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Abstract

Given an m × n matrix A and an n × p matrix B,
we present 2 simple and intuitive algorithms to compute
an approximation P to the product A ·B, with provable
bounds for the norm of the “error matrix” P − A · B.
Both algorithms run in O(mp+mn+np) time. In both
algorithms, we randomly pick s = O(1) columns of A to
form an m× s matrix S and the corresponding rows of
B to form an s×p matrix R. After scaling the columns
of S and the rows of R, we multiply them together to
obtain our approximation P . The choice of the prob-
ability distribution we use for picking the columns of
A and the scaling are the crucial features which enable
us to give fairly elementary proofs of the error bounds.
Our first algorithm can be implemented without stor-
ing the matrices A and B in Random Access Memory,
provided we can make two passes through the matrices
(stored in external memory). The second algorithm has
a smaller bound on the 2-norm of the error matrix, but
requires storage of A and B in RAM. We also present
a fast algorithm that “describes” P as a sum of rank
one matrices if B = AT .

1 Introduction

In many applications the data consists of a large
m × n matrix A and it is of interest to compute (or
approximate) the product A ·AT .

One such application is to Information Retrieval.
Given a database of documents, we represent it as
an m × n document-term matrix A (that is m doc-
uments each described w.r.t. n terms or equivalently
m document-vectors in Rn). Our goal is to find all
document - document matches, that is all entries in
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A ·AT that are larger than a certain threshold (see for
example [4]). Obviously, straight-forward algorithms
for computing the product A · AT might not be effi-
cient in this case, especially since exact values for the
elements of A ·AT are not necessary.

We use the following notation : for any matrix X,
we denote by X(i) the i th row of X as a row vector
and by X(i) the i th column of X as a column vector.
Then, note that we may write AB as the sum of n rank
one matrices :

AB =
n∑

t=1

A(t)B(t). (1)

From this, a simple algorithm for approximate matrix
multiplication suggests itself : pick a random subset of
s columns of A to form an m × s matrix S; form an
s× p matrix R out of the corresponding columns of
B. Then, intuitively, it follows from (1) that the prod-
uct SR is an estimator (entry by entry) of the product
AB; the variance remains to be worked out. Our con-
tribution to the above (following the lines of [5] and [7])
is two-fold. First, instead of picking columns uniformly
at random, we pick them according to some “more in-
teresting” probability distribution. In general, we pick
a column with probability proportional to its length
squared, which is a measure of the amount of “infor-
mation” the column contains. Second, before including
a column in the sample, we scale it in order to compen-
sate for the columns that are not picked. With these
two improvements, interesting bounds can be proven
for the error of the approximations.

This approach for approximating matrix multiplica-
tion has obvious advantages. It is conceptually simple,
it can be easily implemented and it can be generalized
to approximate the product of more than 2 matrices.
Also, since the “heart” of the algorithm involves ma-
trix multiplication of smaller matrices, it can use any
algorithms that exist in the literature for performing
the desired matrix multiplication. Another advantage



is that it does not tamper with the sparsity of the ma-
trices, unlike the following folklore algorithm on lines
similar to ours : project both A and B to the same
random s dimensional subspace and take the product
of the projections. Finally, we will see that in one pass
through the matrices (one sequential read, say, from
external memory), we can draw the required sample of
the columns of A and then, in another pass, we can
construct S and R. So, we only need Random Access
Memory to store S and R, not A and B.

In the following theorems we are proving bounds for
‖P−AB‖F and |P−AB|2 (Notation : ‖A‖2F =

∑
i,j A2

ij

and |A|2 = max |Ax|, ∀x ∈ Rn s.t. |x| = 1). These are
the two traditional norms we use - the F stands for
Frobenius norm and |A|2 is called the 2-norm).

Theorem 1 For any fixed s > 0 there is a random-
ized algorithm that approximates the product A · B by
a matrix P in O(smp) time such that,

E(‖P −A ·B‖2F ) ≤ 1
s

(
n∑

k=1

|A(k)||B(k)|
)2

≤

1
s
||A||2F ||B||2F

Further, the algorithm makes two passes through the
matrices A and B and only uses RAM space O(s(m +
p)) provided it has a write-only output tape to write P
out.

After reading both matrices once, the algorithm
needs s(m + p) space to store the columns and rows
that are kept. In section 3 we show that for certain
matrices we can avoid even reading the matrices once
with some loss in accuracy. In section 4 we present
element-wise error bounds for the approximation.

For matrices such that
∑n

k=1 |A(k)||B(k)| is close to
‖AB‖F , the relative error of the approximation is in-
versely proportional to the square root of the number
of columns that are picked. For example, this will hap-
pen if ||AB||F is Ω(||A||F ||B||F ). It is well-known that
||AB||F ≤ ||A||F ||B||F . So, ||AB||F is Ω(||A||F ||B||F )
if there is “not much cancellation” when we do the mul-
tiplication of A and B. Also, in the special case where
B = AT , it is easy to see that if A is a matrix of small
rank or is well-approximated by a matrix of small rank,
then ||AAT ||F ∈ Ω(||A||2F ) and in this case, indeed, we
get a good approximation to AAT . Unfortunately, in
general we cannot guarantee that the above quantities
are close and thus we can not get relative error bounds.
Theorem 1 also implies a bound for |P−AB|2, since we
know that the 2-norm of any matrix is bounded above
by the Frobenius norm.

A different algorithm with the same running time
but requiring O(mn + np) storage provides a better 2-
norm bound. The following theorem is proved in sec-
tion 5 using an extension of the Furedi-Komlos result
for the top eigenvalue of random symmetric matrices
to the unsymmetric case (see [8], [1]).

Theorem 2 For any constant s there exists a random-
ized algorithm that approximates the product A · B by
some matrix P in O(smp) time such that, with proba-
bility at least 1− (m + n)−1

|P −AB|2 ≤ (7/3) · nM2√m + p/
√

s

assuming s ≤ m+p
116 ln6(m+p)

1 and |Aij | ≤ M, |Bij | ≤ M

for all i, j and some positive M ∈ R.

To gain some intuition on the above error bound, as-
sume m = n = p. Observe that there exists τ ≤ 1 such
that ‖AB‖F = τn2M2. Also, |AB|2 ≥ ‖AB‖F /

√
n ≥

τn3/2M2. Thus, the relative error of our approxima-
tion w.r.t. the 2-norm is at most 3.3τ√

s
. This analysis

of course is useful only if τ is close to 1, e.g. if there
is a lot of correlation between the rows of A and the
columns of B. However, note that using the bounds
implied by Theorem 1, even if τ is close to 1, we don’t
get a relative error bound w.r.t. the 2-norm.

To the best of our knowledge, the only previous ran-
domized algorithm that approximates the product of
two matrices appears in [4]. Their algorithm is based
on random walks in a graph representation of the in-
put matrices. It is more complicated, requires differ-
ent graph representations of the input matrices if they
are allowed to contain negative entries and it needs to
fully store the input matrices. A preliminary theoreti-
cal comparison between the two algorithms appears in
section 4.

If we are seeking to approximate AAT , instead of ex-
plicitly computing all elements of P (a task that takes
O(m2) time already) we can “describe” P faster, by
providing column vectors p̄(t) ∈ Rm, t = 1 . . . s such
that P =

∑s
t=1 p̄(t)p̄(t)T

. The p̄(t) form an orthogo-
nal (but not orthonormal) set of vectors. This theo-
rem is based on older results ([5],[7]) that approximate
the Singular Value Decomposition of a matrix. Recon-
structing P from its “description” would take O(m2)
time (see section 6).

2 The matrix multiplication algorithm

Suppose A is an m × n matrix, B an n × p matrix
and we want to approximate the product A · B. An

1In the Appendix we show how to improve this constant using
stronger concentration results.
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obvious algorithm would be to pick at random a subset
of s columns of A to form an m× s matrix S and the
corresponding s rows of B to form an s × p matrix
R. Then, we return S · R as an approximation to A ·
B. This approach has been proposed, for example,
in [4], but, as the authors comment, the variance of
the approximation (elementwise) is too high for the
algorithm to be useful.

We modify this algorithm to incorporate the non
uniform sampling and scaling that we proposed in the
introduction. Suppose we have :

p1, p2, . . . pn ≥ 0 such that
n∑

k=1

pk = 1.

• for t = 1 to s independently

– Pick it ∈ {1 . . . n} at random with

Prob(it = k) = pk, k = 1 . . . n.

– Include A(it)/
√

spit as a column of S and
B(it)/

√
spit as the corresponding row of R.

• Return S ·R as the approximation to A ·B.

Our first lemma proves that the expectation of the
ij-th element of the approximation is equal to the ij-
th element of the exact product. The second lemma
describes the variance of the approximation.

Lemma 1 Given the above definitions, E((SR)ij) =
(AB)ij.

Proof: Fix attention on one particular i, j. For
t = 1 . . . s define the random variable Xt =(

A(it)B
(it)

spit

)

ij

= Aiit Bitj

spit
. So, the Xt’s are independent

random variables. Also, (SR)ij =
∑s

t=1 Xt. Thus, its
expectation is equal to the sum of the expectations of
the Xt’s. But, E(Xt) =

∑n
k=1

AikBkj

spk
pk = 1

s (AB)ij .
So, E((SR)ij) =

∑s
t=1 E(Xt) = (AB)ij . ¦

Lemma 2 Given the above definitions,

Var((SR)ij) =
1
s

n∑

k=1

A2
ikB2

kj

pk
− 1

s
(AB)2ij

Proof: Since (SR)ij is the sum of s independent ran-
dom variables, the variance of (SR)ij is the sum of
the variances of these variables. But, using Var(Xt) =

E(X2
t )−E2(Xt) we see that Var(Xt) =

∑n
k=1

A2
ikB2

kj

s2pk
−

1
s2 (AB)2ij and the lemma follows. ¦

Lemma 3 If pk = |A(k)||B(k)|∑n

k=1
|A(k)||B(k)| , then

∑n
k=1 pk = 1

and

E(||AB − SR||2F ) =
1
s

(
n∑

k=1

|A(k)||B(k)|
)2

− 1
s
‖AB‖2F .

This choice for pk minimizes the variance of the error
of the approximation.

Proof: For part 1, using lemmas 1 and 2,

E(‖AB − SR‖2F ) =
m∑

i=1

n∑

j=1

V ar((SR)ij) =

1
s

n∑

k=1

1
pk

(
∑

i

A2
ik)(

∑

j

B2
kj)−

1
s
‖AB‖2F =

1
s

n∑

k=1

1
pk
|A(k)|2|B(k)|2 − 1

s
‖AB‖2F =

1
s

(
n∑

k=1

|A(k)||B(k)|
)2

− 1
s
‖AB‖2F

To prove that this is the minimal upper bound for
the variance that we can get with any choice of the
pk’s we define the function (observe that 1

s‖AB‖2F is
independent of the pk)

f(p1, . . . pn) =
n∑

k=1

1
pk
|A(k)|2|B(k)|2

We want to minimize f given that
∑n

k=1 pk = 1.
Using simple calculus (that is substituting
pn = 1 − ∑n−1

k=1 pk and solving the system of
equations ∂f

∂pi
= 0, i = 1, . . . n − 1 we get the above

pk’s. ¦

If we are interested in the multiplication A ·AT the
above result becomes

Lemma 4 If pk = |A(k)|2
‖A‖2

F

, then
∑n

k=1 pk = 1 and

E(‖AAT − SST ‖2F ) ≤ 1
s
‖A‖4F −

1
s
‖AAT ‖2F

This choice for pk minimizes the variance of the error
of the approximation.

Now we analyze the running time and space require-
ments of the algorithm. The algorithm works on matri-
ces in sparse representation, where the matrix is pre-
sented as a set of triples (i, j, Aij) with at most one
triple for each (i, j). So, the non-zero entries need not
be given; some 0 entries may be presented.
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Lemma 5 Suppose A and B are presented in sparse
representation. Then in one pass through A
and B from external memory, we can compute
|A(k)|, |B(k)|, k = 1, 2, . . . n and pk as defined in lemma
3. In a second pass, we can form the matrices S and
R defined in the algorithm in RAM and compute SR.
If the maximum number of entries in any column of A
(in the sparse representation) is q and the maximum
number of entries in any row of B is r, then the total
RAM required is O(s(q + r)). The total time required
is the time for the two passes (and the computation of
the pk) plus O(s(q + r) + s ·min(mq, pr)).

Proof: It is obvious that the pk can be computed on
the first pass. It is also clear that the entries required
for S and R can be pulled out in the second pass. Then
we do the required scaling. To perform the multipli-
cation of S and R (assuming pr ≤ mq), we note that
for multiplying each row of S by R, we need to make
just one pass through all the (presented) entries of R.
This can be done in time O(pr). If mq ≤ pr, then for
multiplying S by each column of R we would make one
pass through S. ¦

If the matrices are not in sparse representation, then
we may use the fast matrix multiplication algorithms
for multiplying dense matrices S and R (see [14],[3]).

3 Sampling with near-optimal proba-
bilities

There might be applications where making two
passes through the matrix is not possible. For exam-
ple, this is the case when the input matrices are large
data streams that we cannot store in memory (in the
“streaming model” of [6] only one pass is allowed). The
question arises : can we do something in just one pass
through the matrices? One important thing we can do
in one pass is uniform sampling - i.e., we can choose
uniformly at random s integers from {1, 2, . . . n} (be-
fore reading any data.) Then, in one pass, we may form
the matrix S consisting of the chosen columns of A and
the matrix R consisting of the corresponding rows of B
and multiply them. Under some conditions, this yields
good error bounds, as will follow from lemma 6 below.

This lemma says that we can essentially get a result
like Theorem 1 even if the probabilities we use are not
the optimal ones given in lemma 3. Besides giving us
some information in the case of uniform sampling (as
discussed below), it also helps in the situation when we
have apriori knowledge of the matrices A and B and
know estimates of |A(k)| and |B(k)|.

Lemma 6 For any set of probabilities qk, k = 1 . . . n

such that qk ≥ c · pk = c|A(k)||B(k)|∑n

k=1
|A(k)||B(k)| (for some pos-

itive constant c ≤ 1),

E(‖A ·B − S ·R‖2F ) ≤ 1
cs

(
n∑

k=1

|A(k)||B(k)|)2

Proof: Similar to the proof of lemma 3. ¦
So, assume that for matrices A and B, we can

guarantee that for all k = 1 . . . n, |A(k)||B(k)| is close
to its mean value ( 1

n

∑n
k=1 |A(k)||B(k)|). More pre-

cisely, assume that there exists some positive constant
c ≤ 1 such that for all k = 1 . . . n, |A(k)||B(k)| ≤
c−1

n

∑n
k=1 |A(k)||B(k)|. This implies that 1/n ≥ c · pk

for every k. Thus, we could perform uniform sampling
with a small loss in accuracy (depending on c).

So far we analyzed our algorithm assuming that the
sampling of the columns (and rows) is done with re-
placement. One interesting variant would be to exam-
ine the error bound of our algorithm if sampling without
replacement is performed.

Lemma 7 If pk = 1/n and sampling is performed
without replacement, then, with probability at least
1− δ,

‖A·B−S·R‖F ≤
√√√√ n

(n− 1)δ

(n

s
− 1

) n∑
t=1

|A(k)|2|B(k)|2

≈
√√√√1

δ

(n

s
− 1

) n∑
t=1

|A(k)|2|B(k)|2

Scetch of proof: We compute the expectation and the
variance of (SR)ij from first principles. The proof is
straightforward but quite tedious. ¦

We see that for s = n the above error becomes zero,
while in Lemma 4 this was not the case. Unfortunately,
for the weighted sampling case, a similar analysis is
rather hard, because the scaling factors that the algo-
rithm uses become very complicated. If we keep the
scaling factors simple the expectation of (SR)ij is not
equal to (AB)ij and the error of the approximation
blows up.

4 Element-wise error bounds

In this section we provide element-wise error bounds
for our algorithm.
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Theorem 3 Assuming uniform sampling (pk = 1
n)

and |Aij | ≤ M, |Bij | ≤ M , for any δ > 0, the following
holds with probability at least 1− δ

|(AB)ij − (SR)ij | ≤ nM2

√
s

√
2 ln(mp) + 2 ln(2/δ),∀i, j

Proof: Fix attention on one particular i, j. Define

Xt =
(

A(it)B
(it)

spit

)

ij

= AiitBitj

spit
. Then, as in lemma

(1, we have that the expectation of Xt is 1
s (AB)ij and

so defining Yt = 1
s (AB)ij − Xt, t = 1 . . . s, we have

that the Yt’s are independent random variables and
E(Yt) = 0. Also,

|Yt| =
∣∣∣∣
1
s
(AB)ij − AiitBitj

spit

∣∣∣∣ ≤
2n

s
M2

Now we use Theorem 2 from [10] which bounds the
probability of the sum of bounded random variables
deviating from the mean. For any t > 0,

Prob

(∣∣∣∣∣
s∑

t=1

Yt

∣∣∣∣∣ ≥ st

)
≤ 2e−

2s2t2

s·4n2M4s−2 = 2e−
2s3t2

4n2M4 .

Now, setting t = nM2
√

2 ln(mp)+2 ln(2/δ)

s3/2 we get an upper
bound of δ/(mp) on the probability of failure for one
particular i, j. We get the theorem by multiplying this
by mp, the number of (i, j). ¦

It is obvious from the above error bound that for en-
tries of AB that are “large” (that is close to the max-
imum value nM2), we get approximations with small
relative error. So, the algorithm looks appropriate for
our purposes: it returns more accurate approximations
to the largest entries!

The above analysis yields essentially the same re-
sults as the uniform sampling algorithm of section 3,
but it improves the probability with which they hold.
Ignoring logarithmic factors (which are involved be-
cause of the higher probability with which this re-
sult holds), Theorem 3 guarantees that every entry
of the approximation will have additive error at most
nM2/

√
s with high probability. Thus, with the same

probability, ‖AB − SR‖2F ≤ mpn2M4/s. The bound
of lemma 6 is generally tighter, although it is upper
bounded by the same quantity. The reason is that we
now expect every element of the product matrix to be
approximated within a fixed additive error. Lemma
6 provides a tighter Frobenius norm bound, but not
element-wise guarantees.

For clarity and simplicity, we presented bounds only
for the uniform sampling case. We could use weighted
sampling and avoid using the crude upper bound M ,
to make the above results tighter.

We can compare the above error bounds to the re-
sults of [4]. We will do the comparison only for ma-
trices with positive elements 2. There, the number of
samples 3 needed to guarantee approximations to every
entry of AB within an additive error equal to the one

of Theorem 3 is proportional to
∑m

i=1
(Mi)

2

s−1n2M4 , where Mi

is the sum of the elements across the i-th row of the
product AB. Estimating this ratio is not easy, but we
can see that even if one of the Mi’s is sufficiently close
to pnM2 (the maximum value of any Mi) the running
time becomes O(sp2). This is comparable to the run-
ning time of our algorithm. If more of the Mi’s are
large our algorithm performs better.

5 A second algorithm with a better 2-
norm bound

We will now analyze an algorithm that estimates
each entry of the product A · B independently. So, in
order to estimate (AB)ij we pick s elements from the
i-th row of A and the corresponding s elements from
the j-th row of B, scale them and return the sum of
their products as an approximation to (AB)ij .

The algorithm is:

• for all i = 1 . . .m, j = 1 . . . p independently

1. for t = 1 to s independently

– Pick an integer it ∈ {1 . . . n} (with
replacement), where Prob(it = k) =
pk, k = 1 . . . n.

– Compute Xij
t = AiitBitj

spit
.

2. Return
∑s

t=1 Xij
t as the approximation to

(AB)ij .

Following the ideas of section 2, we may prove
bounds for the Frobenius norm of the error matrix.
Since E(Pij) = (AB)ij and Var(Pij) ≤ 1

s

∑n
k=1

A2
ikB2

kj

pk
,

we see that

1. If pk = 1
n ,E(‖P−AB‖2F ) ≤ n

s

∑n
k=1 |A(k)|2|B(k)|2.

2. If pk = A2
ik

|A(i)|2 , E(‖P − AB‖2F ) ≤ 1
s‖A‖2F ‖B‖2F .

This is not the “optimal” sampling probability dis-
tribution (it does not minimize the variance of the
error) but computing the optimal one would take
O(mnp) time.

2Similar results hold for matrices with negative elements as
well.

3The algorithm performs O(1) operations per sample, thus its
running time is O(samples).
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The second error bound is generally better. We
could also obtain Chernoff bounds for the element-wise
error of our approximations. We note here that if we
perform uniform sampling, the running time of the al-
gorithm is O(smp). If non-uniform sampling is per-
formed the running time becomes O(smp log n). The
reason is that in order to approximate (AB)ij we need
to sample s elements from the i th row of A w.r.t. their
weights, which takes s log n time. Also, in both cases
we need to fully store matrices A and B (O(mn + np)
space).

This algorithm returns much nicer error guarantees
with respect to the 2-norm. In proving the following
theorem we use a straight-forward extension of the clas-
sical Furedi-Komlos result for the top eigenvalue of a
random symmetric matrix to general matrices (see [1]).

Theorem 4 If we compute P using the above algo-
rithm and uniform sampling, with probability at least
1− (m + p)−1,

|P −AB|2 ≤ (7/3)nM2√m + p/
√

s

assuming s ≤ m+p
116 ln6(m+p)

.

Proof: We observe that for all i, j, (P − AB)ij are
zero mean independent random variables and Var((P−
AB)ij) =

∑n
k=1

A2
ikB2

kj

spk
. Assuming uniform sampling

(pk = 1/n), Var((P −AB)ij) ≤ n2M4/s.
So, using Theorem 4 of [1], for a = 3/2, with prob-

ability at least 1 − (m + p)−1, |P − AB|2 ≤ (7/3) ·
nM2√

s

√
m + p. ¦

The constraint on s is necessary in order to satisfy
the condition of Theorem 4 of [1] and a similar condi-
tion in [8]. It can be improved (116 can be eliminated)
by using better concentration results (Talagrand’s in-
equality, see Appendix) and slightly increasing the con-
stant 7/3 in the error bound. Nevertheless, this restric-
tion on s renders this result (as well as the result of [1])
useless for small matrices, since it restricts the maxi-
mum value of s (obviously, s must be at least one and
in general larger in order to reduce the error). All our
experimental evidence though suggests that the algo-
rithm is useful in practice, even for small matrices, and
that the constraint needs not be satisfied. Removing it
is an open problem.

6 A different approach

Any m× n matrix A can be expressed as

A =
r∑

t=1

σtu
(t)v(t)T

where r is the rank of A, σt are its singular values
and u(t) and v(t) are its left and right singular vectors
respectively. We remind the reader that the u(t)’s and
the v(t)’s form orthonormal sets of vectors. Then, if
p(t) = σtu

(t),

A ·AT =
r∑

t=1

p(t)p(t)T

Exact computation of the p(t)’s takes time O(m2n +
mn2). But, in [5] and [7], algorithms have been pre-
sented that compute “good” approximations p̄(t) to the
top s p(t)’s fast. So, we can approximate A ·AT by P ,
where

P =
s∑

t=1

p̄(t)p̄(t)T

6.1 The algorithm

In [5] we presented an algorithm that computes the
p̄(t)’s and we proved that using them we get an accurate
low-rank approximation to A. Here we adapt the same
algorithm to approximate A ·AT .

• Create the m× s matrix S as described in section
2.

• Compute ST ·S and its singular value decomposi-
tion.

So, ST S =
∑s

t=1 λ2
t w

(t)w(t)T

, where λt are the sin-
gular values of S and w(t), t = 1 . . . s its right sin-
gular vectors. Thus, we can approximate p(t), t =
1 . . . s by the left singular vectors of S scaled by
the corresponding singular values, namely p̄(t) =
Sw(t), t = 1 . . . s.

• “Describe” P (our approximation to A · AT ) as
P =

∑s
t=1 p̄(t)p̄(t)T

The p̄(t)’s are orthogonal. Also, from basic proper-
ties of singular value decomposition, we observe that

s∑
t=1

Sw(t)w(t)T

ST = S · ST

Lemma 8 If P is constructed as described in the above
algorithm, with probability at least 1− δ,

E
(‖A ·AT − P‖2F

)
= E

(‖A ·AT − S · ST ‖2F
) ≤ 1

s
‖A‖4F

Lemma 9 If we allow preprocessing time to read all
non-zero elements of matrix A once, we can com-
pute a “description” to P using the above algorithm
in O(s2m + s3) time.
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Proof: The computation of ST S takes O(s2m) time
and the computation of its singular value decompo-
sition takes O(s3) time. The p̄(t), t = 1 . . . s can be
computed in O(s2m) time. ¦

6.2 Generalizing the SVD-based algorithm

To multiply an m×n matrix A by an n×p matrix B

using the above algorithm, we define C =
[

A 0
BT 0

]
.

Then C · CT =
[

A ·AT A ·B
BT ·AT BT ·B

]
. The error now

depends on ‖A‖2F + ‖B‖2F instead of
∑n

k=1 |A(k)||B(k)|
(see lemma 3). The later quantity is generally larger.

7 Experiments

We tested our algorithms using an information re-
trieval data set, namely a collection of 5000 encyclo-
pedia articles. A popular technique in information
retrieval is Latent Semantic Indexing (LSI), where A
is replaced by an m × k matrix Ā (by projecting all
m document-vectors to a fixed-dimensional space Rk).
This is to help reduce the “noise” (see [2] for a sur-
vey). This process can be implemented by computing
the SVD of A. As in [4], we also dealt here not with
the actual document-term matrix, but its projection to
320 dimensions.

We assumed that document-document matches are
dot-products that are larger than some threshold τ and
we tried to identify all document-document matches in
the database, which is equivalent to computing AAT

and finding all entries that are larger than τ . In pre-
liminary experiments using the algorithms of sections
2 and 3, we were able to achieve a speedup of 4 versus
full matrix multiplication and at the same time identify
more than 99% of the document-document matches for
various values of τ . As an example, if τ = 0.85, less
than 0.04% of the 25 · 106 document-document pairs
are considered to be matches, but we were still able to
identify 99.4% of the matches.

8 Tightness of the results and open
problems

We believe that the bound of the algorithm of sec-
tion 2 with respect to the F-norm is tight (for this
particular algorithm). Consider any n × n matrix
A = UV T , where U and V are square orthonormal ma-
trices of appropriate dimensions. Then, the algorithm
of section 2 returns an error of

‖AAT − SST ‖2F ≈ n2/s

Scetch of proof: Obviously, AAT = UUT . Also, S is
equal to A · T , where T is an n × s matrix such that

Tij =
√

‖A‖2
F

s|A(i)|2 if column i was included in the sample.

But, for this particular A we can argue that the above
ratio is almost

√
n/s for all columns, since they all

have approximately the same length. Thus, using basic
Linear Algebra,

‖AAT − SST ‖2F = ‖UUT − UV T TTT V UT ‖2F =

‖In − TTT ‖2F = (n− s) + s ·
(n

s
− 1

)2

For s << n we see that ‖AAT − SST ‖2F ≈ n2/s. But,
‖A‖2F = n, thus Lemma 4 returns a tight bound. ¦

We do not have a similar result for the 2-norm of
the error. We suspect that the 2-norm bound could be
slightly improved: namely,

E(‖AAT − SST ‖22) ≤ ‖A‖4F /s2

This improvement is still open.
The most interesting open problem would be to de-

vise new randomized algorithms, with similar running
time and space requirements, that provide relative er-
ror bounds or prove the lack thereof. So far, the al-
gorithm in section 5 has the best error bounds. Un-
fortunately, even incorporating weighted sampling in
this algorithm and strengthening the result of [8] to
account for different element-wise variances would not
return a relative error guarantee (in general), but it
would return a tighter bound by avoiding the use of
the crude upper bound M . Finally, it would be inter-
esting to achieve the same error bound with respect to
the 2-norm, while using only linear space.

Acknowledgements: We would like to thank Dim-
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of [12] and [13] and David Lewis for providing us the
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Appendix

We will describe a way of improving the restriction
on s, with a slight loss in accuracy (see section 5). We
follow the lines of [1], [12] and [13]. Start by defining

the matrix F = (2nM2)−1 ·
[

0 (P −AB)T

P −AB 0

]
,

which is a (m+p)×(m+p) symmetric matrix, |Fij | ≤ 1
and E(Fij) = 0 for all i, j. We also note that σ2 =
Var(Fij) = (2nM2)−2Var((P −AB)ij) ≤ (4s)−1.

We denote by λi, i = 1 . . . r the eigenvalues of F (r is
the rank of F ) and let λ denote the maxi |λi|. Assum-
ing k is a positive even integer, Tr(F k) =

∑r
i=1 λk

i ,
thus E(λk) ≤ E(Tr(F k)). In [8], it is proven that
E(Tr(F k)) ≤ (m+p)k/2+12kσk. Thus, E(λ) ≤ 2σ(m+

p)1/k√m + p ≤
√

m+p
s (m+p)1/k. There is a restriction

on k, namely k3 ≤ σ
√

m + p or, equivalently, s ≤ m+p
4k6 .

We will now use a theorem proven in [13] through a
powerful concentration result (Talagrand’s inequality).
Let q denote the median of λ. For any t > 0,

Prob(|λ− q| ≥ t) ≤ 4e−t2/32

But, in [13] it is also proven that

|E(λ)− q| ≤ 64

Combining the above results, it is straight-forward to
see that, with probability at least 1− 4e−t2/32,

|λ− E(λ)| ≤ t + 64

Setting t =
√

32 ln 4(m + p), we get that with proba-
bility at least 1− (m + p)−1

λ ≤ (m + p)1/k

√
m + p

s
+

√
32 ln 4(m + p) + 64

Obviously, |P −AB|2 = 2nM2λ, thus, with high prob-
ability,

|P −AB|2 ≤ 2nM2(m + p)1/k

√
m + p

s

+2nM2
√

32 ln 4(m + p) + 128nM2

Setting e.g. k = ln(m + p) and observing that for
m + p > x0 (for some x0) the first term of the right
hand side dominates, the above inequality becomes

|P −AB|2 ≤ c · nM2

√
m + p

s

for some constant c > 2e. Our assumption on s now
becomes s ≤ m+p

4 ln6(m+p)
(the 116 term has disappeared).
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