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Abstract

Several existing methodologies have leveraged the correla-
tion between the non-RF and the RF performances of a circuit
in order to predict the latter from the former and, thus, reduce
test cost. While this form of specification test compaction
eliminates the need for expensive RF measurements, it also
comes at the cost of reduced test accuracy, since the retained
non-RF measurements and pertinent correlation models do not
always suffice for adequately predicting the omitted RF mea-
surements. To alleviate this problem, we develop a methodology
that estimates the confidence in the obtained test outcome.
Subsequently, devices for which this confidence is insufficient
are retested through the complete specification test suite. As
we demonstrate on production test data from a zero-IF down-
converter fabricated at IBM, the proposed method outperforms
previous defect filtering and guard banding methods and en-
ables a more efficient exploration of the tradeoff between test
accuracy and number of retested devices.

1. Introduction

The current industry practice in testing analog/RF integrated
circuits relies on explicitly measuring all the performances of
each fabricated device and comparing them to the specification
limits. However, as the costs associated with this specification
testing approach have been continuously escalating, a great
incentive to reduce this burden by eliminating potentially
redundant measurements has surfaced. This holds particularly
true for RF circuits because the cost of pertinent Automatic Test
Equipment (ATE) is significantly higher than that of their low-
frequency mixed-signal counterparts. Such discrepancy has re-
sulted in an intensified interest towards developing methods for
accurately testing RF devices without explicitly measuring their
RF performances. The underlying principle is to approximate
these RF performances through correlation models based solely
on non-RF performances (i.e. digital, DC, low-frequency),
which can be explicitly measured through less expensive ATE.
In essence, these non-RF to RF performance correlation models
enable a form of specification test compaction and, ultimately,
result in significant test cost reduction.

The framework of non-RF to RF correlation-based speci-
fication test compaction is depicted in Fig. 1. The learning
phase relies on a training set of m devices, on which both
the non-RF performances, NRFi, i = 1 . . . s, and the RF
performances, RFj , j = 1 . . . t, are explicitly measured. Based

on this information, statistical correlation models, PRFj =
f(NRF1, . . . , NRFs), j = 1 . . . t, are learned, predicting each
RF performance as a function of the non-RF performances of a
device. Subsequently, for every new device in production, only
the non-RF performances are explicitly measured, while the
RF performances are predicted through the learned correlation
models. A pass/fail decision is made by comparing the mea-
sured non-RF performances and the predicted RF performances
to their specifications. Thus, an RF ATE is needed only for
characterizing the small number of devices in the training set
but is not necessary during production testing.

Unfortunately, while correlation-based specification test
compaction promises great test cost reduction, the incurred
test error prevents it from reaching the level of Defective
Parts per Million parts shipped (DPM) typically sought by
industry. Even when very elaborate models are used to learn
the correlation between non-RF and RF performances, such
error is bound to exist. Indeed, partly due to the limited size of
the training set, which may not reflect accurately the statistics
of the entire production, and partly due to the fact that the
non-RF performances may not reflect the complete information
spectrum of the RF performances, elimination of this test error
is very unlikely. Instead, viability of this approach hinges upon
accepting the fact that the performances predicted through
the correlation models will not always yield correct pass/fail
decisions and focusing on pinpointing the mispredicted devices.

To this end, providing a confidence level indication along
with the predicted RF performances could go a long way.
Devices for which this confidence level is low can then
be identified and discarded at the expense of possible yield
loss. Alternatively, these devices can be retested through the

Fig. 1. Non-RF to RF Correlation-Based Testing
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Fig. 2. Retesting when prediction confidence is low

complete specification test suite, as shown in the two-tier test
approach of Fig. 2, at the expense of additional test cost. While
the second tier requires additional handlers and RF ATE, if
only a small fraction of devices goes to the second tier the
overall cost savings can still be significant. Thus, successful
deployment of non-RF to RF correlation-based specification
test compaction calls not only for accurate correlation models
but also for accurate assessment of the confidence in the
corresponding test decisions, in order to explore effectively the
trade-off between test error and test cost.

Two such approaches, generically termed defect filtering and
guard banding, have been previously described in [1], [2], [3].
These, however, were not in the context of correlation-based
specification test compaction but, rather, in the related field of
alternate test [4], [5]. The key difference is that the former uses
a low-cost subset of non-RF circuit performances to predict
the dropped RF performances, while the latter relies on low-
cost alternate measurements which constitute the response of
the circuit to a carefully crafted and optimized stimulus. Thus,
these alternate measurements may encompass more compre-
hensively the spectrum of information necessary to predict
the circuit performances. Nevertheless, the accuracy boosting
and trade-off exploration methods used therein are readily
applicable to the non-RF to RF correlation-based specification
test compaction problem and we examine them in detail.

In this paper, we introduce a novel confidence estimation
method for deciding whether the pass/fail prediction yielded by
the correlation models is sufficiently accurate or not. The pro-
posed methods employs an additional learning phase, wherein
a Support Vector Machine (SVM) [6] is trained to separate
the hyperspace of the non-RF measurements into regions that
are trusted or untrusted, with regards to the pass/fail decisions
of the correlation models. The key advantage of the proposed
confidence estimation method is that the outlined regions are
created through highly non-linear separation hypersurfaces,
rather than the hyperrectangular boundaries employed by defect
filtering and guard banding. Furthermore, these regions are
learned rather than set a priori based on the distribution of the
training set. Thus, the proposed confidence estimation method
promises lower test error and fewer retested devices.

The remainder of this paper is organized as follows. In sec-
tion 2, we briefly discuss related efforts in analog specification

test compaction. Then, in section 3, we describe in detail the
aforementioned defect filtering and guard banding approaches,
as well as the confidence estimation method proposed herein.
Finally, in section 4, we provide experimental results compar-
ing the three methods based on production test data from a
zero-IF down-converter fabricated at IBM.

2. Related Work

Various other analog specification test compaction methods
have been developed in the past. The linear error-mechanism
model algorithm (LEMMA) [7] and various extensions thereof,
aim to predict the complete vector of performance measure-
ments by carrying out only a subset of cardinality which
depends on the permitted measurement cost and the maximum
tolerable prediction error. The selection process is performed
through QR factorization [8] and minimizes the prediction vari-
ance. The effectiveness of the LEMMA method is limited by
the use of a linear model to predict the behavior of a non-linear
system, as well as the need for error mechanism models that are
difficult to specify for complex circuits. In [9], a fault-driven
test selection approach is proposed. Performance measurements
are gradually added until a desired fault coverage level is
reached. The disadvantage of this approach is its dependence
on fault models, which have not been widely accepted in the
analog/RF domain. In [10], the compaction problem is viewed
as a binary pass/fail classification problem and an SVM is
trained to separate the passing from the failing devices in
the hyperspace of a subset of performances, eliminating one
dimension at a time. In practice it is advantageous to consider
subsets of performances, since combinations of performances
can provide significant information which is not individually
available in any of the performances. To this end, a genetic
feature selection algorithm along with an Ontogenic Neural
Network is described within the context of non-RF to RF
specification test compaction in [11]. A guard-banding and a
two-tier test method applicable to the latter is discussed in [12].

3. Accuracy Boosting and Trade-off Exploration

In this section, we discuss the previously proposed defect
filtering and guard banding methods [1], [2], [3] and we intro-
duce the proposed SVM-based confidence estimation method.

3.1. Prior Art: Defect Filtering

Defect filtering [1], [3] builds upon the well-known fact
that accurate correlation models can only be learned through
elements that belong to a distribution [13]. While passing
devices and marginally failing devices are typically considered
to belong to a distribution, grossly defective devices are not
and, therefore, should be filtered out. In other words, such
devices should not be used during the learning process and
the learned correlations should not be used to predict the
performances of such devices. To ensure this, defect filtering
divides the devices into two sets, depending on whether they
are considered to belong to the distribution or not.
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Fig. 3. Learning phase

More specifically, in the context of specification test com-
paction, let us assume that we are trying to establish correlation
models for predicting RF performances based on non-RF
performances (predictor variables) Xi, i = 1 . . . n. Let us also
assume that, in the training set, the mean of these n predictor
variables is µ = {µ1, µ2, . . . , µn} and the standard deviation
is σ = {σ1, σ2, . . . , σn}. Then, a defect filter is defined as a
hyperrectangle in the space of the training set:

Hk = {µ1 ± k · σ1, µ2 ± k · σ2, . . . , µn ± k · σn}

where k is a positive real number. We will refer to this
hyperrectangle as a k-filter.

The utilization of the k-filter during the learning phase is
conceptually demonstrated for n = 2 in Fig. 3. During this
phase, devices in the training set whose predictor variable
vector falls outside the k-filter are ignored. Similarly, as shown
in Fig. 4, during the testing phase devices whose predictor
variable vector falls outside the k filter are rejected or retested
through a second tier of complete specification testing. In
essence, correlation models are only trusted when used for
predicting the RF performances of devices within the k-filter.

Evidently, the choice of k is crucial since it affects both
the number of retested devices and the accuracy of the learned
correlation models. A strict k-filter may exclude many good
devices during testing, resulting in high yield loss if they are
rejected or high test cost if they are retested. A lenient k-filter
may allow many devices that do not belong to the distribution
to affect the accuracy of the correlation models during training,
resulting in high test error. In essence, the choice of k facilitates
exploration of the trade-off between test accuracy and test cost.

Note that assessment of candidate k-filters should not be
performed using training set devices. Instead, a second set of
devices, called the hold-out set, is used to drive the choice of
k. The chosen k is then used along with the learned correlation
models to calculate the figures of merit of defect filtering in a
set of previously unseen devices, i.e. the validation set.

3.2. Prior Art: Guard Banding

While defect filtering offers a good first step towards
boosting the accuracy of the correlation models, it suffers

Fig. 4. Defect filtering - Testing phase

from two inherent limitations. First, due to the continuous
nature of the predictor variables, the limited training set size,
and the fact that non-RF performances may not reflect the
complete information spectrum of RF performances, it is highly
unlikely that correlation models perfectly separating the two
populations of passing and failing devices will be learned.
Therefore, despite the k-filtering approach, a test error is bound
to exist, translating into yield loss and/or test escapes. Second,
depending on the chosen course of action for devices outside
the k-filter, defect filtering may incur unnecessary yield loss
or test cost. Specifically, if all devices outside the k-filter are
discarded, then passing devices often found just outside the k-
filter will be thrown away. Similarly, if all devices outside the
k-filter are retested, grossly defective devices typically found
far away from the k-filter will waste test resources.

To alleviate this problem, guard banding [1], [2] comple-
ments the k-filter by an l-filter, k ≤ l, thus dividing devices
into three sets: (1) devices falling outside the l-filter are
considered grossly defective and are discarded; (2) devices
falling in between the k-filter and the l-filter are retested; (3)
devices falling inside the k-filter are considered part of the
distribution and the outcome of the correlation models is trusted
for deciding whether they pass or fail. As in defect filtering, the
correlation models are learned only from devices in the training
set which fall inside the k-filter (see Fig. 3). The utilization of
the k-filter and l-filter guard bands during the testing phase is
conceptually demonstrated for n = 2 in Fig. 5.

The choice of k and l is instrumental in exploring the
trade-off between retested devices and test error. As in defect
filtering, selection of candidate k- and l-filters is performed in
the hold-out set. In other words, k-filters are established and
correlation models are learned in the training set, k and l are
chosen by assessing the effectiveness of the k- and l-filters and
the learned models in the hold-out set, and the chosen k and
l are then used along with the correlation models to calculate
the figures of merit of guard banding in the validation set.

3.3. Proposed Method: Confidence Estimation

Both defect filtering and guard banding rely on the mean
and the standard deviation of the devices in the training set
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Fig. 6. Proposed confidence estimation method

Fig. 5. Guard banding - Testing phase

to establish the three regions wherein correlation models are
trusted, devices are retested, or devices are discarded, respec-
tively. These regions, however, are rather coarsely outlined
through hyperrectangles, whereas the actual region in which
the correlation models can yield a trusted prediction is likely
to be more complex. Thus, a more refined division of the
aforementioned regions holds promise for further improving
the prediction accuracy of the correlation models and reducing
the number of retested devices.

To this end, we propose a confidence estimation method
which uses an SVM [6] to replace the coarse hyperrectangles
with a detailed non-linear hypersurface. As previously, cor-
relation models are initially learned from training set devices
within a k-filter (see Fig. 3). Then, the 2-step procedure shown
for n = 2 in Fig. 6 is applied to the devices in the hold-out
set. In the first step, the learned correlation models are used to
make pass/fail predictions and the devices in the hold-out set
are relabeled as correctly or incorrectly predicted. In the second
step, an SVM is trained to learn the boundary partitioning
the predicted performance space into two subspaces: the area
wherein correct predictions occurred (trusted), and the area
wherein incorrect predictions occurred (untrusted). The choice
of k is, again, crucial in establishing accurate separation

Fig. 7. Confidence estimation - Testing phase

boundaries via the SVM. Since the SVM is trained using the
devices in the hold-out set, k has to be picked by examining
the SVM performance on another set (e.g. the training set). The
utilization of the SVM during the testing phase is conceptually
demonstrated for n = 2 in Fig. 7. The pass/fail prediction
of the correlation models is accepted only for devices with
predictor variable vectors that the trained SVM classifies as
trusted, while the rest of the devices are retested.

We note that the trusted area outlined in Fig. 6 and Fig.
7 is a simplification of the actual bounding done by an
SVM, as the latter transforms the predictor variable hyperspace
into a new hyperspace, wherein it learns the boundaries.
This transformation (a.k.a. kernel) is what enables the SVM
to draw highly non-linear surfaces in the original predictor
variable hyperspace. We also note that the SVM marks the
area of outliers (i.e. grossly defective devices) as “trusted” even
though the correlation models perform poorly in estimating the
performances of such devices. Indeed, while the performance
prediction itself is inaccurate, it is still far off from the
acceptable specification range and, thus, sufficient to ensure
correct classification of these devices as failing. In this sense,
the trusted/untrusted separation boundary established by the
SVM replaces and refines both the k-filter and the l-filter.
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(a) Discarding devices outside the k-filter

(b) Retesting devices outside the k-filter

Fig. 8. Defect filtering

4. Experimental Results

In order to compare the proposed confidence estimation
method to the prior art methods of defect filtering and guard
banding, we use production test data from a zero-IF down
converter for cell-phone applications, designed in RFCMOS
technology, fabricated at IBM and currently running in pro-
duction. The device is characterized by 143 performances, 72
of which are non-RF (i.e. digital, DC, low frequency) and 71
are RF. The test dataset includes performance measurements
for 4450 devices across 3 lots. Of these devices, 4141 pass all
the specification tests while 309 fail one or more specification
tests. The passing and failing devices are each randomly split
into three subsets of equal size: P1, P2, P3, and F1, F2, F3.
The sets St = P1 ∪ F1, Sh = P2 ∪ F2 and Sv = P3 ∪ F3

are used as the training set, the hold-out set and the validation
set, respectively. For all the experiments, correlation models
are learned through MARS (Multiple Adaptive Regression
Splines) [14]. The results for each of the three methods are
reported below. We remind that the objective of non-RF to
RF correlation-based specification test compaction is to predict
pass/fail decisions by only measuring non-RF performances.

Fig. 9. Guard banding

4.1. Defect Filtering

As explained in section 3.1, the correlation models are
learned in St, the parameter k is picked by assessing the
behavior of the learned correlation models in Sh, and the final
figures of merit of defect filtering are reported in Sv . The results
when all devices outside the k-filter are discarded are shown in
Fig. 8(a), where the number of test escapes, the yield loss inside
the k-filter and the yield loss outside the k-filter are reported.
As can be seen, the best trade-off point is found for k = 6,
where 25 devices are misclassified (22 failing devices which
are kept and 3 passing devices which are discarded). The results
when all devices outside the k-filter are retested are shown in
Fig. 8(b), where the test error is plotted against the number
of retested devices as k decreases. As can be observed, for
large values of k (near the y-axis), few devices are excluded
by the k-filter and, therefore, retested. Yet the accuracy of the
correlation models deteriorates as many devices not belonging
to the distribution are included by the k-filter, resulting in high
yield loss. As k is reduced, the number of retested circuits
increases and the test error decreases.

4.2. Guard Banding

As explained in section 3.2, the correlation models are
learned in St, the parameters k and l are picked by assessing the
behavior of the learned correlation models in Sh, and the final
figures of merit of guard banding are reported in Sv . The results
are shown in Fig.9, where the test error is plotted against the
number of retested devices for the Pareto front of (k, l) pairs.
As expected, adding the l-filter slightly improves the results.

4.3. Proposed Method: Confidence Estimation

As explained in section 3.3, the correlation models are first
learned in St. Then they are applied to the devices in Sh and
a trusted/untrusted label is given to each device depending
on whether the models predict its pass/fail label accurately
or not. An SVM is, subsequently, trained to separate the
trusted from the untrusted devices in Sh. The parameter k is
picked by assessing the effectiveness of the trained SVM on an
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Fig. 10. Confidence estimation

independent set (we may use St for this purpose) and the final
figures of merit of confidence estimation are reported in Sv .
The results for the proposed SVM-based confidence estimation
method are shown in Fig. 10. As can be observed, both the
number of retested devices and the test error are reduced, as
compared to defect filtering and guard banding.

4.4. Comparison & Future Work

The results for the three different methods described above
are summarized and compared in Figure 11, where we plot
the Pareto-optimal front of the percentage of test error vs.
the percentage of retested devices. As can be observed, the
proposed SVM-based confidence estimation method clearly
improves upon the defect filtering and guard banding methods.

As a next step, we are currently in the process of obtaining
a much larger dataset for the same IBM-fabricated device, as
well as data from a different device, whereon we plan to repeat
the experiment in order to corroborate our findings.

5. Conclusions

Specification test compaction through non-RF to RF per-
formance correlation promises significant test cost reduction.
Yet, in order to meet industry-level DPM standards, such
compaction relies on efficient methods for boosting the ac-
curacy of the correlation models and exploring the trade-off
between the test error and the number of devices that need
to be retested through complete specification testing. To this
end, we developed a confidence estimation method which
employs an SVM to decide whether the test outcome obtained
through the learned correlation models can be trusted or not. As
demonstrated experimentally using production test data from
a zero-IF down-converter fabricated by IBM, the proposed
method outperforms previously proposed defect filtering and
guard banding methods, thus facilitating more accurate and less
expensive production testing.
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Fig. 11. Summary of results
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