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Abstract. We introduce a deterministic sampling based feature selec-
tion technique for regularized least squares classification. The method is
unsupervised and gives worst-case guarantees of the generalization power
of the classification function after feature selection with respect to the
classification function obtained using all features. We perform experi-
ments on synthetic and real-world datasets, namely a subset of TechTC-
300 datasets, to support our theory. Experimental results indicate that
the proposed method performs better than the existing feature selection
methods.

Keywords: Feature Selection, Sampling, Regularized Least Squares
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1 Introduction

Regularized Least Squares Classifier (RLSC) is a simple classifier based on least
squares and has a long history in machine learning [17,12,13,10,15,18,1]. RLSC
has been known to perform comparably to the popular Support Vector Machines
(SVM) [13,10,15,18]. RLSC can be solved by simple vector space operations and
do not require quadratic optimization techniques like SVM. The main focus of
this paper is on a deterministic feature selection technique for RLSC with prov-
able guarantees. There exist numerous feature selection techniques, which work
well empirically. There also exist randomized feature selection methods [6] with
provable guarantees which work well empirically. But the randomized methods
have a failure probability and have to be re-run multiple times to get accurate
results. Also, a randomized algorithm may not select the same features in dif-
ferent runs. A deterministic algorithm will select the same features irrespective
of how many times it is run. This becomes important in many applications. Un-
supervised feature selection involves selecting features oblivious to the class or
labels. In this work, we present a new provably accurate unsupervised feature
selection technique for RLSC. We study a deterministic sampling based feature
selection strategy for RLSC with provable non-trivial worst-case performance
bounds. The number of features selected is proportional to the rank of the train-
ing set. The deterministic sampling-based feature selection algorithm performs
better in practice when compared to existing methods of feature selection.
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2 Our Contributions

We introduce single-set spectral sparsification as a provably accurate determinis-
tic feature selection technique for RLSC in an unsupervised setting. The number
of features selected by the algorithm is independent of the number of features,
but depends on the number of data-points. The algorithm selects a small number
of features and solves the classification problem using those features. Recently,
Dasgupta et al. [6] used a leverage-score based randomized feature selection tech-
nique for RLSC and provided worst case guarantees of the approximate classifier
function to that using all features. We use a deterministic algorithm to provide
worst-case generalization error guarantees. The deterministic algorithm does not
come with a failure probability and the number of features required by the deter-
ministic algorithm is lesser than that required by the randomized algorithm. The

leverage-score based algorithm has a sampling complexity of O
(

n
ε2 log

(
n

ε2
√
δ

))
,

whereas single-set spectral sparsification requires O
(
n/ε2

)
to be picked, where n

is the number of training points, δ ∈ (0, 1) is a failure probability and ε ∈ (0, 1/2]
is an accuracy parameter. Like in [6], we also provide additive-error approxima-
tion guarantees for any test-point and relative-error approximation guarantees
for test-points that satisfy some conditions with respect to the training set.
From an empirical perspective, we evaluate single-set spectral sparsification
on synthetic data and 48 document-term matrices, which are a subset of the
TechTC-300 [7] dataset. We compare the single-set spectral sparsification algo-
rithm with leverage-score sampling, information gain, rank-revealing QR factor-
ization (RRQR) and random feature selection. We do not report running time
because feature selection is an offline task. The experimental results indicate
that single-set spectral sparsification out-performs all the methods in terms of
out-of-sample error for all 48 TechTC-300 datasets. We observe that a much
smaller number of features is required by the deterministic algorithm to achieve
good performance when compared to leverage-score sampling.

3 Background and Related Work

Notation. A,B, . . . denote matrices and α,b, . . . denote column vectors; ei (for
all i = 1 . . . n) is the standard basis, whose dimensionality will be clear from con-
text; and In is the n×n identity matrix. The Singular Value Decomposition (SVD)
of a matrix A ∈ Rn×d is equal to A = UΣVT , where U ∈ Rn×d is an orthog-
onal matrix containing the left singular vectors, Σ ∈ Rd×d is a diagonal matrix
containing the singular values σ1 ≥ σ2 ≥ . . . σd > 0, and V ∈ Rd×d is a matrix
containing the right singular vectors. The spectral norm ofA is ‖A‖2 = σ1. σmax

and σmin are the largest and smallest singular values of A. κA = σmax/σmin is
the condition number ofA.U⊥ denotes any n× (n− d) orthogonal matrix whose
columns span the subspace orthogonal toU. A vector q ∈ Rn can be expressed as:
q = Aα+U⊥β, for some vectorsα ∈ Rd and β ∈ Rn−d, i.e. q has one component
along A and another component orthogonal to A.
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Matrix Sampling Formalism. We now present the tools of feature selection.
Let A ∈ Rd×n be the data matrix consisting of n points and d dimensions,
S ∈ Rr×d be a matrix such that SA ∈ Rr×n contains r rows of A. Let D ∈ Rr×r

be the diagonal matrix such that DSA ∈ Rr×n rescales the rows of A that are
in SA. The matrices S and D are called the sampling and re-scaling matrices
respectively. We will replace the sampling and re-scaling matrices by a single
matrix R ∈ Rr×d, where R = DS denotes the matrix specifying which of the r
rows of A are to be sampled and how they are to be rescaled.

RLSC Basics. Consider a training data of n points in d dimensions with re-
spective labels yi ∈ {−1,+1} for i = 1, .., n. The solution of binary classification
problems via Tikhonov regularization in a Reproducing Kernel Hilbert Space
(RKHS) using the squared loss function results in Regularized Least Squares
Classification (RLSC) problem [13], which can be stated as:

min
x∈Rn

‖Kx− y‖22 + λxTKx (1)

where K is the n × n kernel matrix defined over the training dataset, λ is a
regularization parameter and y is the n dimensional {±1} class label vector.
In matrix notation, the training data-set X is a d × n matrix, consisting of n
data-points and d features (d 
 n). Throughout this study, we assume that X
is a full-rank matrix. We shall consider the linear kernel, which can be written
as K = XTX. Using the SVD of X, the optimal solution of Eqn. 1 in the
full-dimensional space is

xopt = V
(
Σ2 + λI

)−1
VTy (2)

The vector xopt can be used as a classification function that generalizes to test
data. If q ∈ Rd is the new test point, then the binary classification function is:

f(q) = xT
optX

Tq. (3)

Then, sign(f(q)) gives the predicted label (−1 or +1) to be assigned to the new
test point q.

Our goal is to study how RLSC performs when the deterministic sampling
based feature selection algorithm is used to select features in an unsupervised
setting. Let R ∈ Rr×d be the matrix that samples and re-scales r rows of X
thus reducing the dimensionality of the training set from d to r - d and r is
proportional to the rank of the input matrix. The transformed dataset into r
dimensions is given by X̃ = RX and the RLSC problem becomes

min
x∈Rn

∥∥∥K̃x− y
∥∥∥2
2
+ λxT K̃x, (4)

thus giving an optimal vector x̃opt. The new test point q is first dimensionally
reduced to q̃ = Rq, where q̃ ∈ Rr and then classified by the function,

f̃ = f(q̃) = x̃T
optX̃

T
q̃. (5)

In subsequent sections, we will assume that the test-point q is of the form
q = Xα+U⊥β. The first part of the expression shows the portion of the test-
point that is similar to the training-set and the second part shows how much the
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test-point is novel compared to the training set, i.e. ‖β‖2 measures how much
of q lies outside the subspace spanned by the training set.

Related Work. The work most closely related to ours is that of Dasgupta et al.
[6] who used a leverage-score based randomized feature selection technique for
RLSC and provided worst case bounds of the approximate classifier with that of
the classifier for all features. The proof of their main quality-of-approximation
results provided an intuition of the circumstances when their feature selection
method will work well. The running time of leverage-score based sampling is
dominated by the time to compute SVD of the training set i.e. O

(
n2d

)
, whereas,

for single-set spectral sparsification, it is O
(
rdn2

)
. Single-set spectral sparsifica-

tion is a slower and more accurate method than leverage-score sampling. Another
work on dimensionality reduction of RLSC is that of Avron et al. [2] who used
efficient randomized-algorithms for solving RLSC, in settings where the design
matrix has a Vandermonde structure. However, this technique is different from
ours, since their work is focused on dimensionality reduction using linear com-
binations of features, but not on actual feature selection.

4 Our Main Tool: Single-Set Spectral Sparsification

We describe the Single-Set Spectral Sparsification algorithm (BSS1 for short)
of [3] as Algorithm 1. Algorithm 1 is a greedy technique that selects columns
one at a time. Consider the input matrix as a set of d column vectors UT =
[u1,u2, ....,ud], with ui ∈ R� (i = 1, .., d) . Given � and r > �, we iterate over τ =

0, 1, 2, ..r − 1. Define the parameters Lτ = τ −
√
r�, δL = 1, Uτ = δU

(
τ +

√
�r
)

and δU =
(
1 +

√
�/r

)
/
(
1−

√
�/r

)
. For U,L ∈ R and A ∈ R�×� a symmetric

positive definite matrix with eigenvalues λ1, λ2, ..., λ�, define

Φ (L,A) =

�∑
i=1

1

λi − L
; Φ̂ (U,A) =

�∑
i=1

1

U − λi

as the lower and upper potentials respectively. These potential functions measure
how far the eigenvalues of A are from the upper and lower barriers U and L
respectively. We define L (u, δL,A, L) and U (u, δU ,A, U) as follows:

L (u, δL,A, L) =
uT (A− (L+ δL) I�)

−2
u

Φ (L+ δL,A)− Φ (L,A)
− uT (A− (L+ δL) I�)

−1
u

U (u, δU ,A, U) =
uT ((U + δU ) I� −A)

−2
u

Φ̂ (U,A)− Φ̂ (U + δU ,A)
+ uT ((U + δU ) I� −A)−1 u.

At every iteration, there exists an index iτ and a weight tτ > 0 such that,
tτ

−1 ≤ L (uiτ , δL,A, L) and tτ
−1 ≥ U (uiτ , δU ,A, U) . Thus, there will be at

1 The name BSS comes from the authors Batson, Spielman and Srivastava.
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Input: U = [u1,u2, ...ud]
T ∈ Rd×	 with ui ∈ R	 and r > �.

Output: Matrices S ∈ Rr×d,D ∈ Rr×r.

1. Initialize A0 = 0	×	, S = 0r×d,D = 0r×r.

2. Set constants δL = 1 and δU =
(
1 +

√
�/r

)
/
(
1−

√
�/r

)
.

3. for τ = 0 to r − 1 do

– Let Lτ = τ −
√
r�;Uτ = δU

(
τ +
√
�r
)
.

– Pick index iτ ∈ {1, 2, ..d} and number tτ > 0 (See Section 4 for
definitions of U ,L)

U (uiτ , δU ,Aτ , Uτ ) ≤ L (uiτ , δL,Aτ , Lτ ) .

– Let t−1
τ = 1

2
(U (uiτ , δU ,Aτ , Uτ ) + L (uiτ , δL,Aτ , Lτ ))

– Update Aτ+1 = Aτ + tτuiτu
T
iτ ; set Sτ+1,iτ = 1 and

Dτ+1,τ+1 = 1/
√
tτ .

4. end for

5. Multiply all the weights in D by

√
r−1

(
1−

√
(�/r)

)
.

6. Return S and D.

Algorithm 1. Single-set Spectral Sparsification

most r columns selected after τ iterations. The running time of the algorithm is
dominated by the search for an index iτ satisfying

U (uiτ , δU ,Aτ , Uτ ) ≤ L (uiτ , δL,Aτ , Lτ )

and computing the weight tτ . One needs to compute the upper and lower poten-
tials Φ̂ (U,A) and Φ (L,A) and hence the eigenvalues of A. Cost per iteration is
O
(
�3
)
and the total cost is O

(
r�3

)
. For i = 1, .., d, we need to compute L and

U for every ui which can be done in O
(
d�2

)
for every iteration, for a total of

O
(
rd�2

)
. Thus total running time of the algorithm is O

(
rd�2

)
. We present the

following lemma for the single-set spectral sparsification algorithm.

Lemma 1. BSS [3]: Given U ∈ Rd×� satisfying UTU = I� and r > �, we
can deterministically construct sampling and rescaling matrices S ∈ Rr×d and
D ∈ Rr×r with R = DS, such that, for all y ∈ R� :(

1−
√
�/r

)2

‖Uy‖22 ≤ ‖RUy‖22 ≤
(
1 +

√
�/r

)2

‖Uy‖22 .

We now present a slightly modified version of Lemma 1 for our theorems.

Lemma 2. Given U ∈ Rd×� satisfying UTU = I� and r > �, we can determin-
istically construct sampling and rescaling matrices S ∈ Rr×d and D ∈ Rr×r such

that for R = DS,
∥∥∥UTU−UTRTRU

∥∥∥
2
≤ 3

√
�/r
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Proof. FromLemma1, it follows,σ�

(
UTRTRU

)
≥
(
1−

√
�/r

)2

,σ1

(
UTRTRU

)
≤

(
1 +

√
�/r

)2

. Thus, λmax

(
UTU−UTRTRU

)
≤

(
1−

(
1−

√
�/r

)2
)

≤

2
√
�/r. Similarly, λmin

(
UTU−UTRTRU

)
≥
(
1−

(
1 +

√
�/r

)2
)

≥ 3
√
�/r.

Combining these, we have
∥∥∥UTU−UTRTRU

∥∥∥
2
≤ 3

√
�/r.

Note: Let ε = 3
√
�/r. It is possible to set an upper bound on ε by setting the

value of r. In the next section, we assume ε ∈ (0, 1/2].

5 Our Main Theorems

The following theorem shows the additive error guarantees of the generalization
bounds of the approximate classifer with that of the classifier with no feature
selection. The classification error bound of BSS on RLSC depends on the con-
dition number of the training set and on how much of the test-set lies in the
subspace of the training set.

Theorem 1. Let ε ∈ (0, 1/2] be an accuracy parameter, r = O
(
n/ε2

)
be the

number of features selected by BSS. Let R ∈ Rr×d be the matrix, as defined in
Lemma 2. Let X ∈ Rd×n with d >> n, be the training set, X̃ = RX is the reduced
dimensional matrix and q ∈ Rd be the test point of the form q = Xα +U⊥β.
Then, the following hold:

– If λ = 0, then
∣∣∣q̃T X̃x̃opt − qTXxopt

∣∣∣ ≤ εκX

σmax
‖β‖2 ‖y‖2

– If λ > 0, then
∣∣∣q̃T X̃x̃opt − qTXxopt

∣∣∣ ≤ 2εκX ‖α‖2 ‖y‖2 + 2εκX

σmax
‖β‖2 ‖y‖2

Proof. We assume that X is a full-rank matrix. Let E = UTU−UTRTRU and

‖E‖2 =
∥∥∥I−UTRTRU

∥∥∥
2
= ε ≤ 1/2. Using the SVD of X, we define

Δ = ΣUTRTRUΣ = Σ (I+E)Σ. (6)

The optimal solution in the sampled space is given by,

x̃opt = V (Δ+ λI)
−1

VTy (7)

It can be proven easily that Δ and Δ+ λI are invertible matrices. We focus on
the term qTXxopt. Using the SVD of X, we get

qTXxopt = αTXTXxopt + βU⊥T
(
UΣVT

)
xopt

= αTVΣ2
(
Σ2 + λI

)−1
VTy (8)

= αTV
(
I+ λΣ−2

)−1
VTy. (9)

Eqn(8) follows because of the fact U⊥TU = 0 and by substituting xopt from
Eqn.(2). Eqn.(9) follows from the fact that the matrices Σ2 and Σ2 + λI are
invertible. Now,
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∣∣∣ = ∣∣∣qTXxopt − qTRTRXx̃opt

∣∣∣
≤
∣∣∣qTXxopt −αTXTRTRXx̃opt

∣∣∣ (10)

+
∣∣∣βTU⊥TRTRXx̃opt

∣∣∣ (11)

We bound (10) and (11) separately. Substituting the values of x̃opt and Δ,

αTXTRTRXx̃opt = αTVΔVT x̃opt

= αTVΔ (Δ+ λI)−1 VTy

= αTV
(
I+ λΔ−1

)−1
VTy

= αTV
(
I+ λΣ−1 (I+E)

−1
Σ−1

)−1

VTy

= αTV
(
I+ λΣ−2 + λΣ−1ΦΣ−1

)−1
VTy (12)

The last line follows from Lemma 3 in Appendix, which states that (I+E)
−1

=

I+Φ, where Φ =
∞∑
i=1

(−E)i. The spectral norm of Φ is bounded by,

‖Φ‖2 =

∥∥∥∥∥
∞∑
i=1

(−E)i

∥∥∥∥∥
2

≤
∞∑
i=1

‖E‖i2 ≤
∞∑
i=1

εi = ε/(1− ε). (13)

We now bound (10). Substituting (9) and (12) in (10),∣∣∣qTXxopt −αTXTRTRXx̃opt

∣∣∣
=
∣∣∣αTV{

(
I+ λΣ−2 + λΣ−1ΦΣ−1

)−1 −
(
I+ λΣ−2

)−1}VTy
∣∣∣

≤
∥∥αTV

(
I+ λΣ−2

)∥∥
2

∥∥∥VTy
∥∥∥
2
‖Ψ‖2

The last line follows because of Lemma 4 and the fact that all matrices involved
are invertible. Here,

Ψ = λΣ−1ΦΣ−1
(
I+ λΣ−2 + λΣ−1ΦΣ−1

)−1

= λΣ−1ΦΣ−1
(
Σ−1

(
Σ2 + λI+ λΦ

)
Σ−1

)−1

= λΣ−1Φ
(
Σ2 + λI+ λΦ

)−1
Σ

Since the spectral norms of Σ,Σ−1 and Φ are bounded, we only need to bound

the spectral norm of
(
Σ2 + λI+ λΦ

)−1
to bound the spectral norm of Ψ. The

spectral norm of the matrix
(
Σ2 + λI + λΦ

)−1
is the inverse of the smallest

singular value of
(
Σ2 + λI+ λΦ

)
. From perturbation theory of matrices [14]

and (13), we get∣∣σi

(
Σ2 + λI+ λΦ

)
− σi

(
Σ2 + λI

)∣∣ ≤ ‖λΦ‖2 ≤ ελ.

Here,σi(Q) represents the ith singular value of thematrixQ.Also,σi
2
(
Σ2 + λI

)
=

σi
2 + λ, where σi are the singular values ofX.
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σi
2 + (1− ε)λ ≤ σi

(
Σ2 + λI+ λΦ

)
≤ σi

2 + (1 + ε)λ.

Thus,
∥∥∥(Σ2 + λI + λΦ

)−1
∥∥∥
2
=1/σmin

(
Σ2+λI+ λΦ

)
≤ 1/

(
σ2

min + (1−ε)λ)
)

Here, σmax and σmin denote the largest and smallest singular value of X. Since
‖Σ‖2

∥∥Σ−1
∥∥
2
= σmax/σmin ≤ κX, (condition number ofX) we bound (10):∣∣∣qTXxopt −αTXTRTRXx̃opt

∣∣∣ ≤ ελκX

σ2
min + (1− ε)λ

∥∥∥αTV
(
I+ λΣ−2

)−1
∥∥∥
2

∥∥∥VTy
∥∥∥
2

(14)

For λ > 0, the term σ2
min +(1− ε)λ in Eqn.(14) is always larger than (1− ε)λ,

so it can be upper bounded by 2εκX (assuming ε ≤ 1/2). Also,∥∥∥αTV
(
I+ λΣ−2

)−1
∥∥∥
2
≤

∥∥αTV
∥∥
2

∥∥∥(I+ λΣ−2
)−1

∥∥∥
2
≤ ‖α‖2 .

This follows from the fact, that
∥∥αTV

∥∥
2
= ‖α‖2 and ‖Vy‖2 = ‖y‖2 as V is a

full-rank orthonormal matrix and the singular values of I + λΣ−2 are equal to
1 + λ/σi

2; making the spectral norm of its inverse at most one. Thus we get,∣∣∣qTXxopt −αTXTRTRXx̃opt

∣∣∣ ≤ 2εκX ‖α‖2 ‖y‖2 . (15)

We now bound (11). Expanding (11) using SVD and x̃opt,∣∣∣βTU⊥TRTRXx̃opt

∣∣∣ = ∣∣∣βTU⊥TRTRUΣ (Δ+ λI)VTy
∣∣∣

≤
∥∥∥qTU⊥U⊥TRTRU

∥∥∥
2

∥∥∥Σ (Δ+ λI)−1
∥∥∥
2

∥∥∥VTy
∥∥∥
2

≤ ε
∥∥∥U⊥U⊥Tq

∥∥∥
2

∥∥∥VTy
∥∥∥
2

∥∥∥Σ (Δ+ λI)
−1
∥∥∥
2

≤ ε ‖β‖2 ‖y‖2
∥∥∥Σ (Δ+ λI)

−1
∥∥∥
2

The first inequality follows from β = U⊥Tq; and the second inequality follows
from Lemma 6 given in appendix. To conclude the proof, we bound the spectral
norm ofΣ (Δ+ λI)−1. Note that from Eqn.(6), Σ−1ΔΣ−1 = I+E andΣΣ−1 =
I,

Σ (Δ+ λI)−1 =
(
Σ−1ΔΣ−1 + λΣ−2

)−1
Σ−1 =

(
I+ λΣ−2 +E

)−1
Σ−1.

One can get a lower bound for the smallest singular value of
(
I+ λΣ−2 +E

)−1
us-

ingmatrix perturbation theory and by comparing the singular values of thismatrix
to the singular values of I+ λΣ−2.We get, (1− ε) + λ

σi
2 ≤ σi

(
I+E+ λΣ−2

)
≤ (1 + ε) + λ

σi
2∥∥∥(I+ λΣ−2 +E

)−1
Σ−1

∥∥∥
2
≤ σ2

max

((1− ε)σ2
max + λ)σmin

=
κXσmax

(1− ε)σ2
max + λ

≤ 2κX

σmax
(16)
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We assumed that ε ≤ 1/2, which implies (1− ε) + λ/σ2
max ≥ 1/2. Combining

these, we get, ∣∣∣βTU⊥TRTRXx̃opt

∣∣∣ ≤ 2εκX

σmax
‖β‖2 ‖y‖2 . (17)

Combining Eqns (15) and (17) we complete the proof for the case λ > 0. For
λ = 0, Eqn.(14) becomes zero and the result follows.

Our next theorem provides relative-error guarantees to the bound on the classi-
fication error when the test-point has no-new components, i.e. β = 0.

Theorem 2. Let ε ∈ (0, 1/2] be an accuracy parameter, r = O
(
n/ε2

)
be the

number of features selected by BSS and λ > 0. Let q ∈ Rd be the test point of
the form q = Xα, i.e. it lies entirely in the subspace spanned by the training set,

and the two vectors VTy and
(
I+ λΣ−2

)−1
VTα satisfy the property,∥∥∥(I+ λΣ−2

)−1
VTα

∥∥∥
2

∥∥∥VTy
∥∥∥
2
≤ ω

∥∥∥∥((I+ λΣ−2
)−1

VTα
)T

VTy

∥∥∥∥
2

= ω
∣∣qTXxopt

∣∣
for some constant ω. If we run RLSC after BSS, then

∣∣∣q̃T X̃x̃opt − qTXxopt

∣∣∣ ≤
2εωκX

∣∣qTXxopt

∣∣
The proof follows directly from the proof of Theorem 1 if we consider β = 0.

6 Experiments

All experiments were performed in MATLAB R2013b on an Intel i-7 processor
with 16GB RAM.

6.1 BSS Implementation Issues

The authors of [3] do not provide any implementation details of the BSS algo-
rithm. Here we discuss several issues arising during the implementation.
Choice of Column Selection: At every iteration, there are multiple columns
which satisfy the condition U (ui, δU ,Aτ , Uτ ) ≤ L (ui, δL,Aτ , Lτ ) . The authors
of [3] suggest picking any column which satisfies this constraint. Instead of
breaking ties arbitrarily, we choose the column ui which has not been selected
in previous iterations and whose Euclidean-norm is highest among the candidate
set. Columns with zero Euclidean norm never get selected by the algorithm. In
the inner loop of Algorithm 1, U and L has to be computed for all the d columns
in order to pick a good column. This step can be done efficiently using a single
line of Matlab code, by making use of matrix and vector operations.
Ill-conditioning: The second issue related to the implementation is ill condi-
tioning. It is possible for Aτ to be almost singular. At every iteration τ , we
check the condition number of Aτ . If it is high, then we regularize Aτ as follows
: Aτ = Aτ +γI. We set γ = 0.01 in our experiments. Smaller values of γ resulted
in large eigenvalues of Aτ

−1, which in turn, resulted in large values of tτ causing
bad-scaling of the columns of the input matrix.
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6.2 Other Feature Selection Methods

In this section, we describe other feature-selection methods with which we com-
pare BSS.
Rank-Revealing QR Factorization (RRQR): Within the numerical linear
algebra community, subset selection algorithms use the so-called Rank Reveal-
ing QR (RRQR) factorization. Here we slightly abuse notation and state A as a
short and fat matrix as opposed to the tall and thin matrix. Let A be a n×dma-
trix with (n < d) and an integer k (k < d) and assume partial QR factorizations
of the form

AP = Q

(
R11 R12

0 R22

)
,

where Q ∈ Rn×n is an orthogonal matrix, P ∈ Rd×d is a permutation ma-
trix, R11 ∈ Rk×k,R12 ∈ Rk×(d−k),R22 ∈ R(d−k)×(d−k) The above factorization
is called a RRQR factorization if σmin (R11) ≥ σk (A) /p(k, d), σmax (R22) ≤
σmin(A)p(k, d), where p(k, d) is a function bounded by a low-degree polyno-

mial in k and d. The important columns are given by A1 = Q

(
R11

0

)
and

σi (A1) = σi (R11) with 1 ≤ i ≤ k. We perform feature selection using RRQR
by picking the important columns which preserve the rank of the matrix.
Random Feature Selection: We select features uniformly at random without
replacement which serves as a baseline method. To get around the randomness,
we repeat the sampling process five times.
Leverage Score Sampling: We describe the leverage-score sampling of [6].
Let U be the top-k left singular vectors of the training set X. We create a care-

fully chosen probability distribution of the form pi =
‖Ui‖2

2

n . for i = 1, 2, ..., d,
i.e. proportional to the squared Euclidean norms of the rows of the left-singular
vectors and select r rows of U in i.i.d trials and re-scale the rows with 1/

√
pi.

We repeat the sampling process five times to get around the randomness. In our
experiments, k was set to the rank of X.
Information Gain (IG): The Information Gain feature selection method [16]
measures the amount of information obtained for binary class prediction by
knowing the presence or absence of a feature in a dataset. The method is a
supervised strategy, whereas the other methods used here are unsupervised.

Table 1. Most frequently selected features using the synthetic dataset

r = 80 k = 90 k = 100

BSS 89, 88, 87, 86, 85 100, 99, 98, 97, 95

RRQR 90, 80, 79, 78, 77 100, 80, 79, 78, 77

Lvg-Score 73, 85, 84, 81, 87 93, 87, 95, 97, 96

IG 80, 79, 78, 77, 76 80, 79, 78, 77, 76

r = 90 k = 90 k = 100

BSS 88, 87, 86, 85, 84 100, 99, 98, 97, 95

RRQR 90, 89, 88, 87, 86 100, 90, 89, 88, 87

Lvg-Score 67, 88, 83, 87, 85 100, 97, 92, 48, 58

IG 90, 89, 88, 87, 86 90, 89, 88, 87, 86
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6.3 Synthetic Data

We run our experiments on synthetic data where we control the number of
relevant features in the dataset and demonstrate the working of Algorithm 1
on RLSC. We generate synthetic data in the same manner as given in [4]. The
dataset has n data-points and d features. The class label yi of each data-point
was randomly chosen to be 1 or -1 with equal probability. The first k features of
each data-point xi are drawn from yiN (−j, 1) distribution, where N

(
μ, σ2

)
is

a random normal distribution with mean μ and variance σ2 and j varies from 1
to k. The remaining d− k features are chosen from a N (0, 1) distribution. Thus
the dataset has k relevant features and (d − k) noisy features. By construction,
among the first k features, the kth feature has the most discriminatory power,
followed by (k − 1)th feature and so on. We set n to 30 and d to 1000. We set k
to 90 and 100 and ran two sets of experiments.

Table 2. Out-of-sample error of TechTC-300 datasets averaged over ten ten-fold cross-
validation and over 48 datasets for three values of r. The first and second entry of each
cell represents the mean and standard deviation. Items in bold indicate the best results.

r = 300 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

BSS 31.76 ± 0.68 31.46 ± 0.67 31.24 ± 0.65 31.03 ± 0.66

Lvg-Score 38.22 ± 1.26 37.63 ± 1.25 37.23 ± 1.24 36.94 ± 1.24

RRQR 37.84 ± 1.20 37.07 ± 1.19 36.57 ± 1.18 36.10 ± 1.18

Randomfs 50.01 ± 1.2 49.43 ± 1.2 49.18 ± 1.19 49.04 ± 1.19

IG 38.35 ± 1.21 36.64 ± 1.18 35.81 ± 1.18 35.15 ± 1.17

r = 400 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

BSS 30.59 ± 0.66 30.33 ± 0.65 30.11 ± 0.65 29.96 ± 0.65

Lvg-Score 35.06 ± 1.21 34.63 ± 1.20 34.32 ± 1.2 34.11 ± 1.19

RRQR 36.61 ± 1.19 36.04 ± 1.19 35.46 ± 1.18 35.05 ± 1.17

Randomfs 47.82 ± 1.2 47.02 ± 1.21 46.59 ± 1.21 46.27 ± 1.2

IG 37.37 ± 1.21 35.73 ± 1.19 34.88 ± 1.18 34.19 ± 1.18

r = 500 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7

BSS 29.80 ± 0.77 29.53 ± 0.77 29.34 ± 0.76 29.18 ± 0.75

Lvg-Score 33.33 ± 1.19 32.98 ± 1.18 32.73 ± 1.18 32.52 ± 1.17

RRQR 35.77 ± 1.18 35.18 ± 1.16 34.67 ± 1.16 34.25 ± 1.14

Randomfs 46.26 ± 1.21 45.39 ± 1.19 44.96 ± 1.19 44.65 ± 1.18

IG 36.24 ± 1.20 34.80 ± 1.19 33.94 ± 1.18 33.39 ± 1.17

We set the value of r, i.e. the number of features selected by BSS to 80 and 90
for all experiments. We performed ten-fold cross-validation and repeated it ten
times. The value of λ was set to 0, 0.1, 0.3, 0.5, 0.7, and 0.9. We compared BSS
with RRQR, IG and leverage-score sampling. The mean out-of-sample error
was 0 for all methods for both k = 90 and k = 100. Table 1 shows the set
of five most frequently selected features by the different methods for one such
synthetic dataset across 100 training sets. The top features picked up by the
different methods are the relevant features by construction and also have good
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discriminatory power. This shows that supervised BSS is as good as any other
method in terms of feature selection and often picks more discriminatory features
than the other methods. We repeated our experiments on ten different synthetic
datasets and each time, the five most frequently selected features were from the
set of relevant features. Thus, by selecting only 8%-9% of all features, we show
that we are able to obtain the most discriminatory features along with good
out-of-sample error using BSS.
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Fig. 1. Out-of-sample error of 48 TechTC-300 documents averaged over ten ten-fold
cross validation experiments for different values of regularization parameter λ and
number of features r = 300. Vertical bars represent standard deviation.

6.4 TechTC-300

We use the TechTC-300 data [7], consisting of a family of 295 document-term
data matrices. The TechTC-300 dataset comes from the Open Directory Project
(ODP), which is a large, comprehensive directory of the web, maintained by
volunteer editors. Each matrix in the TechTC-300 dataset contains a pair of
categories from the ODP. Each category corresponds to a label, and thus the
resulting classification task is binary. The documents that are collected from the
union of all the subcategories within each category are represented in the bag-
of-words model, with the words constituting the features of the data [7]. Each
data matrix consists of 150-280 documents, and each document is described with
respect to 10,000-50,000 words. Thus, TechTC-300 provides a diverse collection
of data sets for a systematic study of the performance of the RLSC using BSS.
We removed all words of length at most four from the datasets. Next we grouped
the datasets based on the categories and selected those datasets whose categories
appeared at least thrice. There were 147 datasets, and we performed ten-fold
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Table 3. A subset of the TechTC matrices of our study

id1 id2 id1 id2

1092 789236 Arts:Music:Styles:Opera US Navy:Decommisioned Submarines

17899 278949 US:Michigan:Travel & Tourism Recreation:Sailing Clubs:UK

17899 48446 US:Michigan:Travel & Tourism Chemistry:Analytical:Products

14630 814096 US:Colorado:Localities:Boulder Europe:Ireland:Dublin:Localities

10539 300332 US:Indiana:Localities:S Canada:Ontario:Localities:E

10567 11346 US:Indiana:Evansville US:Florida:Metro Areas:Miami

10539 194915 US:Indiana:Localities:S US:Texas:Localities:D

cross validation and repeated it ten times on 48 such datasets. We set the values
of the regularization parameter of RLSC to 0.1, 0.3, 0.5 and 0.7. We do not report
running times because feature selection is an offline task. We set r to 300, 400
and 500. We report the out-of-sample error for all 48 datasets. BSS consistently
outperforms Leverage-Score sampling, IG, RRQR and random feature selection
on all 48 datasets for all values of the regularization parameter. Table 2 and Fig 1
shows the results. The out-of-sample error decreases with increase in number
of features for all methods. In terms of out-of-sample error, BSS is the best,
followed by Leverage-score sampling, IG, RRQR and random feature selection.
BSS is at least 3%-7% better than the other methods when averaged over 48
document matrices. From Fig 1 and 2, it is evident that BSS is comparable to
the other methods and often better on all 48 datasets. Leverage-score sampling
requires greater number of samples to achieve the same out-of-sample error as
BSS (See Table 2, r = 500 for Lvg-Score and r = 300 for BSS). Therefore, for
the same number of samples, BSS outperforms leverage-score sampling in terms
of out-of-sample error. The out-of-sample error of supervised IG is worse than
that of unsupervised BSS, which could be due to the worse generalization of the
supervised IG metric. We also observe that the out-of-sample error decreases
with increase in λ for the different feature selection methods.

Due to space constraints, we list the most frequently occurring words selected
by BSS for the r = 300 case for seven TechTC-300 datasets over 100 train-
ing sets used in the cross-validation experiments. Table 3 shows the names of
the seven TechTC-300 document-term matrices. The words shown in Table 4

Table 4. Frequently occurring terms of the TechTC-300 datasets of Table 3 selected
by BSS

1092 789236 naval,shipyard,submarine,triton,music,opera,libretto,theatre

17899 278949 sailing,cruising,boat,yacht,racing,michigan,leelanau,casino

17899 48446 vacation,lodging,michigan,asbestos,chemical,analytical,laboratory

14630 814096 ireland,dublin,boulder,colorado,lucan,swords,school,dalkey

10539 300332 ontario,fishing,county,elliot,schererville,shelbyville,indiana,bullet

10567 11346 florida,miami,beach,indiana,evansville,music,business,south

10539 194915 texas,dallas,plano,denton,indiana,schererville,gallery,north
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r = 500

Fig. 2. Out-of-sample error of 48 TechTC-300 documents averaged over ten ten-fold
cross validation experiments for different values of regularization parameter λ and
number of features r = 400 and r = 500. Vertical bars represent standard deviation.

were selected in all cross-validation experiments for these seven datasets. The
words are closely related to the categories to which the documents belong, which
shows that BSS selects important features from the training set. For example,
for the document-pair (1092 789236), where 1092 belongs to the category of
“Arts:Music:Styles:Opera” and 789236 belongs to the category of “US:Navy:
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Decommisioned Submarines”, the BSS algorithm selects submarine, shipyard,
triton, opera, libretto, theatre which are closely related to the two classes.
Another example is the document-pair 10539 300332, where 10539 belongs to
“US:Indiana:Localities:S” and 300332 belongs to the category of “Canada: On-
tario: Localities:E”. The top words selected for this document-pair are ontario,
elliot, shelbyville, indiana, schererville which are closely related to the class val-
ues. Thus, we see that using only 2%-4% of all features we are able to select
relevant features and obtain good out-of-sample error.

7 Conclusion

We present a provably accurate feature selection method for RLSC which works
well empirically and also gives better generalization peformance than prior exist-
ing methods. The number of features required by BSS is of the order O

(
n/ε2

)
,

which makes the result tighter than that obtained by leverage-score sampling.
BSS has been recently used as a feature selection technique for k-means clus-
tering [5], linear SVMs [11] and our work on RLSC helps to expand research in
this direction. An interesting future work in this direction would be to include
feature selection for non-linear kernels with provable guarantees.
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8 Appendix

Lemma 3. For any matrix E, such that I+E is invertible, (I+E)
−1

= I+
∞∑
i=1

(−E)i.

Lemma 4. Let A and Ã = A +E be invertible matrices. Then Ã
−1 −A−1 =

−A−1EÃ
−1

.

Lemma 5. Let D and X be matrices such that the product DXD is a sym-
metric positive definite matrix with matrix Xii = 1. Let the product DED be
a perturbation such that, ‖E‖2 = η < λmin(X). Here λmin corresponds to the

smallest eigenvalue of X. Let λi be the i-th eigenvalue of DXD and let λ̃i be the

i-th eigenvalue of D (X+E)D. Then,
∣∣∣λi−λ̃i

λi

∣∣∣ ≤ η
λmin(X) .

The lemmas presented above are from matrix perturbation theory [14,8] and are
used in the proof of our main theorem.

Lemma 6. Let ε ∈ (0, 1/2]. Then
∥∥∥qTU⊥U⊥TRTRU

∥∥∥
2
≤ ε

∥∥∥U⊥U⊥Tq
∥∥∥
2

The proof of this lemma is similar to Lemma 4.3 of [9].
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