which concludes the lemma. �
Given our definitions for Nk and NB2,∞ , it immediately follows that any vector in NB2,∞ can be expressed as a sum of 2M

vectors, each in Nk with k = 0,1, ...,2M−1. Combining the above lemma with Lemma 4, we get

sup
x,y∈B2,∞

‖H ×1 x×2 y‖2 6 2d−1 sup
x,y∈NB2,∞

‖H ×1 x×2 y‖2

6 2d−1
2M−1

∑
k=0

2M−1

∑
k′=0

sup
x∈Nk,y∈Nk′

‖H ×1 x×2 y‖2 .

We notice here that there are two summations associated with k and k′. However, for general order-d tensor, the total
summations are (d− 1). We now raise both sides of the above inequality to the q-th power. In order to get a meaningful
bound, we employ the following lemma, which is a direct consequence of the Hölder’s inequality.

Lemma 11 Let ai, i = 1, ...,n be nonnegative number. For any q> 1,(
n

∑
i=1

ai

)q

6 nq−1

(
n

∑
i=1

aq
i

)
.
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Applying Lemma 11, we get

sup
x,y∈B2,∞

‖H ×1 x×2 y‖q
2 6 2q(d−1)(2M)2(q−1)

(
2M−1

∑
k=0

2M−1

∑
k′=0

sup
x∈Nk,y∈Nk′

‖H ×1 x×2 y‖q
2

)
. (3.14)

It is important to note that in the general case of order-d tensors we would have a total of (2M)(d−1)(q−1) terms involving
(d− 1) summations (as opposed to (2M)2(q−1) in the case of order-3 tensors). Our final bound accounts for all these terms
and we will return to this point later in this section. Our next lemma bounds the number of vectors in Nk.

Lemma 12 Given our definitions for Nk, |Nk|6 e2kλn ln(2e/λ ).

Proof. For all z ∈ Nk, the number of non-zero entries in z is at most 2kλn, since ‖z‖2 6 1. Let γ = 2kλn and notice that the
number of non-zero entries in z (the “sparsity” of z, denoted by s) can range from 1 up to min(γ,n). For each value of the
sparsity parameter s, there exist 2s

(n
s

)
choices for the non-zero coordinates (

(n
s

)
positions times 2s sign choices). Thus, for k

such that γ 6 n, the cardinality of Nk is bounded by

|Nk|6
γ

∑
s=1

(
n
s

)
2s 6

(
2en
γ

)γ

=

(
2en

2kλn

)γ

6

(
2e
λ

)γ

(3.15)

Similarly, for k such that γ > n, |Nk| 6 ∑
n
s=1
(n

s

)
2s = 3n which is also less than

( 2e
λ

)γ
for λ 6 1. In both cases, we have

|Nk|6 eγ ln(2e/λ ) = e2kλn ln(2e/λ ), as claimed. �
We now proceed to estimate the quantity ‖H ×1 x×2 y‖2 over all vector combinations that appear in eqn. (3.14).

Lemma 13 Using our notation, for any fixed k and k′ in (0,1, ...,2M−1)

E sup
(x,y)∈(Nk,Nk′ )

‖H ×1 x×2 y‖q
2 6 3

√
q
(

α +α
√

2d ln(2e/λ )+α

√
q

λn

)q

. (3.16)

Proof. Without loss of generality, we assume k > k′. We first establish the probability bound via Lemma 7 and then apply
Lemma 3 to obtain the expectation estimate. We have,

max
l

(
∑
i, j

A 2
i jlx

2
i y2

j

)
= max

l

(
∑

i
x2

i ∑
j

y2
jA

2
i jl

)

6 max
l

1
2kλn

(
∑

j
y2

j ∑
i

A 2
i jl

)

6
1

2kλn
max

j,l
∑

i
A 2

i jl .

In the above we used the fact that ‖y‖2 6 1 and ‖x‖
∞
= 1

2k/2
√

λn
. Applying Lemma 7, we get (recall the definition of α from

eqn. (3.9)):

P
(
‖H ×1 x×2 y‖2 > α + t

√
2

1

2k/2
√

λn
α

)
6 e−t2

. (3.17)

Taking the union bound over all possible combinations of vectors x ∈ Nk and y ∈ Nk′ and using Lemma 12 and the fact that
|Nk|6 e2kλn ln(2e/λ ), we get

P

(
sup

x,y∈Nk

‖H ×1 x×2 y‖2 > α + t
√

2
1

2k/2
√

λn
α

)
6 e−t2+(d−1)2kλn ln(2e/λ ),

where the (d−1) factor appears in the exponential because of a union bound over all (d−1) vectors that could appear in the
product H ×1 x×2 y×3 · · · .
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To prove the expectation bound, we apply Lemma 3 with a = α , b =
√

2
2k/2
√

λn
α and h = (d−1)2kλn ln(2e/λ ) to get

E sup
(x,y)∈(Nk,Nk′ )

‖H ×1 x×2 y‖q
2 6 3

√
q
(

a+b
√

h+b
√

q/2
)q

= 3
√

q
(

α +α
√

2(d−1) ln(2e/λ )+α

√
q

2kλn

)q

.

Proving the lemma is now trivial using d−16 d and 2k > 1 for all k > 0. �
Using the bounds of Lemma 13 and combining with eqn. (3.14), we get

E sup
x,y∈B2,∞

‖H ×1 x×2 y‖q
2 6 2q(d−1)(2M)2(q−1)

×

(
2M−1

∑
k=0

2M−1

∑
k′=0

3
√

q
(

α +α
√

2d ln(2e/λ )+α

√
q

λn

)q
)

= 3×2q(d−1)(2M)2q√q
(

α +α
√

2d ln(2e/λ )+α

√
q

λn

)q

.

(3.18)

We note that in the last equation, the number two that appears in the exponent of the term 2M accounts for the two summations
associated with x ∈ Nk and y ∈ Nk′ . In general, for order-d tensors, there are at most (d− 1) such summations. Therefore,
after some rearranging of terms,

E sup
x,y∈B2,∞

‖H ×1 x×2 y‖q
2 6 3

√
q
(

2d−1(2M)d−1
(

α +α
√

2d ln(2e/λ )+α

√
q

λn

))q

.

To conclude the proof of Lemma 9 we use our assumption on λ and the following inequality:

M = d2+ log2
1√
λ
e6 3+ log2

1√
λ
6 2log2

1√
λ

= log2 1/λ .

�

3.2.4 Controlling combinations of sparse and spread vectors . We now prove the following lemma bounding the contribution
of combinations of sparse and spread vectors (terms (3.7) and (3.8)) in our ε-net construction.

Lemma 14 Consider a d-mode tensor A and let H be the d-mode tensor after the Gaussian symmetrization argument as
defined in Section 3.2. Let α be defined as in eqn. (3.9). For all q> 1,(

E sup
x∈B2,0,y∈B2,∞

‖H ×1 x×2 y‖q
2

)1/q

6 (3
√

q)1/q 4d−1
(

log2
1
λ

)d−2

α

(
1+

√
2d ln

5e
λ

+

√
q

λn

)
, (3.19)

assuming that λ 6 1/64.

It is worth noting that the particular choice of the upper bound for λn is an artifact of the analysis and that we could choose
bigger values for λn by introducing a constant factor loss in the above inequality.
Proof. Let x ∈ B2,0 and y ∈ B2,∞. In Sections 3.2.2 and 3.2.3 we defined NB2,0 (a 1/2-net for B2,0) and NB2,∞ (a 1/2-net for
B2,∞). Recall that for K = λn, B2,0 was the union of

(n
K

)
K-dimensional subsets B2,0,K . Consequently, the 1/2-net NB2,0 is the

union of the 1/2-nets NB2,0,K (each NB2,0,K is the 1/2-net of B2,0,K). Recall from Section 3.2.2 that the cardinality of NB2,0 is
bounded by ∣∣NB2,0

∣∣= (n
K

)∣∣NB2,0,K

∣∣6 (en
K

)K
5K =

(
5e
λ

)λn

. (3.20)

We apply Lemma 4 to get

sup
x∈B2,0,y∈B2,∞

‖H ×1 x×2 y‖2 6 2d−1 sup
x∈NB2,0 ,y∈NB2,∞

‖H ×1 x×2 y‖2 . (3.21)
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It is now important to note that for a general d-mode tensor H the above product H ×1 x×2 y×3 · · · would be computed
over d− 1 vectors, with at least one those vectors (w.l.o.g. x) in NB2,∞ and at least one of those vectors (w.l.o.g. y) in NB2,0 .
Each of the remaining (d− 3) vectors could belong either to NB2,0 or to NB2,∞ . In order to proceed with our analysis, we
will need to further express the vectors belonging to NB2,∞ as a sum of 2M vectors belonging to Nk with k = 0,1, ...,2M−1
and M = d2+ log2 1/

√
λe, respectively. (The reader might want to recall our definition for Nk from Section 3.2.3). We note

that the cardinality upper bound of the set NB2,∞ is considerably larger than that of the set NB2,0 . This can be easily seen by
comparing the upper bound of |Nk| in Lemma 12 with that of |NB2,0 | in (3.20). Therefore, we only need to consider the worse
case scenario, in which all (d−2) vectors in the product H ×1 x×2 y×3 · · · belong to NB2,∞ . The bound for other cases will
be smaller than the bound under consideration. The product can be expressed as a sum of (at most) (2M)d−2 terms as follows:

H ×1 x×2 y · · ·×d z =
2M−1

∑
k=1
· · ·

2M−1

∑
k′=1

H ×1 x×2 yk · · ·×d zk′

where x ∈ NB2,0 , y,z ∈ NB2,∞ , yk ∈ Nk, and zk′ ∈ Nk′ . Therefore, applying Lemma 11 and taking the expection, we get

E sup
x∈NB2,0 ,y∈NB2,∞

‖H ×1 x×2 y · · ·‖q
2

6 (2M)(d−2)(q−1)

(
2M−1

∑
k=1
· · ·

2M−1

∑
k′=1

E sup
x∈NB2,0 ,y∈Nk,...,z∈Nk′

‖H ×1 x×2 y · · ·×d z‖q
2

)
.

(3.22)

We now need a bound, in expectation, for the q-th power of the `2 norm for each of the (2M)d−2 terms. Fortunately, this
bound has essentially already been derived in Section 3.2.3. We start by noting that the bound of eqn. (3.17) holds when at
least one of the vectors in the product H ×1 x×2 y · · · belongs to Nk. Thus,

P
(
‖H ×1 x×2 y · · ·×d z‖2 > α + t

√
2

1

2max{k,...,k′}/2
√

λn
α

)
6 e−t2

(3.23)

holds for any x ∈ NB2,0 , y ∈ Nk,..., and z ∈ Nk′ . We apply a union bound by noting that from Lemma 12 the cardinalities of

Nk are upper bounded by e2kλn ln(e/2k−1λ ) 6 e2kλn ln(2e/λ ). Combining with eqn. (3.20) we get that the total number of possible
vectors over which the sup of eqn. (3.23) is computed does not exceed(

5e
λ

)λn

e2kλn ln(2e/λ ) · · ·e2k′λn ln(2e/λ )︸ ︷︷ ︸
(d−2) terms

6 e(d−1)2max{k,...,k′}λn ln(5e/λ ).

We can now use a standard union bound over all x ∈ NB2,0 , y ∈ Nk,..., and z ∈ Nk′ to get

P
(

sup‖H ×1 xi×2 y · · ·‖2 > α + t
√

2
1

2max{k,...,k′}/2
√

λn
α

)
6 e−t2+(d−1)2max{k,...,k′}λn ln(5e/λ ).

We are now ready to apply Lemma 3 with a = α , b =
√

2
2max{k,...,k′}/2

√
λn

α , and h = (d−1)2max{k,...,k′}λn ln(5e/λ ) to get

E sup
x∈NB2,0 ,y∈Nk,···

‖H ×1 x×2 y · · ·‖q
2 6 3

√
q
(

a+b
√

h+b
√

q/2
)q

.

Combining with eqns. (3.21) and (3.22) we get

E sup
x∈B2,∞,y∈B2,0

‖H ×1 x×2 y · · ·‖q
2 6 3

√
q
(

2d−1(2M)d−2
(

a+b
√

h+b
√

q/2
))q

.

The proof follows by substituting the values of a, b, and h in the above equation together with the fact that M = d2 +
log2

1√
λ
e6 3+ log2

1√
λ
6 2log2

1√
λ
= log2 1/λ . �
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3.2.5 Concluding the proof of Theorem 2. Given the results of the preceding sections we can now conclude the proof of
Theorem 2. We combine Lemmas 8, 9, and 14 in order to bound terms (3.5), (3.6), (3.7), and (3.8). First,

(E‖H ‖q
2)

1/q 6(3
√

q)1/q 2d−1
(

α +β
√

2dλn ln(5e/λ )+β
√

q
)

+(3
√

q)1/q 4d−1 (log2 1/λ )d−1
(

α +α
√

2d ln(5e/λ )+α

√
q

λn

)
+
(

2d−1−2
)
× (3
√

q)1/q 4d−1 (log2 1/λ )d−2
(

α +α
√

2d ln(5e/λ )+α

√
q

λn

)
.

In the above bound we leveraged the observation that the right-hand side of the bound in Lemma 14 is also an upper bound
for the right-hand side of the bound in Lemma 9 for all λ 6 1. It is also crucial to note that the constant 2d−1−2 that appears
in the second term of the above inequality emerges since for general order-d tensors we would have to account for a total
of 2d−1 terms in the last inequality of Section 3.2.1. Clearly, for order-3 tensors, this inequality has a total of four terms.
Simplifying the right-hand side via the assumption q6 2dλn ln(5e/λ ) and the fact that q1/q is bounded by e, we obtain

(E‖H ‖q
2)

1/q 6 c18d−1
(

α[log2 1/λ ]d−1 +β
√

λn
)√

2d ln(5e/λ ), (3.24)

where c1 is a small constant. We now remind the reader that the entries Hi jk of the tensor H are equal to gi jkAi jk, where the
gi jk’s are standard Gaussian random variables. Thus,

E‖H ‖q
2 = Eg

∥∥∥∥∥∑
i, j,k

gi jkAi jk · ei⊗ e j⊗ ek

∥∥∥∥∥
q

2

.

Substituting eqn. (3.24) to eqn. (3.2) yields(
EA

∥∥∥A − Â
∥∥∥q

2

)1/q
6
√

2π

(
EA

[
c18d−1

(
α[log2 1/λ ]d−1 +β

√
λn
)]q)1/q

= c28d

√
2d ln

(
5e
λ

)[
EA

(
α[log2 1/λ ]d−1 +β

√
λn
)q]1/q

6 c38d

√
2d ln

(
5e
λ

)(
[log2 1/λ ]d−1 (EA α

q)1/q +
√

λn(EA β
q)1/q

)
,

(3.25)

where the last inequality follows from Lemma 11. Finally, we rewrite the EA αq as

EA α
q = EA max

max
i, j

(
n

∑
k=1

A 2
i jk

)q/2

,max
i,k

(
n

∑
j=1

A 2
i jk

)q/2

,max
j,k

(
n

∑
i=1

A 2
i jk

)q/2


6 EA max
i, j

(
n

∑
k=1

A 2
i jk

)q/2

+EA max
i,k

(
n

∑
j=1

A 2
i jk

)q/2

+EA max
j,k

(
n

∑
i=1

A 2
i jk

)q/2

.

More generally, for any order-d tensor, we get

EA α
q 6

d

∑
j=1

EA max
i1,...,i j−1,i j+1,...,id

(
n

∑
i j=1

A 2
i1...i j−1i j i j+1...id

)q/2

.

Combining the above inequality and eqn. (3.25) concludes the proof of Theorem 2.

4. Proving Theorem 1

The main idea underlying our proof is the application of a divide-and-conquer-type strategy in order to decompose the tensor
A − Ã as a sum of tensors whose entries are bounded. Then, we will apply Theorem 2 and Corollary 2 to estimate the
spectral norm of each tensor in the summand independently.
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To formally present our analysis, let A [1] ∈ Rn×...×n be a tensor containing all entries Ai1...id of A that satisfy A 2
i1...id >

2−1 ‖A ‖2F
s ; the remaining entries of A [1] are set to zero. Similarly, we let A [k] ∈Rn×...×n (for all k > 1) be tensors that contain

all entries Ai1...id of A that satisfy A 2
i1...id ∈

[
2−k ‖A ‖2F

s ,2−k+1 ‖A ‖2F
s

)
; the remaining entries of A [k] are set to zero. Finally,

the tensors Ã [k] (for all k = 1,2, . . .) contain the (rescaled) entries of the corresponding tensor A [k] that were selected after
applying the sparsification procedure of Algorithm 1 to A . Given these definitions,

A =
∞

∑
k=1

A [k] and Ã =
∞

∑
k=1

Ã [k].

Let `,
⌊
log2

(
nd/2/ lnd n

)⌋
. Then,∥∥∥A − Ã
∥∥∥

2
=

∥∥∥∥∥ ∞

∑
k=1

(
A [k]− Ã [k]

)∥∥∥∥∥
2

6
∥∥∥A [1]− Ã [1]

∥∥∥
2
+

`

∑
k=2

∥∥∥A [k]− Ã [k]
∥∥∥

2
+

∥∥∥∥∥ ∞

∑
k=`+1

(
A [k]− Ã [k]

)∥∥∥∥∥
2

.

Using the inequality (E(x+ y)q)1/q 6 (Exq)1/q +(Eyq)1/q, we conclude that(
E
∥∥∥A − Ã

∥∥∥q

2

)1/q
6

(
E
∥∥∥A [1]− Ã [1]

∥∥∥q

2

)1/q
(4.1)

+
`

∑
k=2

(
E
∥∥∥A [k]− Ã [k]

∥∥∥q

2

)1/q
(4.2)

+

(
E

∥∥∥∥∥ ∞

∑
k=`+1

(
A [k]− Ã [k]

)∥∥∥∥∥
q

2

)1/q

. (4.3)

The remainder of the section will focus on the derivation of bounds for terms (4.1), (4.2), and (4.3) of the above equation.

4.1 Term (4.1): Bounding the spectral norm of A [1]− Ã [1]

The main result of this section is summarized in the following lemma.

Lemma 15 Let q6 5n
8 . Then,

(
E
∥∥∥A [1]− Ã [1]

∥∥∥q)1/q
6 c148dd1/q+1/2

√
n‖A ‖2

F
s

,

where c1 is a small numerical constant.

Proof. For notational convenience, let B = A [1]− Ã [1] and let Bi1...id denote the entries of B. Recall that A [1] only

contains entries of A whose squares are greater than or equal to 2−1 ‖A ‖2F
s . Also, recall that Ã [1] only contains the (rescaled)

entries of A [1] that were selected after applying the sparsification procedure of Algorithm 1 to A . Using these definitions,
Bi1...id is equal to:

Bi1...id =


0 ,if A 2

i1...id < 2−1 ‖A ‖2F
s

0 ,if A 2
i1...id >

‖A ‖2F
s (since pi1...id = 1 )(

1− p−1
i1...id

)
Ai1...id ,with probability pi1...id =

sA 2
i1 ...id
‖A ‖2F

< 1

Ai1...id ,with probability 1− pi1...id

It is easily seen from the formula of Bi1...id that B2
i1...id 6

A 2
i1 ...id

p2
i1 ...id

6 ‖A ‖4F
s2A 2

i1 ...id

6 ‖A ‖
2
F

s , which leads to

(
EBq

i1...id

)1/q
6

√
‖A ‖2

F
s

.
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In addition, we have for any j, maxi1,...,i j−1,i j+1,...,id ∑
n
i j=1 B2

i1...i j−1i j+1...id 6
n‖B‖2F

s , which leads to

 d

∑
j=1

E max
i1,...,i j−1,i j+1,...,id

(
n

∑
i j=1

B2
i1...i j−1i j i j+1...id

)q/2
1/q

6

 d

∑
j=1

E max
i1,...,i j−1,i j+1,...,id

(
n

∑
i j=1

‖A ‖2
F

s

)q/2
1/q

6

d

(
n
‖A ‖2

F
s

)q/2
1/q

= d1/q

√
n‖A ‖2

F
s

.

We will estimate the quantity
(
E‖B‖q

2

)1/q via Corollary 2 as follows:

(E‖B‖q)1/q 6 c8d

√
2d ln

(
5e
λ

)[log2
1
λ

]d−1

d1/q

√
n‖A ‖2

F
s

+
√

λn

√
‖A ‖2

F
s

 . (4.4)

The proof follows by setting λ = 1
64 . �

4.2 Term (4.2): Bounding the spectral norm of A [k]− Ã [k] for small k

We now focus on estimating the spectral norm of the tensors A [k]− Ã [k] for 2 6 k 6
⌊

log2

(
nd/2/ lnd/2 n

)⌋
. The following

lemma summarizes the main result of this section.

Lemma 16 Assume that q6 2dλkn ln5e/λk; for all 26 k 6
⌊

log2

(
nd/2/ lnd/2 n

)⌋
and λk 6 1/64,

(
E
∥∥∥A [k]− Ã [k]

∥∥∥q

2

)1/q
6 c28d

√
2d ln

(
5e
λk

)([
log2

1
λk

]d−1

(2d)
1
2q

√
5n+(d lnn+q)2k+1 +

√
λk2kn

)√
‖A ‖2

F
s

,

where c2 is a small numerical constant.

Proof. For notational convenience, we let Ãi1...id denote the entries of the tensor Ã [k]. Then,

Ãi1...id =
δi1...id Ai1...id

pi1...id
, (4.5)

for those entries Ai1...id of A satisfying A 2
i1...id ∈

[
‖A ‖2F

2ks ,
‖A ‖2F
2k−1s

)
. All the entries of Ã [k] that correspond to entries of A

outside this interval are set to zero. The indicator function δi1...id is defined as

δi1...id =

1 with probability pi1...id =
sA 2

i1 ...id
‖A ‖2F

6 1

0 with probability 1− pi1...id

Notice that pi1...id is always in the interval
[
2−k,2−(k−1)

)
from the constraint on the size of A 2

i1...id . It is now easy to see that

EÃ [k] = A [k]. Thus, by applying Theorem 2 with the parameter λk,

(
E
∥∥∥A [k]− Ã [k]

∥∥∥q

2

) 1
q
6 c8d

√
2d ln

(
5e
λk

)[log2
1
λk

]d−1
(

d

∑
j=1

Eα
q
j

) 1
q

+
√

λkn(Eβ
q)

1
q

 , (4.6)

where

α
2
j , max

i1,...,i j−1,i j+1,...,id

(
n

∑
i j=1

Ã 2
i1...i j−1i j i j+1...id

)
and β = max

i1,...,id
|Ãi1...id |.



20 of 28

We now follow the same strategy as in Section 4.1 in order to estimate the expectation terms in the right-hand side of the
above inequality (i.e., we focus on the first term ( j = 1) only). First, note that

E max
i2,...,id

(
n

∑
i1=1

Ã 2
i1...id

)q/2

6

√√√√E max
i2,...,id

(
n

∑
i1=1

Ã 2
i1...id

)q

.

Let Si2...id = ∑i1 Ã 2
i1...id . Then, using eqn. (4.5), the definition of pi1...id , and δ 2

i1...id = δi1...id , we get

Si2...id =
n

∑
i1=1

δi1...id

p2
i1...id

A 2
i1...id =

n

∑
i1=1

δi1...id
‖A ‖4

F

A 4
i1...id

s2 A 2
i1...id =

n

∑
i1=1

δi1...id
‖A ‖4

F

s2A 2
i1...id

.

Using A 2
i1...id >

2−k‖A ‖2F
s , we get Si2...id 6

2k‖A ‖2F
s

(
∑i1 δi1...id

)
, which leads to

E max
i2,...,id

n

∑
i1=1

(
Ã 2

i1...id

)q
= E max

i2,...,id
Sq

i2...id
6

(
2k ‖A ‖2

F
s

)q

E max
i2,...,id

(
n

∑
i1=1

δi1...id

)q

. (4.7)

We now seek a bound for the expectation Emaxi2,...,id ∑i1

(
δi1...id

)q. The following lemma, whose proof may be found in the
Appendix, provides such a bound.

Lemma 17 For any q> 1, we have

E max
i2,...,id

(
n

∑
i1=1

δi1...id

)q

6 2
(

5n2−k +2d lnn+2q
)q

.

Combining Lemma 17 and equation (4.7), we obtain

E

(
max

i2,...,id

n

∑
i1=1

Ã 2
i1...id

)q

6 2

(
(5n+2(d lnn+q)2k)‖A ‖2

F
s

)q

.

The same bound can be derived for all other terms in the first summand of eqn. (4.6). Thus,(
d

∑
j=1

Eα
q
j

) 1
q

6

(
d

∑
j=1

E

(
max

i1,...,i j−1,i j+1,...,id

n

∑
i j=1

Ã 2
i1...i j−1i j i j+1...id

)q) 1
2q

6 (2d)
1
2q

√
(5n+(d lnn+q)2k+1)‖A ‖2

F
s

.

In addition, we have Ã 2
i1...id 6

A 2
i1 ...id

p2
i1 ...id

6 ‖A ‖4F
s2A 2

i1 ...id

6 2k‖A ‖2F
s . Thus,

(Eβ
q)

1
q 6

√
2k ‖A ‖2

F
s

.

Substituting these two inequalities into eqn. (4.6) we get the claim of the lemma. �

4.3 Term (4.3): bounding the tail

We now focus on values of k that exceed `=
⌊
log2

(
nd/2/ lnd n

)⌋
and prove the following lemma, which immediately provides

a bound for term (4.3).

Lemma 18 Using our notation, ∥∥∥∥∥ ∞

∑
k=`+1

(
A [k]− Ã [k]

)∥∥∥∥∥
2

6

√
nd/2 lnd n

s
‖A ‖F .
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Proof. Intuitively, by the definition of A [k], we can observe that when k is larger than ` =
⌊
log2

(
nd/2/ lnd n

)⌋
, the entries

of A [k] are very small, whereas the entries of Ã [k] are all set to zero during the second step of our sparsification algorithm.
Formally, consider the sum

D =
∞

∑
k=`+1

(
A [k]− Ã [k]

)
.

For all k > `+ 1 > log2
(
nd/2/ lnd n

)
, notice that the squares of all the entries of A [k] are at most lnd n

nd/2
‖A ‖2F

s (by definition)

and thus the tensors Ã [k] are all-zero tensors. The above sum now reduces to

D =
∞

∑
k=`+1

A [k],

where the squares of all the entries of D are at most lnd n
nd/2

‖A ‖2F
s . Since D ∈ Rn×...×n, using ‖D‖2 6 ‖D‖F , we immediately

get

‖D‖2 =

∥∥∥∥∥ ∞

∑
k=`+1

(
A [k]− Ã [k]

)∥∥∥∥∥
2

6

√
n

∑
i1,i2,...,id=1

D2
i1...id

6

√
nd/2 lnd n

s
‖A ‖F .

�

4.4 Completing the proof of Theorem 1

Theorem 1 emerges by substituting Lemmas 15, 16, and 18 to bound terms (4.1), (4.2), and (4.3). We have(
E
∥∥∥A − Ã

∥∥∥2d lnn

2

) 1
2d lnn
6 c148dd1/q+1/2√n

‖A ‖F√
s

+
blog2(nd/2/ lnd n)c

∑
k=2

c28d

√
2d ln

5e
λk

(
log2

1
λk

)d−1

(2d)
1
2q

√
5n+(d lnn+q)2k+1 ‖A ‖F√

s

+
blog2(nd/2/ lnd n)c

∑
k=2

c28d

√
2d ln

5e
λk

√
2kλkn

‖A ‖F√
s

+
√

nd/2 lnd n
‖A ‖F√

s
, (M1 +M2 +M3 +M4)

‖A ‖F√
s

.

(4.8)

While the first term M1 and the last term M4 on the right-hand side are fixed, the second and third terms largely depends on
the choice of parameters λk. We would want to select λk’s such that the right-hand side is as small as possible. For this task,
we set

λk ,
1
n

for k = 2,3, ..., log2
nd/2

lnd n
.

Clearly, λk 6
1
64 as required by Theorem 2. In addition, the requirement q 6 2dλkn ln 5e

λk
is always satisfied as long as

q6 2d lnn. We set q, 2d lnn. This immediately implies that the quantity d1/q is bounded by a constant. Let N ,
⌊

log2
nd/2

lnd n

⌋
to get

N

∑
k=2

√
2k =

bN/2c

∑
k=1

2k +21/2
b(N−1)/2c

∑
k=1

2k 6 (2bN/2c+1−1)+21/2(2b(N−1)/2c+1−1)

6 4×2N/2 6 4

√
nd/2

lnd n

(4.9)

Using the fact that
√

5n+(d lnn+q)2k+1 6
√

5n+
√

3d2k+1 lnn and log2 n 6 lnn, we can get the upper bound of M2 as
follows:
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M2 6
log2(nd/2/ lnd n)

∑
k=2

c48d(2d ln(5en))1/2(lnn)d−1(
√

5n+
√

3d2k+1 lnn)

6 c48d
√

d log2

(
nd/2

lnd n

)
(lnn)d−1/2√n+ c58dd lnd n

log2(nd/2/ lnd n)

∑
k=2

2k/2

6 c58dd3/2n1/2(lnn)d+1/2 + c68dd(lnn)d

√
nd/2

lnd n
,

where the last inequality is due to eqn. (4.9). For d > 3, we derive an upper bound for M2 as follows:

M2 6 c88dd3/2
√

nd/2 lnd n

√√√√max

{
1,

lnd+1 n
nd/2−1

}
.

A similar bound can be derived for M3:

M3 =
blog2(nd/2/ lnd n)c

∑
k=2

c28d(2d ln(5en))1/2
√

2k 6 c98d
√

d

√
nd/2

lnd−1 n
.

Combining the above results and substituting into (4.8), we get

(
E
∥∥∥A − Ã

∥∥∥2d lnn

2

) 1
2d lnn
6 c1020dd3/2

√√√√max

{
1,

lnd+1 n
nd/2−1

}√
nd/2 lnd n

s
‖A ‖F ,

where the bound is due to the fact that 48d 6 20d
√

lnd n for any n> 320. Applying Markov’s inequality, we conclude that

∥∥∥A − Ã
∥∥∥

2
6 c′1020d

√√√√max

{
1,

lnd+1 n
nd/2−1

}√
d3nd/2 lnd n

s
‖A ‖F

holds with probability at least 1− n−2d . The first part of Theorem 1 now follows by setting s to the appropriate value. For
d = 2, the upper bound for M2 can be simplified:

M2 6 c78dd
√

n ln5 n.

Following the same steps as above, we also derive that

∥∥∥A − Ã
∥∥∥

2
6 c′1020dd

√
n ln5 n

s
‖A ‖F

holds with probability at least 1−n−4. Theorem 1 now follows by setting s to the appropriate value.

5. Conclusions and open problems

We presented the first provable bound for tensor sparsification with respect to the spectral norm. The main technical difficulty
that we had to address in our work was the lack of measure concentration inequalities (analogous to the matrix-Bernstein and
matrix-Chernoff bounds) for random tensors. To overcome this obstacle, we developed such an inequality using the so-called
entropy-concentration tradeoff. To the best of our knowledge, this is the first bound of its kind in the literature.

An interesting open problem would be to investigate whether there exist algorithms that, either deterministically or prob-
abilistically, select elements of A to include in ˜A and achieve much better accuracy than existing schemes. For example,
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notice that our algorithm, as well as prior ones, sample entries of A with respect to their magnitudes; better sampling schemes
might be possible. Improved accuracy will probably come at the expense of increased running time. Such algorithms would
be very interesting from a mathematical and algorithmic viewpoint, since they will allow a better quantification of properties
of a matrix/tensor in terms of its entries.
Acknowledgements. We would like to thank Prof. Dimitris Achlioptas for bringing [21] to our attention, as well as Tasos
Zouzias for numerous useful discussions regarding our results. We also would be grateful to Prof. Roman Vershynin for the
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[20] Z. Füredi and J. Komlós. The eigenvalues of random symmetric matrices. Combinatorica, 1(3):233–241, 1981.

[21] A. Gittens and J. Tropp. Error bounds for random matrix approximation schemes. Preprint, 2009.

[22] T. G. Kolda. Orthogonal tensor decompositions. SIAM Journal on Matrix Analysis and Applications, 23(1):243–255,
2001.

[23] T. G. Kolda and B. W. Bader. Tensor Decompositions and Applications. SIAM Review, 51(3):455–500, 2009.

[24] R. Latala. Somes estimates of norms of random matrices. Proceeding of the American Mathematical Society,
133(5):1273–1282, 2004.

[25] L. De Lathauwer, B. De Moor, and J. Vandewalle. An introduction to independent component analysis. Journal of
Chemometrics, 14:123–149, 2000.

[26] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition. SIAM Journal on Matrix
Analysis and Applications, 21(4):1253–1278, 2000.

[27] L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1 and rank-(R1,R2,. . .,RN) approximation of higher-
order tensors. SIAM Journal on Matrix Analysis and Applications, 21(4):1324–1342, 2000.

[28] M. Ledoux. The Concentration of Measure Phenomenon. American Mathematical Society, 2001.

[29] M. Ledoux and M. Talagrand. Probability in Banach Space: Isoperimetry and Processes. Springer, 1991.

[30] M. W. Mahoney and P. Drineas. CUR matrix decompositions for improved data analysis. Proceedings of the National
Academy of Sciences, 106(3):697–702, 2009.

[31] M. W. Mahoney, M. Maggioni, and P. Drineas. Tensor-CUR decompositions for tensor-based data. In Proceedings of
the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 327–336, 2006.

[32] M. W. Mahoney, M. Maggioni, and P. Drineas. Tensor-CUR decompositions and data applications. SIAM Journal on
Matrix Analysis and Applications, 30(2):957–987, 2008.

[33] N.H. Nguyen, T.T. Do, and T.D. Tran. A fast and efficient algorithm for low-rank approximation of a matrix. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pages 215–224, 2009.

[34] R. I. Oliveira. Sums of random hermitian matrices and an inequality by rudelson. Electronic Communications in
Probability, 15:203–212, 2002.

[35] M. Rudelson and R. Vershynin. The smallest singular value of a random rectangular matrix. Communications on Pure
and Applied Mathematics, 62:1707–1739, 2009.

[36] T. Sarlos. Improved approximation algorithms for large matrices via random projections. In IEEE Symposium on
Foundations of Computer Science (FOCS), 2006.

[37] D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances. In Proceedings of the 40th Annual
IEEE Symposium on Foundations of Computer Science, pages 563–568, 2008.

[38] J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics,
1:2–20, 2012.



REFERENCES 25 of 28

[39] J. A. Tropp. An introduction to matrix concentration inequalities. Preprint, 2015.

[40] C. E. Tsourakakis. Mach: Fast randomized tensor decompositions. In SIAM international conference on Data Mining,
pages 689–700, 2010.

[41] R. Vershynin. Spectral norm of products of random and deterministic matrices. Probability Theory and Related Fields,
150:471–509, 2011.

[42] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. Compressed sensing: Theory and
Applications, pages 210–268, 2012. Cambridge University Press, Cambridge.

Appendix

Proof of Lemma 3.
Proof. (a) From our assumption,

P(X > a+b(t +h))6 e−t .

Let s = a+b(t +h). For any q> 1,

EXq =
∫

∞

0
P(X > s)dsq = q

∫
∞

0
P(X > s)sq−1ds

6 q
∫ a+bh

0
sq−1ds+q

∫
∞

a+bh
sq−1e−

(s−a−bh)
b ds.

The first term in the above sum is equal to (a+bh)q. The second term is somewhat harder to compute. We start by letting
g = a+bh and changing variables, thus getting

∫
∞

a+bh
sq−1e−

(s−a−bh)
b ds = b

∫
∞

0
(g+bt)q−1e−tdt = b

q−1

∑
i=0

(
q−1

i

)
bq−1−igi

∫
∞

0
tq−1−ie−tdt.

We can now integrate by parts and get∫
∞

0
tq−1−ie−tdt = (q−1− i)!6 qq−1−i for all i = 0, ...,q−1.

Combining the above,

q
∫

∞

a+bh
sq−1e−

(s−a−bh)
b ds6 qb

q−1

∑
i=0

(
q−1

i

)
(bq)q−1−igi = qb(bq+g)q−1.

Finally,
EXq 6 (a+bh)q +bq(bq+g)q−1 6 2(a+bh+bq)q,

which concludes the proof of the first part.
(b) From our assumption and since t and h are non-negative, we get

P(X > a+b(t +
√

h))6 e−(t+
√

h)2+h 6 e−t2
.

Let s = a+b
√

h+ tb. For any q> 1,

EXq =
∫

∞

0
P(X > s)dsq = q

∫
∞

0
P(X > s)sq−1ds

6 q
∫ a+b

√
h

0
sq−1ds+q

∫
∞

a+b
√

h
sq−1e−

(s−a−b
√

h)2

b2 ds.
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The first term in the above sum is equal to
(

a+b
√

h
)q

. We now evaluate the second integral. Let g = a+b
√

h and perform
a change of variables to get∫

∞

a+b
√

h
sq−1e−

(s−a−b
√

h)2

b2 ds = b
∫

∞

0
(g+bt)q−1e−t2

dt

= b
q−1

∑
i=0

(
q−1

i

)
bq−1−igi

∫
∞

0
tq−1−ie−t2

dt.

By integrating by parts we get (see below for a proof of eqn. (5.1)):

∫
∞

0
tq−1−ie−t2

dt 6

√
π

2

(
q−1− i

2

)(q−1−i)/2

6

√
π

2

(q
2

)(q−1−i)/2
. (5.1)

Thus, using g = a+b
√

h,

∫
∞

a+b
√

h
sq−1e−

(s−a−b
√

h)2

b2 ds6 b

√
π

2

q−1

∑
i=0

(
q−1

i

)(
b
√

q
2

)q−1−i

gi 6
√

2b
(

a+b
√

h+b
√

q
2

)q−1

.

Finally, we conclude that

EXq 6
(

a+b
√

h
)q

+
√

2bq
(

a+b
√

h+b
√

q
2

)q−1

6

(
a+b

√
h+b

√
q
2

)q

+
√

4q
(

a+b
√

h+b
√

q
2

)q

6 3
√

q
(

a+b
√

h+b
√

q
2

)q

,

which is the claim of the lemma. In the above we used the positivity of a,b, and h as well as the fact that 1+
√

4q6 3
√

q for
all q> 1. �
Proof of eqn. (5.1).
Proof. We now compute the integral

∫
∞

0 tqe−t2
dt. Integrating by parts, we get∫

∞

0
tqe−t2

dt =
1
2

∫
∞

0
−tq−1de−t2

= −1
2

tq−1e−t2 |∞0 +
1
2

∫
∞

0
e−t2

dtq−1

=
1
2
(q−1)

∫
∞

0
tq−2e−t2

dt.

When q is even, we get

∫
∞

0
tqe−t2

dt =
(

1
2

)q/2

(q−1)!!
∫

∞

0
e−t2

dt =

√
π

2

(
1
2

)q/2

(q−1)!!.

where q!! = q(q−2)(q−4) · · · . If q is odd, then

∫
∞

0
tqe−t2

dt =
(

1
2

)bq/2c
(q−1)!!

∫
∞

0
te−t2

dt =
(

1
2

)bq/2c+1

(q−1)!!.

We thus conlude ∫
∞

0
tqe−t2

dt 6

√
π

2

(
1
2

)bq/2c
(q−1)!!6

√
π

2

(
q−1

2

)bq/2c
6

√
π

2

(
q−1

2

)q/2

.
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�
Proof of Lemma 4.
Proof. We start by noting that every vector z ∈ B can be written as z = x+h, where x lies in N and h ∈ εB. Using the triangle
inequality for the tensor spectral norm, we get

sup
z∈B
‖A ×1 z‖2 6 sup

x∈N
‖A ×1 x‖2 + sup

h∈εB
‖A ×1 h‖2 .

It is now easy to bound the second term in the right-hand side of the above equation by ε supz∈B ‖A ×1 z‖2. Thus,

sup
z∈B
‖A ×1 z‖2 6

1
1− ε

sup
x∈N
‖A ×1 x‖2 .

Repeating the same argument recursively for the tensor A ×1 x etc. we obtain the lemma. �
Proof of Lemma 17.
Proof. Let S = maxi2,...,id ∑

n
i1=1 δi1...id . We will first estimate the probability P(S > t) and then apply Lemma 3 in order to

bound the expectation ESq. Recall from the definition of δi1...id that E
(
δi1...id − pi1...id

)
= 0 and let

X =
n

∑
i1=1

(
δi1...id − pi1...id

)
.

We will apply Bennett’s inequality in order to bound X . Clearly
∣∣δi1...id − pi1...id

∣∣6 1 and

Var(X) =
n

∑
i1=1

Var
(
δi1...id − pi1...id

)
=

n

∑
i1=1

E
(
δi1...id − pi1...id

)2

=
n

∑
i1=1

(
pi1...id − p2

i1...id

)
6

n

∑
i1=1

pi1...id .

Recalling the definition of pi1...id and the bounds on the Ai1...id ’s, we get

Var(X)6
n

∑
i1=1

sA 2
i1...id

‖A ‖2
F

6 n2−(k−1).

We can now apply Bennett’s inequality in order to get

P(X > t) = P

(
n

∑
i1=1

δi1...id >
n

∑
i1=1

pi1...id + t

)
6 e−t/2,

for any t > 3n2−(k−1)/2. Thus, with probability at least 1− e−t/2,

n

∑
i1=1

δi1...id 6 n2−(k−1)+ t,

since ∑
n
i1=1 pi1...id 6 n2−(k−1). Setting t =

(
3n2−(k−1)/2

)
+2τ for any τ > 0 we get

P

(
n

∑
i1=1

δi1...id >
5
2

n2−(k−1)+2τ

)
6 e−τ .

Taking a union bound yields

P

(
max

i2,...,id

n

∑
i1=1

δi1...id > 5n2−k +2τ

)
6 nd−1e−τ = e−τ+(d−1) lnn,
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where the nd−1 term appears because of all possible choices for the indices i2, . . . , id . Applying Lemma 3 with a = 5n2−k,
b = 2, and h = (d−1) lnn, we get

E

(
max

i2,...,id

n

∑
i1=1

δi1...id

)q

6 2
(

5n2−k +2(d−1) lnn+2q
)q
6 2

(
5n2−k +2d lnn+2q

)q
. (5.2)

The proof is completed.
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