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Abstract. Much recent work in the theoretical computer science, linear
algebra, and machine learning has considered matrix decompositions of
the following form: given an m × n matrix A, decompose it as a product
of three matrices, C, U , and R, where C consists of a small number of
columns of A, R consists of a small number of rows of A, and U is a small
carefully constructed matrix that guarantees that the product CUR is
“close” to A. Applications of such decompositions include the computa-
tion of matrix “sketches”, speeding up kernel-based statistical learning,
preserving sparsity in low-rank matrix representation, and improved in-
terpretability of data analysis methods. Our main result is a randomized,
polynomial algorithm which, given as input an m × n matrix A, returns
as output matrices C, U, R such that

‖A − CUR‖F ≤ (1 + ε) ‖A − Ak‖F

with probability at least 1 − δ. Here, Ak is the “best” rank-k approx-
imation (provided by truncating the Singular Value Decomposition of
A), and ‖X‖F is the Frobenius norm of the matrix X. The number
of columns in C and rows in R is a low-degree polynomial in k, 1/ε,
and log(1/δ). Our main result is obtained by an extension of our recent
relative error approximation algorithm for �2 regression from overcon-
strained problems to general �2 regression problems. Our algorithm is
simple, and it takes time of the order of the time needed to compute the
top k right singular vectors of A. In addition, it samples the columns
and rows of A via the method of “subspace sampling,” so-named since
the sampling probabilities depend on the lengths of the rows of the top
singular vectors, and since they ensure that we capture entirely a certain
subspace of interest.

1 Introduction

1.1 Motivation and Overview

Recent work in the theoretical computer science, linear algebra, and machine
learning has considered matrix decompositions of the following form: given an
m×n matrix A, decompose it as a product of three matrices, C, U , and R, where
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C consists of a few columns of A, R consists of a few rows of A, and U is a small,
carefully constructed matrix that guarantees that the product CUR is “close”
to A. Applications of such decompositions include constructing “sketches” for
large matrices in a pass-efficient manner, matrix reconstruction, speeding up
kernel-based statistical learning computations, sparsity-preservation in low-rank
approximations, and improved interpretability of data analysis methods. See
[6, 7, 21, 12, 11, 19, 20, 1] for examples of applications for matrix decompositions
of this form.

Let us consider the application to data analysis methods in more detail. In
many applications, the data are represented by a real m × n matrix A. Such a
matrix may arise if the data consist of n objects, each of which is described by
m features. The most common compressed representation of A used by data an-
alysts is that obtained by truncating the Singular Value Decomposition at some
number k � min{m, n} terms, in large part because this provides the “best”
rank-k approximation to A when measured with respect to any unitarily invari-
ant matrix norm. However, there is a fundamental difficulty with this represen-
tation: the new “dimensions” (the so-called eigencolumns and eigenrows) of Ak

are linear combinations of the original dimensions. As such, they are notoriously
difficult to interpret in terms of the underlying data and processes generating
that data. For example, the vector [(1/2) age - (1/

√
2) height + (1/2) income],

being one of the significant uncorrelated “factors” from a dataset of people’s fea-
tures is not particularly informative. From an analyst’s point of view, it would
be highly preferable to have a low-rank approximation that is nearly as good as
that provided by the SVD but that is expressed in terms of a small number of
actual columns and actual rows of a matrix, rather than linear combinations of
those columns and rows.

For example, consider recent data analysis work in DNA microarray and DNA
Single Nucleotide Polymorphism (SNP) analysis [14, 15, 17]. Researchers inter-
ested in analyzing DNA SNP data often model the data as an m × n matrix
A, where m is the number of individuals in the study, n is the number of SNPs
being analyzed, and Aij is an encoding of the i-th SNP value for the j-th in-
divudual. Since biologists do not have an understanding or intuition about the
behavior of, e.g., 30, 000 genes or 1, 000, 000 SNPs or 1000 individuals, that they
do have about a single gene or a single SNP or a single individual, linear alge-
braic methods have been employed to extract actual SNPs from the computed
eigen-SNPs in order to be used for further analysis [14, 15, 17]. Our problem of
approximating a matrix A by CUR is a direct formulation of this problem; in
particular, our problem will determine a small number of actual SNPs to serve
as a basis to express the remaining SNPs, and a small number of individuals to
serve as a basis to express the remaining individuals.

1.2 Review of Linear Algebra

Let [n] denote the set {1, 2, . . . , n}. For any matrix A ∈ R
m×n, let A(i), i ∈ [m]

denote the i-th row of A as a row vector, and let A(j), j ∈ [n] denote the j-th
column of A as a column vector. The Singular Value Decomposition (SVD) of
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A will be denoted by A = UΣV T , where U ∈ R
m×ρ, Σ ∈ R

ρ×ρ, V ∈ R
n×ρ,

and where ρ is the rank of A. The “best” rank-k approximation to A (with
respect to, e.g., the Frobenius norm, ||A||F =

√∑
i,j A2

ij) will be denoted by

Ak = UkΣkV T
k , where Uk ∈ R

m×k is the first k columns of U , etc. The SVD and
hence the best rank-k approximation of a general matrix A can be computed in
O(min{n2m, nm2}) time, and optimal rank-k approximations to it can be com-
puted more rapidly with, e.g., Lanczos methods. We will use SV D(Ak) to denote
the time to compute Ak. For more details on linear algebra, see [2, 10, 13, 16],
and for more details on notation and our sampling matrix formalism, see [4, 9].

1.3 Problem Definition

We start with the following definition.

Definition 1. Let A be an m×n matrix, let C be an m×c matrix whose columns
consist of a small number c of columns of the matrix A, and let R be an r × n
matrix whose rows consist of a small number r of rows of the matrix A. Then
the m × n matrix A′ is a column-row-based low-rank matrix approximation to
A, or a CUR matrix approximation, if it may be explicitly written as A′ = CUR
for some c × r matrix U .

Note that the combined size of C, U and R is O(mc + rn + cr), which is an
improvement over A’s size of O(nm) when c, r � n, m.

The quality of a CUR matrix approximation depends on the choice of C and
R as well as on the matrix U . We consider the following problem.

Problem 1 (Column-row-based low-rank matrix approximation prob-
lem). Given a matrix A ∈ R

m×n, choose a sufficient number of columns and
rows of A and construct a matrix U of appropriate dimensions such that

‖A − CUR‖F ≤ (1 + ε) ‖A − Ak‖F . (1)

Here, C is a matrix consisting of the chosen columns of A, R is a matrix con-
sisting of the chosen rows of A, and Ak is the best rank k approximation to A.
The number of columns of C and rows of R should be a function of k, 1/ε, and –
in the case of randomized algorithms – a failure probability δ. The running time
of the algorithms should be a low-degree polynomial in m, n.

Note that is not obvious whether there exist, and if so whether one can efficiently
find, a small (depending on k, 1/ε, and 1/δ, but independent of m and n) number
of columns and rows that provide such relative-error guarantees.

1.4 “Subspace Sampling” and Our Main Result

Our main result is the following theorem, which asserts the existence of an
algorithm to solve Problem 1.
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Theorem 1. There exists a randomized algorithm that solves Problem 1. In
the algorithm, c = O(k2 log(1/δ)/ε2) columns of A are chosen to construct C,
and then r = O(c2 log(1/δ)/ε2) rows of A are chosen to construct R, and the
matrix U is a weighted Moore-Penrose inverse of the intersection between C and
R. The algorithm satisfies (1) with probability at least 1 − δ, it runs in time
O(SV D(Ak)), and it uses the method of “subspace sampling” to sample columns
to form C and rows to form R.

For the moment, assume that we are given a set of columns, and consider the
following theorem.

Theorem 2. Let ε ∈ (0, 1]. Let an m × n matrix A and an m × c matrix C
consisting of c columns of A be given. There exists a randomized algorithm
that runs in O(mn) time and constructs an r × n matrix R consisting of r =
O(c2 ln(1/δ)/ε2) rows of A and a c × r matrix U such that, with probability at
least 1 − δ

‖A − CUR‖F ≤ (1 + ε)
∥∥A − CC+A

∥∥
F

.

This algorithm is described in Section 2. This result is a CUR matrix approx-
imation that applies to any subset of columns C of the original matrix A, and
has relative error with respect to CC+A, i.e.,the projection of A on the subspace
spanned by the columns of C.

Given Theorem 2, in order to establish Theorem 1 it suffices to find a C for
which CC+A is relative-error approximation to the best rank-k approximation
provided by the SVD. It is known that such columns exist [18, 3], and recently we
designed the first polynomial time algorithm to find such a C [8]. We summarize
these results in the following theorem. See [8] for details.

Theorem 3. Let ε ∈ (0, 1]. Let an m×n matrix A and any positive integer k be
given, and let Ak be the best rank k approximation to A. There exists a random-
ized algorithm that runs in O(SV D(Ak)) time and selects c = O(k2 ln(1/δ)/ε2)
columns of A such that, if C is the m × c matrix whose columns are the selected
columns of A, then with probability at least 1 − δ

∥∥A − CC+A
∥∥

F
≤ (1 + ε) ‖A − Ak‖F .

Given a matrix A, it follows from Theorem 3 that we can either choose a column
matrix C with this relative-error property or a row matrix R that has an analo-
gous relative-error property. But combining those two matrices C and R does not
immediately provide a CUR approximation with the relative-error guarantees.
However, by combining Theorem 3 with Theorem 2, we establish Theorem 1 and
obtain the relative-error CUR approximation.

The bulk of the technical work is the proof of Theorem 2. We will show that,
given a matrix A and a set of its columns C, we can choose a set of its rows
R such that CW+R captures almost as much of A as does CC+A in a relative
error sense, where W+ is a weighted Moore-Penrose generalized inverse of the
intersection between C and R. This is obtained by extending our earlier �2-
regression result [9] to a generalized �2-regression problem defined below. This
extension is the main technical contribution of this paper.
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The key technical insight that leads to the relative-error guarantees is that
the rows are selected by a novel sampling procedure that we call “subspace
sampling.” Rather than sample rows from the input matrix with a probabil-
ity distribution that depends on the Euclidean norms of its rows (which gives
provable additive-error bounds [4, 5, 6]), in “subspace sampling” we randomly
sample rows of the input matrix with a probability distribution that depends
on the Euclidean norms of the rows of the top k singular vectors of the input
matrix. This allows us to capture entirely a certain subspace of interest. This
is required since we will be performing operations such as pseudoinversion that
are not well-behaved to missing a dimension, no matter how insignificant its
singular vlaue is. This is different than sampling to capture coarse statistics up
to an additive error of ε||A||F , and it requires the use of more complex probabil-
ities and more sophisticated analysis. The precise form of sampling is somewhat
complicated and is shown in (4) and (11). It is similar to the sampling method
we developed recently to solve the l2 regression problem [9] that we extend here.

1.5 Related Work

To the best of our knowledge, ours is the first CUR matrix approximation with
relative error. Previously, the only know CUR matrix approximations had a
large additive error ε ‖A‖F [6, 7]. In fact, previous to our result, it was not even
known whether such a relative-error CUR representation existed. Note that in
the linear algebra community, there are several algorithms [19, 20, 1, 12, 11] to
get C, U, R like ours for low-rank approximation, but none that is comparable
in proven guarantees.

2 The Column-Row-Based Low-Rank Approximation

Assume that we are given an m × n matrix A and any set of c columns of A
forming an m × c matrix C, and consider the following idea for approximating
A. The columns of C are a set of “basis vectors” that are, of course, in general
neither orthogonal nor normal. Thus, we can express every column of A as a
linear combination of the columns of C. If m and n are large and c = O(1),
then this is an overconstrained least-squares fit problem. Thus, for all columns
A(j), j ∈ [n], we can solve

min
xj∈Rc

∣∣∣A(j) − Cxj

∣∣∣
2

(2)

in order to find a c-vector of coefficients xj and get the optimal least-squares fit
for A(j). Equivalently, we seek to solve

min
X∈Rc×n

‖A − CX‖F (3)

in order to express A as A ≈ CXopt, where Xopt = C+A is a c×n matrix whose
columns are the coefficient vectors xj , j ∈ [n] that minimize Equation (2).
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We will now use a generalization of the ideas in [9] to modify the above
approach to get a CUR decomposition for the matrix A, given C. Instead of
solving the generalized least squares problem of Equation (3) we will solve a
sampled version of the problem, constructed as follows:

1. Compute the SVD of C, C = UCΣCV T
C , where UC ∈ R

m×ρ, ΣC ∈ R
ρ×ρ,

VC ∈ R
c×ρ, and ρ is the rank of C.

2. Compute sampling probabilities pi for all i ∈ [m]:

pi =
(1/3)

∣∣∣(UC)(i)
∣∣∣
2

2∑n
j=1

∣∣∣(UC)(j)
∣∣∣
2

2

+
(1/3)

∣∣∣(UC)(i)
∣∣∣
2

∣∣∣∣
(
U⊥

C U⊥
C

T
A

)
(i)

∣∣∣∣
2

∑n
j=1

∣∣∣(UC)(j)
∣∣∣
2

∣∣∣∣
(
U⊥

C U⊥
C

T
A

)
(j)

∣∣∣∣
2

+
(1/3)

∣∣∣∣
(
U⊥

C U⊥
C

T
A

)
(i)

∣∣∣∣
2

2

∑n
j=1

∣∣∣∣
(
U⊥

C U⊥
C

T
A

)
(j)

∣∣∣∣
2

2

. (4)

(Notice that
∑

i∈[m] pi = 1.)
3. Create an m× r sampling matrix S and a r × r diagonal rescaling matrix D,

as defined in [9], in r (an input parameter not greater than m) i.i.d. trials,
using the pi of Equation (4).

4. Return as output the r × n matrix R = ST A and the c × r matrix U =(
DST C

)+
D.

Note that the time required to compute the SVD of C is O(c2m), and computing
the probabilities pi of (4) takes an additional O(cmn) time. Overall, the running
time of the algorithm is O(mn) since c, r are constants independent of m, n.

In order to obtain some intuition on the construction of U and R, consider
the following “sampled and rescaled” version of Equation (3):

min
X∈Rc×n

∥∥DST A − DST CX
∥∥

F
. (5)

Note that in this “sampled and rescaled” problem, the matrix X has the same
dimensions as the matrix X of Equation (3), but that the number of constraints
in the overconstrained problems has been reduced from m to r. We will see
that solving this “sampled and rescaled” problem, and substituting the solution
back into the original problem provides a CUR decomposition with a provable
error bound. That is, let X̃opt =

(
DST C

)+
DST A = UR and use X̃opt as an

approximation to Xopt (which achieves the optimal value for the full problem of
Equation (3)). Then, we will be able to bound the error

∥∥∥A − CX̃opt

∥∥∥
F

=

∥∥∥∥∥∥∥
A − C

(
DST C

)+
D︸ ︷︷ ︸

U

ST A︸︷︷︸
R

∥∥∥∥∥∥∥
F

= ‖A − CUR‖F . (6)
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Here we have let W = ST C be the r × c matrix that corresponds to rows of C
that are in R, i.e., equivalently, W contains the common elements of C and R.
In addition, C consists of a few columns of A, R consists of a few rows of the
matrix A, and U = (DW )+D; note that in general, (DW )+D �= W+.

Rather than proving that this algorithm leads to a choice of U and R such
that ‖A − CUR‖F ≤ (1 + ε) ‖A − CC+A‖F , we establish in the next section a
more general result (of independent interest), of which this is a corollary.

3 Approximating Generalized �2 Regression

3.1 The Generalized �2 Regression Problem

In this section, we present and analyze a random sampling algorithm to approxi-
mate the following generalized �2 regression (or least-squares fit) problem: given
as input a matrix A ∈ R

m×n of rank not greater than k (thus, A = Ak in this
section) and a target matrix B ∈ R

m×p, compute

Z = min
X∈Rn×p

‖B − AkX‖F . (7)

That is, compute the “best” approximation to the matrix B in the basis pro-
vided by the matrix A = Ak. Also of interest is the computation of matrices
that achieve the minimum Z. The “smallest” matrix among those minimizing
‖B − AkX‖F is

Xopt = A+
k B. (8)

Note that we have not placed any constraints on the relationship between m and
n. Since we allow m > n, m = n, and also m < n, our approximation algorithm
for generalized �2 regression can be applied to both overconstrained and under-
constrained problems. We do, however, constrain the rank of the matrix A (in
this section only).

In the special case that m 	 n and p = 1, we have the traditional (very
overconstrained) �2 regression (or least-squares fit) problem: given as input a
matrix A ∈ R

m×d and a target vector b ∈ R
m, compute Z = minx∈Rd |b − Ax|2 .

If m > d there are more constraints than variables and the problem is an over-
constrained least-squares fit problem; in this case, there does not in general exist
a vector x such that Ax = b. It is well-known that the minimum-length vec-
tor among those minimizing |b − Ax|2 is xopt = A+b, where A+ denotes the
Moore-Penrose generalized inverse of the matrix A.

In [9], we presented a sampling algorithm for this special case. The algorithm
of [9] was the first to use SVD-based sampling probabilities similar to those we
use in this paper to solve approximately the generalized �2 regression problem (7)
and (8). Generalizing from m 	 n and p = 1 to arbitrary m, n, and p constitutes
the main technical contribution of this paper. Generalizing the analysis of [9] to
p > 1 right-hand side vectors is straightforward; on the other hand, generalizing
the analysis of [9] from m 	 n, i.e., very overconstrained �2 problems, to general
m and n is more subtle.
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3.2 Our Main Algorithm and Theorem for This Problem

We present and analyze an algorithm that constructs and solves an induced
subproblem of the �2 regression problem of Equations (7) and (8). Let DST A
be the r × n matrix consisting of the sampled and appropriately rescaled rows
of the matrix A = Ak, and let DST B be the matrix consisting of the sampled
and appropriately rescaled rows of B. Then consider the problem

Z̃ = min
X∈Rn×p

∥∥DST B − DST AkX
∥∥

F
. (9)

The “smallest” matrix X̃opt ∈ R
n×p among those that achieve the minimum

value Z̃ in the sampled generalized �2 regression problem of Equation (9) is

X̃opt =
(
DST A

)+
DST B. (10)

Since we will sample a number of rows r � m of the original problem, we will
compute (10), and thus (9), exactly. Our main theorem, Theorem 4, states that
under appropriate assumptions on the original problem and on the sampling
probabilities, the computed quantities Z̃ and X̃opt will provide very accurate
relative error approximations to the exact solution Z and the optimal matrix
Xopt.

In more detail, our main algorithm for approximating the solution to the
generalized �2 regression problem takes as input an m × n matrix A, an m × p
matrix B, and a positive integer r ≤ m. It returns as output a number Z̃ and a
n × p matrix X̃opt by doing the following:

1. Compute Ak, the “best” rank-k approximation to A.
2. Compute sampling probabilities pi for all i ∈ [m]:

pi =
(1/3)

∣∣∣(UA,k)(i)
∣∣∣
2

2∑n
j=1

∣∣∣(UA,k)(j)
∣∣∣
2

2

+
(1/3)

∣∣∣(UA,k)(i)
∣∣∣
2

(
U⊥

A,kU⊥
A,k

T
B

)
i∑n

j=1

∣∣∣(UA,k)(j)
∣∣∣
2

(
U⊥

A,kU⊥
A,k

T
B

)
j

+
(1/3)

(
U⊥

A,kU⊥
A,k

T
B

)2

i∑n
j=1

(
U⊥

A,kU⊥
A,k

T
B

)2

j

. (11)

3. Create an m × r sampling matrix S and an r × r diagonal rescaling matrix
D, as defined in [9], in r i.i.d. trials, using the pi of Equation (11).

4. Solve the induced subproblem, i.e., compute and return the number Z̃ and
the n × p matrix X̃opt given by (9) and (10), respectively.

The algorithm (implicitly) forms a sampling matrix S, the transpose of which
samples with replacement a few rows of Ak and also the corresponding rows of
B, and a rescaling matrix D, which is a diagonal matrix scaling the sampled
rows of Ak and the elements of B. Since r rows of Ak and the corresponding
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r rows of B are sampled, the algorithm randomly samples with replacement
r of the m constraints in the original �2 regression problem. Thus, intuitively,
the algorithm approximates the solution of AkX ≈ B with the exact solution
of the downsampled problem DST AkX ≈ DST B. Note that it is the space of
constraints that is sampled and that the dimension of the unknown matrix X is
the same in both problems.

An important aspect of the algorithm will be the nonuniform sampling prob-
abilities (11). Computing these probabilities clearly takes time of the order of
computing the best rank-k approximation to the matrix A plus computing the
product U⊥

A,kU⊥
A,k

T
B. Note that the probabilities (4) are a special case of (11).

Theorem 4 below is our main quality-of-approximation result for this gener-
alized �2 regression problem. This result states that if the matrix achieving the
minimum in the sampled problem is substituted back into the original problem
then a good approximation to the original generalized �2 regression problem is
obtained.

Theorem 4. Let ε ∈ (0, 1]. Let an m × n matrix A that has rank no greater
than k, an m × p matrix B, and the sampling probabilities {pi}m

i=1 be given. Let
Z and Xopt be the solution to the full generalized �2-regression problem given
by (7) and (8), repsectively, and let Z̃ and X̃opt be the solution to the sampled
generalized �2 regression problem, given by (9) and (10), respectively. If the sam-
pling probabilities satisfy (11) and if r ≥ O(d2 ln(1/δ)/ε2), then with probability
at least 1 − δ ∥∥∥B − AkX̃opt

∥∥∥
F

≤ (1 + ε) ‖B − AkXopt‖F .

By considering the special case where B is any m × n matrix A, where A is any
m × c matrix consisting of c actual columns of A, and where k = rank(C), then
Theorem 2 follows as a corollary of Theorem 4.

3.3 Proof of Theorem 4

Due to space limitations, the proof is omitted. It is a generalization of the proof
of the main theorem of [9]. Alternatively, see [8].

4 Concluding Remarks

We have presented the first known polynomial time algorithm for obtaining a
(1+ ε) relative error CUR approximation to a given matrix A. It was previously
not even known if such a CUR representation exists, and the best known prior
work involved large additive error of ε ‖A‖F . This problem is of interest in data
analysis, and improved bounds will be useful. Further, it is an interesting open
problem whether deterministic results can be btained that match our randomized
results. Finally, the sampling method we use has found a few applications since
we introduced it in [9]; it is of interest to either find other applications or replace
it by simpler sampling methods.
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