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Abstract— We consider low-rank reconstruction of a matrix
using a subset of its columns and we present asymptotically optimal
algorithms for both spectral norm and Frobenius norm reconstruc-
tion. The main tools we introduce to obtain our results are: (i) the
use of fast approximate SVD-like decompositions for column-based
matrix reconstruction, and (ii) two deterministic algorithms for
selecting rows from matrices with orthonormal columns, building
upon the sparse representation theorem for decompositionsof the
identity that appeared in [1].
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1. INTRODUCTION

The best rankk approximation to a matrix A∈ R
m×n

is Ak =
∑k

i=1 σiuiv
T
i , whereσ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0

are the topk singular values of A, with associated left and
right singular vectorsui ∈ R

m andvi ∈ R
n respectively.

(See Section 1.1 for notation.) The singular values and
singular vectors of A can be computed via the Singular
Value Decomposition (SVD) of A inO(mnmin{m,n})
time. There is considerable interest (e.g. [3], [5], [7], [8],
[10], [14], [18], [19], [20]) in determining a minimum set
of r ≪ n columns of A which is approximately as good
as Ak at reconstructing A. Such columns are important
for interpretting data [20], building robust machine learning
algorithms [3], etc.

Let A ∈ R
m×n and let C∈ R

m×r consist ofr columns
of A for some k ≤ r < n. We are interested in the
reconstruction errors (see Section 1.1 for notation)

‖A − CC+A‖ξ and ‖A −Πξ
C,k(A)‖

ξ
,

for ξ = 2, F (see Section 1.1 for notation). The former is
the reconstruction error for A using the columns in C; the
latter is the error from the best rankk reconstruction of A
(under the appropriate norm) within the column space of C.
For fixed A, k, andr, we would like these errors to be as
close to

‖A − Ak‖ξ

as possible. We present polynomial-time near-optimal con-
structions for arbitraryr > k, settling important open
questions regarding column-based matrix reconstruction.

• Spectral norm: What is the best reconstruction error
with r > k columns? We present polynomial-time
(deterministic and randomized) algorithms with approx-
imation error asymptotically matching a lower bound
proven in this work. Prior work had focused on the
r = k case and presented near-optimal polynomial-time
algorithms [5], [16].

• Frobenius norm: How many columns are needed
for relative error approximation, i.e. a reconstruction
error of (1 + ǫ)‖A − Ak‖F , for ǫ > 0? We show
thatO(k/ǫ) columns contain a rank-k subspace which
reconstructs A to relative error, and we present the
first sub-SVD-time (randomized) algorithm to identify
these columns. This matches theΩ(k/ǫ) lower bound
in [7] and improves the best known upper bound of
O(k log k + k/ǫ) [5], [7], [11], [22].

1.1. Notation

A,B, . . . are matrices;a,b, . . . are column vectors. In is
then×n identity matrix;0m×n is them×n matrix of zeros;
1n is then×1 vector of ones;ei is the standard basis (whose
dimensionality will be clear from the context); rank(A) is
the rank of A. The Frobenius and the spectral matrix-norms
are: ‖A‖2F =

∑

i,j A2
ij and ‖A‖2 = max‖x‖2=1 ‖Ax‖2;

‖A‖ξ is used if a result holds for both normsξ = 2 and
ξ = F . The Singular Value Decomposition (SVD) of A,
with rank(A) = ρ is

A =
(

Uk Uρ−k

)

︸ ︷︷ ︸

UA∈Rm×ρ

(
Σk 0

0 Σρ−k

)

︸ ︷︷ ︸

ΣA∈Rρ×ρ

(
VT

k

VT
ρ−k

)

︸ ︷︷ ︸

VT
A∈Rρ×n

,

with singular valuesσ1 ≥ . . . σk ≥ σk+1 ≥ . . . ≥ σρ > 0.
We will use σi (A) to denote thei-th singular value of A
when the matrix is not clear from the context. The matrices
Uk ∈ R

m×k and Uρ−k ∈ R
m×(ρ−k) contain the left singular

vectors of A; and, similarly, the matrices Vk ∈ R
n×k and

Vρ−k ∈ R
n×(ρ−k) contain the right singular vectors of A.

It is well-known that Ak = UkΣkVT
k minimizes‖A − X‖ξ

over all matrices X∈ R
m×n of rank at mostk. We use

Aρ−k to denote the matrix A− Ak = Uρ−kΣρ−kVT
ρ−k.

Also, A+ = VAΣ
−1
A UT

A denotes the Moore-Penrose pseudo-
inverse of A. For a symmetric positive definite matrix A=
BBT, λi (A) = σ2

i (B) denotes thei-th eigenvalue of A.



Finally, given a matrix A∈ R
m×n and a matrix C∈

R
m×r with r > k, we formally define the matrixΠξ

C,k(A) ∈
R

m×n as the best approximation to A within the column
space of C that has rank at mostk; Πξ

C,k(A) minimizes
the residual‖A − Â‖ξ, over all Â in the column space of

C that have rank at mostk (one can writeΠξ
C,k(A) = CX

where X∈ R
r×n has rank at mostk). In general,Π2

C,k(A) 6=
ΠF

C,k(A); Section 4.2 discusses the computation ofΠξ
C,k(A).

1.2. Our main results

Since‖A − CC+A‖ξ ≤ ‖A −Πξ
C,k(A)‖

ξ
, we will state

all our bounds in terms of the latter quantity. Note that
we chose to state our Frobenius norm bounds in terms of
the square of the Frobenius norm; this choice facilitates
comparisons with prior work and simplifies our proofs.

Theorem 1 (Deterministic spectral norm reconstruction).
Given A ∈ R

m×n of rank ρ and a target rankk < ρ, there
exists a deterministic polynomial-time algorithm to select
r > k columns ofA and form a matrixC ∈ R

m×r such
that

‖A −Π2
C,k(A)‖2 ≤

(

1 +
1+

√
(ρ−k)/r

1−
√

k/r

)

‖A − Ak‖2

= O
(√

ρ/r
)

‖A − Ak‖2.

The matrix C can be computed inTSVD + O(rn(k2 +
(ρ− k)

2
)) time, whereTSVD is the time needed to compute

all ρ right singular vectors ofA.

Our algorithm uses the matrices Vk and Vρ−k of the right
singular vectors of A. These matrices can be computed
in O(mnmin{m,n}) time via the SVD. The asymptotic
multiplicative error of the above theorem matches a lower
bound that we prove in Section 5. This is the first spec-
tral reconstruction algorithm with asymptotically optimal
guarantees for arbitraryr > k. Previous work presented
near-optimal algorithms forr = k [16]. We note that in
Section 3 we will present a result that achieves a slightly
worse error bound (essentially replacingρ by n in the
accuracy guarantee), but only uses the topk right singular
vectors of A (i.e., the matrix Vk).

Theorem 2 (Deterministic Frobenius norm reconstruction).
Given A ∈ R

m×n of rank ρ and a target rankk < ρ, there
exists a deterministic polynomial-time algorithm to select
r > k columns ofA and form a matrixC ∈ R

m×r such
that

‖A −ΠF
C,k(A)‖2F ≤

(

1 + 1

(1−
√

k/r)2

)

‖A − Ak‖2F .

The matrixC can be computed inTVk
+ O

(
mn+ nrk2

)

time, whereTVk
is the time needed to compute the topk

right singular vectors ofA.

Our bound implies a constant-factor approximation. Previous
work presents deterministic near-optimal algorithms forr =
k [5]; we are unaware of any deterministic algorithms for
r > k.

The next two theorems guarantee (up to small constant
factors) the same bounds as Theorems 1 and 2, but the
proposed algorithms are considerably more efficient. In
particular, there is no need to exactly compute the right
singular vectors of A, because approximations suffice.

Theorem 3 (Fast spectral norm reconstruction). GivenA ∈
R

m×n of rank ρ, a target rank2 ≤ k < ρ, and 0 < ǫ < 1,
there exists a randomized algorithm to selectr > k columns
of A and form a matrixC ∈ R

m×r such that

E
[
‖A −Π2

C,k(A)‖2
]

≤
(√

2 + ǫ
)
(

1 +
1+

√
n/r

1−
√

k/r

)

‖A − Ak‖2

= O
(√

n/r
)

‖A − Ak‖2.

The matrix C can be computed in
O
(
mnkǫ−1 log

(
k−1 min{m,n}

)
+ nrk2

)
time.

Theorem 4 (Fast Frobenius norm reconstruction). Given
A ∈ R

m×n of rank ρ, a target rank2 ≤ k < ρ, and
0 < ǫ < 1, there exists a randomized algorithm to select
r > k columns ofA and form a matrixC ∈ R

m×r such
that

E
[
‖A −ΠF

C,k(A)‖2F
]
≤ (1+ǫ)

(

1 + 1

(1−
√

k/r)2

)

‖A−Ak‖2F .

The matrixC can be computed inO
(
mnkǫ−1 + nrk2

)
time.

Our last, yet perhaps most interesting result, guarantees
relative-error Frobenius norm approximation by combining
the algorithm of Theorem 4 with one round of adaptive sam-
pling [7], [8]. This is the first relative-error approximation
for Frobenius norm reconstruction that uses a linear number
of columns in k (the target rank). Previous work [11],
[22], [7], [5] achieves relative error withO(k log k + k/ǫ)
columns. Our result asymptotically matches theΩ(k/ǫ)
lower bound in [7].

Theorem 5 (Fast relative-error Frobenius norm reconstruc-
tion). GivenA ∈ R

m×n of rankρ, a target rank2 ≤ k < ρ,
and0 < ǫ < 1, there exists a randomized algorithm to select
at most

r =
2k

ǫ

(
1 + o(1)

)

columns ofA and form a matrixC ∈ R
m×r such that,

E
[
‖A − ΠF

C,k(A)‖2F
]
≤ (1 + ǫ)‖A − Ak‖2F .

The matrixC can be computed inO((mnk + nk3)ǫ−2/3)
time.



Running times: Our running times are in terms of
the number of operations needed to compute the matrix
C, and for simplicity we assume that A is dense; if A is
sparse, additional savings might be possible. Our accuracy
guarantees are in terms of the optimal matrixΠξ

C,k(A),
which would require additional time to compute. For the
Frobenius norm, computingΠF

C,k(A) is straightforward, and
only requires an additionalO

(
mnr + (m+ n) r2

)
time (see

the discussion in Section 4.2). For the spectral norm, we are
not aware of any algorithm to computeΠ2

C,k(A) exactly. In
Section 4.2 we present a simple approach that computes
Π̂2

C,k(A), a constant-factor approximation toΠ2
C,k(A), in

O
(
mnr + (m+ n) r2

)
time. Our bounds in Theorems 1

and 3 can be restated in terms of the error‖A − Π̂2
C,k(A)‖

2
;

the accuracy guarantees only weaken by small constant
factors.

1.3. Prior results on column-based matrix reconstructions

There is a long literature on algorithms for column-based
matrix reconstruction usingr ≥ k columns. The first result
goes back to [15], with the most recent one being, to the
best of our knowledge, the work in [5]. Table I provides a
summary on lower bounds for the ratio

‖A −Πξ
C,k(A)‖2ξ

‖A − Ak‖2ξ
,

where C is a matrix consisting ofr columns of A, with
r ≥ k. Our Theorem 17 in the Appendix contributes a new
lower bound for the spectral norm case whenr > k. (Note
that any lower bound for the ratio‖A−CC+A‖2ξ/‖A−Ak‖2ξ
implies a lower bound for‖A −Πξ

C,k(A)‖2ξ/‖A −Ak‖2ξ; the
converse, however, is not true.)

1.3.1. The Frobenius norm case:We present known guar-
antees for the approximation ratio

‖A −ΠF
C,k(A)‖2F

‖A − Ak‖2F
.

When r = k, [5] gives a (k + 1) approximation running
in O(knm3 logm) time; this approximation ratio matches
a lower bound in [8]. [5] also presented a faster ran-
domized algorithm achieving an expected(1 + ǫ)(k + 1)
approximation, running inO(mn log nk2ǫ−2 + n log3 n ·
k7ǫ−6 log

(
kǫ−1 logn

)
) time.

When r = Ω(k log k), relative-error approximations are
known. [11] presented the first result that achieved such
a bound, using random sampling of the columns of A
according to the Euclidean norms of the rows of Vk.
More specifically, a(1 + ǫ)-approximation was proven us-
ing r = Ω

(
kǫ−2 log

(
kǫ−1

))
columns inTVk

+ O(kn +
r log r) time. [22] argued that the same technique gives
a (1 + ǫ)-approximation usingr = Ω

(
k log k + kǫ−1

)

columns and showed how to improve the running time to
TṼk

+ O(kn + r log r), where Ṽk ∈ R
n×k contains the

right singular vectors of an approximation to Ak and can
be computed ino(mnmin{m,n}) time (sub-SVD). In [7],
the authors leveraged volume sampling and presented an
approach that achieves a relative error approximation using
O(k2 log k + kǫ−1) columns inO(mnk2 log k) time. Also,
it is possible to combine the fast volume sampling approach
in [5] (setting, for example,ǫ = 1/2) with O(log k)
rounds of adaptive sampling as described in [7] to achieve
a relative error approximation usingO

(
k log k + kǫ−1

)

columns. The running time of this combined algorithm is
O
(
mnk2 logn+ nk7 log3 n log (k logn)

)
. The techniques

in [11] do not apply to generalr > k, sinceΩ(k log k)
columns must be sampled in order to preserve rank with
random sampling.

A related line of work (including [6], [12], [13], [23])
has focused on the construction of coresets and sketches
for high dimensional subspace approximation with respect
to generalℓp norms. In our setting,p = 2 corresponds
to Frobenius norm matrix reconstruction, and Theorem 1.3
of [23] presents an exponential ink/ǫ algorithm to select
O
(
k2/ǫ log (k/ǫ)

)
columns that guarantee relative error

approximation. It would be interesting to understand if the
techniques of [6], [12], [13], [23] can be extended to match
our results here in the special case ofp = 2.

1.3.2. The spectral norm case:We present known guar-
antees for the approximation ratio

‖A −Π2
C,k(A)‖22

‖A − Ak‖22
.

In general, results for spectral norm have been sparse. When
r = k, the strongest bound emerges from Strong Rank
Revealing QR (RRQR) [16] (specifically Algorithm 4 in
[16]), which, for f > 1, runs inO(mnk logf n) time and
guarantees anf2k(n− k) + 1 approximation. Forr > k, to
the best of our knowledge, there is no easy way to extend
the RRQR guarantees. In fact, we are not aware of any
bound applicable to this domain other than those obtained by
trivially extending the Frobenius norm bounds, because any
α-approximation in the Frobenius norm gives anα(ρ− k)-
approximation in the spectral norm:

‖A −Π2
C,k(A)‖22 ≤ ‖A −ΠF

C,k(A)‖22 ≤ ‖A −ΠF
C,k(A)‖2F

≤ α‖A − Ak‖2F ≤ α(ρ − k)‖A − Ak‖22.

2. MAIN TOOLS

Our two main tools are the use of matrix factorizations
for column-based low-rank matrix reconstruction, and two
deterministic sparsification lemmas which extend the work
of [1].

2.1. Matrix factorizations

Our first tool suggests how to use matrix factorizations to
reconstruct a matrix from a subset of its columns: Lemmas



r Spectral norm (ξ = 2) Frobenius norm (ξ = F )
r = k n/k [5] k + 1 [8]
r > k n/r (Section 5) 1 + k/r [7] (also see Section 5)

Table I
LOWER BOUNDS FOR THE APPROXIMATION RATIO‖A − Πξ

C,k
(A)‖

2

ξ
/‖A − Ak‖

2

ξ .

6, 8, and 9. Lemmas 8 and 9 present factorizations of the
matrix A ∈ R

m×n of the form

A = BZT + E,

where B∈ R
m×k, Z ∈ R

n×k, E ∈ R
m×n, and Z consists

of orthonormal columns. Lemma 6 shows how to apply
these factorizations by drawing a connection between matrix
factorizations and column selection. Lemma 6 is the starting
point of all our column reconstruction results.

Lemma 6. Let A = BZT+E, with EZ = 0m×k andZTZ =
Ik. Let S ∈ R

n×r be any matrix such thatrank(ZTS) =
rank(Z) = k. Let C = AS ∈ R

m×r. Then,

‖A −Πξ
C,k(A)‖2

ξ
≤ ‖E‖2ξ + ‖ES(ZTS)+‖2ξ .

Proof: The optimality ofΠξ
C,k(A) implies that‖A −

Πξ
C,k(A)‖2ξ ≤ ‖A − X‖2ξ over all matrices X∈ R

m×n of
rank at mostk in the column space of C. Consider the matrix
X = C

(
ZTS

)+
ZT (clearly X is in the column space of C

and rank(X) ≤ k because Z∈ R
n×k):

‖A − C(ZTS)+ZT‖2ξ =

= ‖ BZT +
(
A − BZT

)

︸ ︷︷ ︸

A

−
(
BZT + E

)
S

︸ ︷︷ ︸

C=AS

(ZTS)+ZT‖2ξ

= ‖BZT − BZTS(ZTS)+ZT + E+ ES(ZTS)+ZT‖2ξ
(a)
= ‖E+ ES(ZTS)+ZT‖2ξ
(b)

≤ ‖E‖2ξ + ‖ES(ZTS)+ZT‖2ξ.

(a) follows because, by assumption, rank(ZTS) = k,
and thus (ZTS)(ZTS)+ = Ik which implies BZT −
B(ZTS)(ZTS)+ZT = 0m×n. (b) follows by matrix-
Pythagoras because ES(ZTS)+ZTET = 0m×n (recall that
E = A − BZT and EZ = 0m×k by assumption). The
lemma follows by strong submultiplicativity because Z has
orthonormal columns, hence‖Z‖2 = 1.
In this work, we view C as a dimensionally-reduced or
sampled sketch of A; S is the dimension-reduction or
sampling matrix. In words, Lemma 6 argues that if the
matrix S preserves the rank of an approximate factorization
of the original matrix A, then the reconstruction of A from
C = AS has an error that is essentially proportional to
the error of the approximate factorization. The importance
of this lemma is that it indicates an algorithm for matrix
reconstruction using a subset of the columns of A: first,

compute any factorization of the form A = BZT + E
satisfying the assumptions of the lemma; then, compute a
sampling matrix S which satisfies the rank assumption and
controls the error‖ES(ZTS)+‖ξ.

An immediate corollary of Lemma 6 emerges by consider-
ing the SVD of A. More specifically, consider the following
factorization of A: A= AV kVT

k + (A − Ak), where Vk is
the matrix of the topk right singular vectors of A. In the
parlance of Lemma 6, Z= Vk, B = AV k, E = A − Ak,
and clearly EZ= 0m×k.

Lemma 7. Let S ∈ R
n×r be a matrix such that

rank(VT
kS) = k. Let C = AS; then,

‖A −Πξ
C,k(A)‖2

ξ
≤ ‖A − Ak‖2ξ + ‖(A − Ak)S(V

T
kS)+‖2ξ.

The above lemma will be useful for designing the de-
terministic (spectral norm and Frobenius norm) column-
reconstruction algorithms of Theorems 1 and 2. However,
computing the SVD is costly and thus we would like to
design a factorization of the form A= BZT + E that is as
good as the SVD, but can be computed inO(mnk) time.
The next two lemmas achieve this goal by extending the
algorithms in [18], [21] (see [2] for their proofs). We will
use these factorizations to design fast column reconstruction
algorithms in Theorems 3, 4, and 5.

Lemma 8 (Randomized fast spectral norm SVD). Given
A ∈ R

m×n of rankρ, a target rank2 ≤ k < ρ, and0 < ǫ <
1, there exists an algorithm that computes a factorization
A = BZT + E, with B = AZ, ZTZ = Ik, and EZ = 0m×k

such that

E [‖E‖2] ≤
(√

2 + ǫ
)

‖A − Ak‖2.

The proposed algorithm runs in
O
(
mnkǫ−1 log

(
k−1 min{m,n}

))
time.

Lemma 9 (Randomized fast Frobenius norm SVD). Given
A ∈ R

m×n of rankρ, a target rank2 ≤ k < ρ, and0 < ǫ <
1, there exists an algorithm that computes a factorization
A = BZT + E, with B = AZ, ZTZ = Ik, and EZ = 0m×k

such that

E
[
‖E‖2F

]
≤ (1 + ǫ)‖A − Ak‖2F .

The proposed algorithm runs inO
(
mnkǫ−1

)
time.



2.2. Sparse approximate decompositions of the identity

Lemmas 6, 8 and 9 argue that, in order to achieve almost
optimal column-based matrix reconstruction, we need a
sampling matrix S that preserves the rank of Z and controls
the error‖ES(ZTS)+‖ξ. We present algorithms to compute
such a matrix S in Lemmas 10 and 11. These lemmas
were motivated by an important linear-algebraic result for
a decomposition of the identity presented by Batsonet
al. [1]. It is worth emphasizing that the result of [1] can not
be directly applied to the column reconstruction problem.
Indeed, in our setting, it is necessary to control properties
related tobothmatrices Z and E= A−BZT simultaneously.
In the spectral-norm reconstruction case, we need to control
the singular values of the two matrices; in the Frobenius-
norm reconstruction case, we need to control singular values
and Frobenius norms of two matrices.

Lemma 10 (Dual Set Spectral Sparsification.). Let V =
{v1, . . . ,vn} andU = {u1, . . . ,un} be two equal cardinal-
ity decompositions of the identity, wherevi ∈ R

k (k < n),
ui ∈ R

ℓ (ℓ ≤ n),
∑n

i=1 viv
T
i = Ik, and

∑n
i=1 uiu

T
i = Iℓ.

Given an integerr with k < r ≤ n, there exists a set of
weightssi ≥ 0 (i = 1, . . . , n) at mostr of which are non-
zero, such that

λk

(
n∑

i=1

siviv
T
i

)

≥
(

1−
√

k

r

)2

and

λ1

(
n∑

i=1

siuiu
T
i

)

≤
(

1 +

√

ℓ

r

)2

.

The weights si can be computed deterministically in
O
(
rn
(
k2 + ℓ2

))
time.

Proof Sketch. The main insight is to decouple the analysis
of the lower bound onλk and the upper bound onλ1 in [1].
Once this is done, one can accomodate twodifferentsets of
vectors, and the rest of the analysis follows a similar line
of reasoning as the original single set analysis of [1]. The
details are in [2].

In matrix notation, let U and V be the matrices whose
rows are the vectorsui and vi respectively. We can now
construct the sampling matrix S∈ R

n×r as follows: for
i = 1, . . . , n, if si is non-zero then include

√
siei as a

column of S; here ei is the i-th standard basis vector1.
Using this matrix notation, the above lemma guarantees that
σk

(
VTS

)
≥ 1−

√

k/r andσ1

(
UTS

)
≤ 1+

√

ℓ/r. Clearly,
S may be viewed as a matrix that samples and rescalesr
rowsof U and V (columns of UT and VT), namely the rows
that correspond to non-zero weightssi.

1Note that we slightly abused notation: indeed, the number ofcolumns
of S is less than or equal tor, since at mostr of the weights are non-zero.
Here, we user to also denote the actual number of non-zero weights, which
is equal to the number of columns of the matrixS.

Lemma 11 (Dual Set Spectral-Frobenius Sparsification.).
Let V = {v1, . . . ,vn} be a decomposition of the identity,
where vi ∈ R

k (k < n) and
∑n

i=1 viv
T
i = Ik; let

A = {a1, . . . , an} be an arbitrary set of vectors, where
ai ∈ R

ℓ. Then, given an integerr such thatk < r ≤ n,
there exists a set of weightssi ≥ 0 (i = 1 . . . n), at mostr
of which are non-zero, such that

λk

(
n∑

i=1

siviv
T
i

)

≥
(

1−
√

k

r

)2

and

Tr

(
n∑

i=1

siaia
T
i

)

≤ Tr

(
n∑

i=1

aia
T
i

)

=

n∑

i=1

‖ai‖22.

The weights si can be computed deterministically in
O
(
rnk2 + nℓ

)
time.

Proof Sketch. After decoupling the analysis as in
Lemma 10, the main insight is to introduce a new potential
function which controls the Frobenius norm of the sparsified
second set of vectors. This new potential function turns
out to be the trace. The two set analysis for twodifferent
potential functions then follows a similar line as Lemma 10.
Again, the details are in [2].

In matrix notation (here A denotes the matrix whose
rows are the vectorsai), the above lemma guarantees that
σk

(
VTS

)
≥ 1−

√

k/r and‖ATS‖2F ≤ ‖A‖2F .

3. PROOFS OF OURMAIN RESULTS

In this section, we leverage the main tools described
in Section 2 in order to prove the results of Section 1.2
(Theorems 1 through 5). We start with a proof of Theorem 1,
using Lemmas 7 and 10.

Proof of Theorem 1. Apply the algorithm of Lemma 10 on
the following two sets of vectors: then rows of the matrix
Vk and then rows of the matrix Vρ−k. The output of the
algorithm is a sampling and rescaling matrix S∈ R

n×r (see
discussion after Lemma 10 in Section 2.2). Let C= AS and
note that C consists of a subset ofr rescaledcolumns of
A. Lemma 10 guarantees thatσk(V

T
kS) ≥ 1 −

√

k/r >
0 (assumingr > k), and so rank(VT

kS) = k. Also,
σ1(V

T
ρ−kS) = ‖VT

ρ−kS‖
2

≤ 1 +
√

(ρ− k)/r. Applying
Lemma 7, we get‖A −Π2

C,k(A)‖22 ≤

≤ ‖A − Ak‖22 + ‖(A − Ak)S(VT
kS)+‖22

≤ ‖A − Ak‖22 + ‖(A − Ak)S‖22‖(VT
kS)+‖22

= ‖A − Ak‖22 + ‖Uρ−kΣρ−kVT
ρ−kS‖22‖(V T

k S)+‖22
≤ ‖A − Ak‖22 + ‖Σρ−k‖22‖VT

ρ−kS‖22‖(VT
kS)+‖22

≤ ‖A − Ak‖22

(

1 +
(1 +

√

(ρ− k)/r)2

(1 −
√

k/r)2

)

,

where the last inequality follows because‖Σρ−k‖2 = ‖A −
Ak‖2 and ‖(VT

kS)+‖2 = 1/σk(VT
kS) ≤ 1/(1 −

√

k/r).
Theorem 1 now follows by taking square roots of both sides



and using
√
1 + x2 ≤ 1 + x. The running time is equal to

the time needed to compute Vk and Vρ−k plus the running
time of the algorithm in Lemma 10. Finally, we note that
the rescaling of the columns of C does not change the span
of its columns and thus is irrelevant in the construction of
Π2

C,k(A).

Our next theorem describes a deterministic algorithm for
spectral norm reconstruction that only needs to compute Vk

and will serve as a prequel to the proof of Theorem 3. The
accuracy guarantee of this theorem is essentially identical to
the one in Theorem 1, withρ− k being replaced byn.

Theorem 12. Given A ∈ R
m×n of rank ρ and a target

rank k < ρ, there exists a deterministic polynomial-time
algorithm to selectr > k columns ofA and form a matrix
C ∈ R

m×r such that

‖A−Π2
C,k(A)‖2 ≤ ‖A−Ak‖2+

(

1 +
√

n/r

1−
√

k/r

)

‖A−Ak‖2.

The matrix C can be computed inTVk
+ O(nrk2) time,

whereTVk
is the time needed to compute the topk right

singular vectors ofA .

Proof: The proof is very similar to the proof of The-
orem 1, so we only highlight the differences. First, apply
the algorithm of Lemma 10 on the following two sets of
vectors: then rows of the matrix Vk and then rows of the
matrix In. The output of the algorithm is a sampling and
rescaling matrix S∈ R

n×r (see discussion after Lemma 10
in Section 2.2). Let C= AS and note that C consists of a
subset ofr rescaledcolumns of A. Lemma 10 guarantees
that ‖InS‖2 ≤ 1 +

√

n/r. We now replicate the proof of

Theorem 1 up to the point where‖(A − Ak)S(V
T
kS)+‖22 is

bounded. We continue as follows:

‖(A − Ak)S(VT
kS)+‖22 = ‖(A − Ak)InS(VT

kS)+‖22
≤ ‖(A − Ak)‖22‖InS‖22‖(VT

kS)+‖22.

The remainder of the proof now follows the same line as
in Theorem 1. Again, the rescaling of the columns of C
is irrelevant to the construction ofΠ2

C,k(A). To analyze
the running time of the proposed algorithm, we need to
look more closely at Lemma 10 and the related algorithm.
The details are in [2], where we argue that the algorithm
of Lemma 10 can be implemented inO(nrk2) time. The
total running time is the time needed to compute Vk plus
O(nrk2).

Proof of Theorem 3. In order to prove Theorem 3 we will
follow the proof of Theorem 1 using Lemma 8 (a fast matrix
factorization) instead of Lemma 7 (the exact SVD of A).
More specifically, instead of using the topk right singular
vectors of A (the matrix Vk), we use the matrix Z∈ R

n×k

of Lemma 8. We now apply the algorithm of Lemma 10 on
the following two sets of vectors: then rows of the matrix Z

and then rows of the matrix In. The output of the algorithm
is a sampling and rescaling matrix S∈ R

n×r (see discussion
after Lemma 10 in ection 2.2). Let C= AS and note that C
consists of a subset ofr rescaledcolumns of A. The proof
of Theorem 3 is now identical to the proof of Theorem 12,
except for using Lemma 6 instead of Lemma 7 in the first
step of the proof:

‖A −Π2
C,k(A)‖22 ≤ ‖E‖22 + ‖ES(ZTS)+‖22

= ‖E‖22 + ‖EInS(ZTS)+‖22
≤ ‖E‖22

(
1 + ‖InS‖22‖(ZTS)+‖22

)
,

where E is the residual error from the matrix factorization
of Lemma 8. Taking square roots (using

√
1 + x2 ≤ 1 + x)

and using the bounds guaranteed by Lemma 10 for‖InS‖2
and ‖(ZTS)+‖2, we obtain a bound in terms of‖E‖2.
Finally, since E is a random variable, taking expectations
and applying the bound of Lemma 8 concludes the proof
of the theorem. Again, the rescaling of the columns of C is
irrelevant to the construction ofΠ2

C,k(A). The running time
is the time needed to compute the matrix Z from Lemma 8
plus an additionalO(nrk2) time as in Theorem 12.

Proof of Theorem 2. First, apply the algorithm of
Lemma 11 on the following two sets of vectors: then rows
of the matrix Vk and then rows of the matrix(A − Ak)

T.
The output of the algorithm is a sampling and rescaling
matrix S ∈ R

n×r (see discussion after Lemma 10 in
Section 2.2). Let C= AS and note that C consists of a
subset ofr rescaledcolumns of A. We follow the proof of
Theorem 1 in the previous section up to the point where we
need to bound the term‖(A − Ak)S(VT

kS)+‖2F . By strong
submultiplicativity,

‖(A − Ak)S(VT
kS)+‖2F ≤ ‖(A − Ak)S‖2F ‖(VT

kS)+‖22.

To conclude, we apply Lemma 11 to bound the two terms
in the right-hand side of the above inequality. Again, the
rescaling of the columns of C is irrelevant to the construction
of ΠF

C,k(A). The running time of the proposed algorithm is
equal to the time needed to compute Vk plus the time needed
to compute A− Ak (which is equal toO(mnk) given Vk)
plus the time needed to run the algorithm of Lemma 11,
which is equal toO

(
nrk2 + nm

)
.

Proof of Theorem 4. We will follow the proof of Theorem 2,
but, as with the proof of Theorem 3, instead of using the
top k left singular vectors of A (the matrix Vk), we will
use the matrix Z of Lemma 9 that is computed via a fast,
approximate matrix factorization. More specifically, let Zbe
the matrix of Lemma 9 and run the algorithm of Lemma 11
on the following two sets of vectors: then rows of the
matrix Z and then rows of the matrix ET. The output of the
algorithm is a sampling and rescaling matrix S∈ R

n×r (see
discussion after Lemma 10 in Section 2.2). Let C= AS and
note that C consists of a subset ofr rescaledcolumns of



A. The proof of Theorem 4 is now identical to the proof of
Theorem 2, except for using Lemma 6 instead of Lemma 7.
Ultimately, we obtain

‖A −ΠF
C,k(A)‖2F ≤ ‖E‖2F + ‖ES(ZTS)+‖22

≤ ‖E‖2F + ‖ES‖2F ‖(ZTS)+‖22
≤

(

1 +
(

1−
√

k/r
)−2

)

‖E‖2F .

The last inequality follows from the bounds of Lemma 11.
The theorem now follows by taking the expectation of both
sides and using Lemma 9 to boundE[‖E‖2F ]. Again, the
rescaling of the columns of C is irrelevant to the construction
of ΠF

C,k(A). The overall running time is derived by replacing
the time needed to compute Vk in Theorem 2 with the
time needed to compute the fast approximate factorization
of Lemma 9.

Proof of Theorem 5. Finally, we will prove Theorem 5 by
combining the results of Theorem 4 (a constant factor ap-
proximation algorithm) with one round of adaptive sampling.
We first recall the following lemma, which has appeared in
prior work [9], [14].

Lemma 13. Given a matrixA ∈ R
m×n, a target rankk, and

an integerr, there exists an algorithm to selectr columns
from A to form the matrixC ∈ R

m×r such that

E
[
‖A −ΠF

C,k(A)‖2F
]
≤ ‖A − Ak‖2F +

k

r
‖A‖2F .

The matrixC can be computed inO(mn+ r log r) time.

Algorithms for the above lemma chooser columns of A
in r independent identically distributed (i.i.d.) trials, where
in each trial a column of A is sampled with probability
proportional to its norm-squared (importance sampling). We
now state Theorem 2.1 of [8], which builds upon Lemma 13
to provide an adaptive sampling procedure that improves the
accuracy guarantees of Lemma 13.

Lemma 14. Given a matrixA ∈ R
m×n, let C1 ∈ R

m×r

consist ofr columns ofA, and define the residualB =
A − C1C+

1 A ∈ R
m×n. For i = 1, . . . , n, let

pi = ‖bi‖22/‖B‖2F ,

wherebi is thei-th column of the matrixB. Sample a further
s columns fromA in s i.i.d. trials, where in each trial the
i-th column is chosen with probabilitypi. Let C2 ∈ R

m×s

contain thes sampled columns and letC = [C1 C2] ∈
R

m×(r+s) contain the columns of bothC1 and C2, all of
which are columns ofA. Then, for any integerk > 0,

E

[

‖A −ΠF
C,k(A)‖2

F

]

≤ ‖A − Ak‖2F +
k

s
‖B‖2F .

Note that Lemma 14 is an extension of Lemma 13; one can
obtain Lemma 13 by setting C1 to be empty in Lemma 14.
We are now ready to prove Theorem 5. First, fixd > 1

and definec0 = (1 + ǫ0) (1 + 1/(1−
√

k/r̂)2), where
r̂ = ⌈ dk ⌉. (We will choosed and ǫ0 later.) Now run the
algorithm of Theorem 4 to samplêr = ⌈ dk ⌉ columns
of A and form the matrix C1. Then, run the adaptive
sampling algorithm of Lemma 14 with B= A − C1C+

1 A
and sample a furthers = ⌈ c0k/ǫ ⌉ columns of A to form
the matrix C2. Let C = [C1 C2] ∈ R

n×(r̂+s) contain
all the sampled columns. We will analyze the expectation
E

[

‖A −ΠF
C,k(A)‖2

F

]

. Using the bound of Lemma 14, we
first compute the expectation with respect to C2 conditioned
on C1:

EC2

[

‖A −ΠF
C,k(A)‖2

F

∣
∣
∣C1

]

≤ ‖A − Ak‖2F +
k

s
‖B‖2F .

We now compute the expectation with respect to C1 (only
B depends on C1):

EC1

[
EC2

[
‖A −ΠF

C,k(A)‖2F
∣
∣C1

]]
≤

‖A − Ak‖2F +
k

s
EC1

[
‖A − C1C+

1 A‖2F
]
. (1)

By the law of iterated expectation, the left hand side is
exactly equal toE

[

‖A −ΠF
C,k(A)‖2F

]

. We now use the
accuracy guarantee of Theorem 4 and our definition ofc0
to bound

EC1

[
‖A − C1C+

1 A‖2F
]
≤ EC1

[
‖A −ΠF

C1,k(A)‖2F
]

≤ c0‖A − Ak‖2F .

Using the bound in (1), we obtain

E
[
‖A −ΠF

C,k(A)‖2F
]
≤ ‖A − Ak‖2F (1 + c0k/s) .

Finally, recall that for our choice ofs, s ≥ c0k/ǫ, and so
we obtain the relative error bound. The number of columns
needed isr = r̂ + s = dk + c0k/ǫ. Set d = (1 + α)2,
whereα = 3

√

(1 + ǫ0)/ǫ. After some algebra, this yields
r = k(α3 + (1 + α)3) = 2k

ǫ (1 + O(ǫ0 + ǫ1/3)) sampled
columns. The time needed to compute the matrix C is the
sum of three terms: the running time of Theorem 4 (which
is O(mnkǫ−1

0 + nr̂k2)), plus the time needed to compute
A − C1C+

1 A (which is O(mnr̂)), plus the time needed to
run the algorithm of Lemma 14 (which isO(mn+s log s)).
Assumer < n (otherwise the problem is trivial), setǫ0 =
ǫ2/3 and used = O(ǫ−2/3) to get the final asymptotic run
time.
Comments. The number of columns required for relative
error approximation is approximately2kǫ , a 2-factor from
optimal, sincek

ǫ are needed ([7] and Section 5). We get a
much better running time ofO(mnk+nk3+n log ǫ−1) using
just a constant factor more columns by settingd and ǫ0 in
the proof to constants (for example settingd = 100; ǫ0 =
62
181 ≈ 1

3 results in 3k
ǫ (1 + o(1)) columns).



4. MATRIX PYTHAGORAS AND THE COMPUTATION OF

Πξ
C,k(A)

4.1. Matrix norm properties

Recall notation from Section 1.1; for any matrix A of
rank at mostρ, it is well-known that‖A‖2F =

∑ρ
i=1 σ

2
i (A)

and ‖A‖2 = σ1(A). Also, the best rankk approxima-
tion to A satisfies‖A − Ak‖2 = σk+1(A) and ‖A −
Ak‖2F =

∑ρ
i=k+1 σ

2
i (A). For any two matrices A and B

of appropriate dimensions,‖A‖2 ≤ ‖A‖F ≤ √
ρ‖A‖2,

‖AB‖F ≤ ‖A‖F ‖B‖2, and ‖AB‖F ≤ ‖A‖2‖B‖F . The
latter two properties are stronger versions of the standard
submultiplicativity property.

We refer to the next lemma as matrix-Pythogoras:

Lemma 15. If X,Y ∈ R
m×n andXY T = 0m×m or XTY =

0n×n, then

‖X + Y‖2F = ‖X‖2F + ‖Y‖2F ,
max{‖X‖22, ‖Y‖22} ≤ ‖X + Y‖22 ≤ ‖X‖22 + ‖Y‖22.

Proof: Since XYT = 0m×m, (X + Y)(X + Y)T =
XX T + YY T. For ξ = F ,

‖X+Y‖2F = Tr
(
(X + Y)(X + Y)T

)
= Tr

(
XX T + YY T

)
=

= ‖X‖2F + ‖Y‖2F .

Let z be any vector inRm. For ξ = 2,

‖X + Y‖22 = max
‖z‖2=1

z
T(X + Y)(X + Y)T

z =

= max
‖z‖2=1

(
z

TXX T
z+ z

TYY T
z
)
.

We have thatmax‖z‖2=1

(
z

TXX T
z+ z

TYY T
z
)

is at most

max
‖z‖2=1

z
TXX T

z+ max
‖z‖2=1

z
TYY T

z = ‖X‖22 + ‖Y‖22

and that

max
‖z‖2=1

(zTXX T
z+ z

TYY T
z) ≥ max

‖z‖2=1
z

TXX T
z = ‖X‖22,

sincezTYY T
z is non-negative for any vectorz. We get the

same lower bound with‖Y‖22 instead, which means we can
lower bound withmax{‖X‖22, ‖Y‖22}. The case with XTY =
0n×n can be proven similarly.

4.2. Computing the best rankk approximationΠξ
C,k(A)

Let A ∈ R
m×n, let k < n be an integer, and let C∈

R
m×r with r > k. Recall thatΠξ

C,k(A) ∈ R
m×n is the best

rank k approximation to A in the column space of C: We
can writeΠξ

C,k(A) = CXξ, where

Xξ = argmin
Ψ∈R

r×n:rank(Ψ)≤k

‖A − CΨ‖2ξ.

In order to compute (or approximate)Πξ
C,k(A) given A, C,

andk, we will use the following algorithm:

1: Orthonormalize the columns of C inO(mr2) time to
construct the matrix Q∈ R

m×r.
2: Compute

(
QTA

)

k
∈ R

r×n via SVD in O(mnr + nr2)

– the best rank-k approximation of QTA.
3: Return Q

(
QTA

)

k
∈ R

m×n in O(mnk) time.

Clearly, Q
(
QTA

)

k
is a rankk matrix that lies in the column

span of C. Note that thoughΠξ
C,k(A) can depend onξ, our

algorithm computes the same matrix, independent ofξ. The
next lemma, which is essentially Lemma 4.3 in [4] together
with a slight improvment of Theorem 9.3 in [18], proves
that this algorithm computesΠF

C,k(A) and a constant factor
approximation toΠ2

C,k(A).

Lemma 16. Given A ∈ R
m×n, C ∈ R

m×r and an integer
k, the matrixQ

(
QTA

)

k
∈ R

m×n described above (where
Q is an orthonormal basis for the columns ofC) can be
computed inO

(
mnr + (m+ n)r2

)
time and satisfies:

‖A − Q
(
QTA

)

k
‖2
F

= ‖A −ΠF
C,k(A)‖2F ,

‖A − Q
(
QTA

)

k
‖2
2

≤ 2‖A −Π2
C,k(A)‖22.

Proof: Our proof for the Frobenius norm case is a mild
modification of the proof of Lemma 4.3 [4]. First, note that
ΠF

C,k(A) = ΠF
Q,k(A), because Q∈ R

m×r is an orthonormal
basis for the column space of C. Thus,

‖A −ΠF
C,k(A)‖2F = ‖A − ΠF

Q,k(A)‖2F =

min
Ψ:rank(Ψ)≤k

‖A − QΨ‖2F .

Now, using matrix-Pythagoras and the orthonormality of Q,

‖A − QΨ‖2F = ‖A − QQTA + Q(QTA −Ψ)‖2F =

‖A − QQTA‖2F + ‖QTA −Ψ‖2F .
Setting Ψ = (QTA)k minimizes the above quantity over
all rank-k matricesΨ. Thus, combining the above results,
‖A −ΠF

C,k(A)‖2F = ‖A − Q
(
QTA

)

k
‖2F .

We now proceed to the spectral-norm part of the proof,
which combines ideas from Theorem 9.3 [18] and matrix-
Pythagoras. We first manipulate‖A − Q

(
QTA

)

k
‖22 =

= ‖A − QQTA + Q
(
QTA − (QTA)k

)
‖22

≤ ‖A − QQTA‖22 + ‖QQTA − (QQTA)k‖22
(a)

≤ ‖A −Π2
Q,k(A)‖22 + ‖A − Ak‖22

≤ 2‖A −Π2
Q,k(A)‖22.

The first inequality follows from the simple fact that
(
QQTA

)

k
= Q

(
QTA

)

k
and matrix-Pythagoras; the first

term in (a) follows because QQTA is the (unconstrained,
not necessarily of rank at mostk) best approximation to A
in the column space of Q; the second term in (a) follows
because QQT is a projector matrix and thus

‖QQTA−(QQTA)k‖22 = σ2
k+1(QQTA) ≤ σ2

k+1(A) = ‖A−Ak‖22.



The last inequality follows because

‖A − Ak‖22 ≤ ‖A −Π2
Q,k(A)‖22.

5. LOWER BOUNDS

Theorem 17. For any α > 0, any k ≥ 1, and anyr ≥ 1,
there exists a matrixA ∈ R

m×n for which

‖A − CC+A‖22
‖A − Ak‖22

≥ n+ α2

r + α2
.

Here C is any matrix that consists ofr columns ofA. As
α → 0, the lower bound isn/r for the approximation ratio
of spectral norm column-based matrix reconstruction.

Proof: We extend the lower bound in [5] to arbitrary
r > k. Consider the matrix

A = [e1 + αe2, e1 + αe3, . . . , e1 + αen+1] ∈ R
(n+1)×n,

whereei ∈ R
n+1 are the standard basis vectors. Then,

ATA = 1n1
T
n + α2In, σ2

1(A) = n+ α2, and

σ2
i (A) = α2 for i > 1.

Thus, for allk ≥ 1, ‖A −Ak‖22 = α2. Intuitively, asα → 0,
A is a rank-one matrix. Consider anyr columns of A and
note that, up to row permutations, all sets ofr columns
of A are equivalent. So, without loss of generality, let C
consist of the firstr columns of A. We now compute the
optimal reconstruction of A from C as follows: letaj be the
j-th column of A. In order to reconstructaj , we minimize
‖aj−Cx‖22 over all vectorsx ∈ R

r. Note that ifj ≤ r then
the reconstruction error is zero. Forj > r, aj = e1+αej+1,

Cx = e1

r∑

i=1

xi + α

r∑

i=1

xiei+1.

Then,

‖aj − Cx‖22 = ‖e1
(

r∑

i=1

xi − 1

)

+ α

r∑

i=1

xiei+1 − ej+1‖22

=

(
r∑

i=1

xi − 1

)2

+ α2
r∑

i=1

x2
i + 1.

The above quadratic form inx is minimized whenxi =
(
r + α2

)−1
for all i = 1, . . . , r. Let Â = A − CC+A and

let the j-th column of Â be âj . Then, forj ≤ r, âj is an
all-zeros vector; forj > r, âj = αej+1 − α

r+α2

∑r
i=1 ei+1.

Thus,

Â
T
Â =

[
0r×r 0r×(n−r)

0(n−r)×r Z

]

,

where

Z =
α2

r + α2
1n−r1

T
n−r + α2In−r.

This immediately implies that

‖A − CC+A‖22 = ‖Â‖22 = ‖Â
T
Â‖2 = ‖Z‖22

=
(n− r)α2

r + α2
+ α2 =

n+ α2

r + α2
α2.

This concludes our proof, because

α2 = ‖A−Ak‖22.

5.1. Frobenius norm approximation

Note that a lower bound for the ratio

‖A −Πξ
C,k(A)‖2ξ/‖A − Ak‖2ξ,

does not imply a lower bound for the ratio

‖A − CC+A‖2ξ/‖A − Ak‖2ξ,

because

‖A−CC+A‖2ξ/‖A−Ak‖2ξ ≤ ‖A−Πξ
C,k(A)‖2ξ/‖A−Ak‖2ξ.

Also, notice that Proposition 4 in [7] shows a lower bound
1 + k/2r for the ratio‖A − ΠF

C,k(A)‖2F /‖A − Ak‖2F . For
completeness, we extend the bound of [7] for the ratio‖A−
CC+A‖2F /‖A − Ak‖2F ; in fact, we obtain a lower bound
which is asymptotically1 + k/r.

The matrix Z constructed in the previous proof is all we
need. The trace of Z is the Frobenius norm of the residual
error matrix in approximating A using anyr columns. This
gives the following lemma.

Lemma 18. For anyα > 0 andr ≥ 1, there exists a matrix
A ∈ R

m×n for which

‖A − CC+A‖2F
‖A − A1‖2F

≥ n− r

n− 1

(

1 +
1

r + α2

)

.

Proof: In the proof of Theorem 17,

‖A − CC+A‖2F = Tr(Z) = α2(n− r)(1 +
1

r + α2
),

and‖A − A1‖2F = (n− 1)α2.
Now, construct a matrix withk copies of A along the

diagonal. The size of each block isnk . We sampler columns
in total, with ri from each block. Lemma 18 holds in each
block, with n andr replaced bynk andri.

Theorem 19. For any α > 0, any k ≥ 1, and anyr ≥ 1,
there exists a matrixA ∈ R

m×n for which

‖A − CC+A‖2F
‖A − Ak‖2F

≥ n− r

n− k

(

1 +
k

r + α2

)

.

Here C is any matrix that consists ofr columns ofA. As
α → 0 and n → ∞ the lower bound is1 + k/r for the
approximation ratio of Frobenius norm column-based matrix
reconstruction.



Proof: Let B be the block diagonal matrix withk copies
of A along the diagonal (A is the matrix defined in the proof
of Theorem 17). Letri be the number of columns selected in
each block,

∑k
i=1 ri = r. We can treat the Frobenius error

in each block independently. Let Zi be the error matrix in
each block, as in the proof of Theorem 17. Then, using
Lemma 18, the approximation error is

‖A − CC+A‖2F =

k∑

i=1

Tr(Zi)

= α2
k∑

i=1

(n

k
− ri

)(

1 +
1

ri + α2

)

.

Minimizing this expression subject to the constraint that
∑k

i=1 ri = r gives ri = r/k. The result follows after a
little algebra using‖A − Ak‖2F = (n− k)α2.

6. OPEN PROBLEMS

Several interesting questions remain unanswered; we
highlight two. First, is it possible to improve the running
time of the deterministic algorithms of Lemmas 10 and 11?
Recently, Zouzias [24] made progress in improving the
running time of the spectral sparsification result of [1];
can we get a similar improvement for the 2-set algorithms
presented here? Second, in the parlance of Theorem 5, is
there adeterministicalgorithm that selectsO(k/ǫ) columns
from A and guarantees relative-error accuracy for the error
‖A − ΠF

C,k(A)‖2F? In a very recent development, [17]
partially answers this question by extending the volume sam-
pling approach of [5] to deterministically selectk

ǫ (1+o(1))
columns and obtain a relative error bound for the term
‖A −CC+A‖2F . Notice that it is not obvious if [17] implies
a similar deterministic bound for the error‖A−ΠF

C,k(A)‖2F .
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