
On Concurrent Error Detection with Bounded Latency in FSMs

Sobeeh Almukhaizim
Electrical Engineering Dept.

Yale University
New Haven, CT 06520, USA

Petros Drineas
Computer Science Dept.

Rensselaer Polytechnic Institute
Troy, NY 12180, USA

Yiorgos Makris
Electrical Engineering Dept.

Yale University
New Haven, CT 06520, USA

Abstract

We discuss the problem of concurrent error detection
(CED) with bounded latency in finite state machines (FSMs).
The objective of this approach is to reduce the overhead of
CED, albeit at the cost of introducing a small latency in the
detection of errors. In order to ensure no loss of error detec-
tion capabilities as compared to CED without latency, an up-
per bound is imposed on the introduced latency. We examine
the necessary conditions for performing CED with bounded
latency, based on which we extend a parity-based method to
permit bounded latency. We formulate the problem of mini-
mizing the number of required parity bits as an Integer Pro-
gram and we propose an algorithm based on Linear Program
relaxation and Randomized Rounding to solve it. Experimen-
tal results indicate that allowing a small bounded latency re-
duces the hardware cost of the CED circuitry.

1. Introduction

A plethora of research efforts have been expended in con-
current error detection for both combinational and sequential
circuits [1, 2, 3]. Proposed solutions explore the trade-offs
between the three key parameters of this problem: achieved
coverage, incurred overhead, and potential latency. The vast
majority of existing approaches require that errors be de-
tected with zero latency for combinational logic or a maxi-
mum latency of one clock cycle in sequential circuits so that
faults in the bi-stable elements may also be detected. Con-
sequently, such methods [4, 5, 6, 7, 8] attempt to reduce the
incurred overhead by restricting the set of detectable errors
based on realistic assumptions regarding potential malfunc-
tions. Numerous methods wherein the utmost objective is to
incur very low overhead have also been proposed. In such
cases [9, 10, 11], an unbounded latency between error occur-
rence and error detection is permitted, implying that errors
may remain indefinitely undetected, thus reducing coverage.
A third alternative, however, namely that of exploring the
trade-off between latency and overhead while guaranteeing
detection of a given set of errors has received little attention.

In this work, we present a method for performing CED
with bounded latency in FSMs. In essence, the objective of
this approach is to reduce the overhead of CED by allow-
ing a small delay between error occurrence and error detec-
tion. We emphasize, however, that the worst-case delay is

bounded. Thus, while the hardware necessary for perform-
ing CED may be reduced, it is still possible to guarantee error
detection within the specified latency. The efficiency of the
method depends on the structure of the original FSM and the
set of targeted errors. Therefore, we first study the problem
of CED with bounded latency in FSMs in its general form
and we derive a set of conditions that need to be met in or-
der to provide error detection latency guarantees. We then
demonstrate that this idea can be effectively implemented by
extending an existing Parity-Based CED method for FSMs to
accommodate bounded latency.

The proposed method is capable of detecting all errors re-
sulting from any specified fault model. Such a fault model
can be prescribed by providing the error-free response and
all erroneous responses resulting from faults in the model for
every transition in the FSM. Target fault models are expected
to be restricted, in the sense that the set of resulting erro-
neous responses should be a subset of all possible circuit re-
sponses. Indeed, for an unrestricted fault model, information
theory proves that any non-intrusive concurrent error detec-
tion circuit will be as complex as the original circuit [12].
When a restricted fault model is specified, however, more
cost-effective solutions may be devised [13]. To our knowl-
edge, the only previously proposed method that provides an
upper bound to the detection latency is based on the use of
convolutional codes. In this method, additional logic is used
to generate key bits during every FSM transition, such that
these keys are valid sequences in a convolutional code if and
only if the FSM is operating correctly. The theoretical foun-
dation for this method is described extensively in [14], yet
no indication of its cost is provided. Unfortunately, for con-
volutional codes of latency more than one clock cycle, the
method becomes cumbersome.

The paper is organized as follows. The general require-
ments for performing CED with bounded latency are dis-
cussed in section 2. A parity-based implementation of CED
with bounded latency for FSMs is proposed in section 3,
wherein the optimization problem of minimizing the num-
ber of necessary parity bits required is also discussed. The
Integer Program formulation of the parity bit minimization
problem and the proposed solution based on Linear Program
relaxation and Randomized Rounding are described in sec-
tion 4. Experimental results on MCNC benchmark FSMs are
provided in section 5, demonstrating that allowing a small,
bounded latency can reduce the hardware cost while preserv-
ing the desired level of error coverage.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

2. CED with Bounded Latency

In CED without latency, erroneous FSM transitions are
detected immediately. Bounded latency, on the other hand,
provides more freedom as to when to detect errors. Conse-
quently, an erroneous transition may be ignored, as long as
it is guaranteed that the causing fault will result in another
error that will be detected within p clock cycles, where p is
the specified latency bound. For this to be possible, we as-
sume that a fault remains present for at least p clock cycles
after causing an error. This assumption reflects realistically
permanent faults and intermittent faults due to wear-&-tear.
It may also reflect transient errors, if the error source has a
continuous duration of at least a few clock cycles, which is
the targeted latency bound. However, it does not reflect sin-
gle event upsets (SEU). For SEU, concurrent error detection
allowing bounded latency would either have to restrict the
bound to one or use some form of memory which increases
the overall cost. One such solution is the method based on
convolutional encoding, which is described in [14].

In order to omit immediate detection of an erroneous re-
sponse, we need to enumerate all paths of length p, start-
ing from the state where the error is initially activated. A
CED mechanism should be capable of detecting the underly-
ing fault in all such paths, yet not necessarily during the ini-
tial transition. Path enumeration, either explicit or implicit, is
a costly procedure. However, since we only target a bounded
latency of a few clock cycles, the exponential explosion is
contained and the number of paths is manageable.

By permitting latency in error detection, we anticipate
simplification of the circuit necessary for implementing a
CED method. In essence, latency relaxes the constraints in
designing a CED circuit by allowing more flexibility as to
when faults are detected. Unfortunately, overhead reduction
due to latency reaches a saturation point, after which increas-
ing the latency bound does not provide more choices. This
happens because of loops during path enumeration. As soon
as a loop occurs, enumeration along this path is terminated,
since any additional latency increase will result in at least one
path that expands along the loop. Detecting an error along
this path implies detection of errors along all paths compris-
ing the loop. Given a fault model, we can find the maximum
latency of interest by finding the length of the shortest loop
on each faulty FSM and selecting the largest value.

3. Parity-Based Implementation

In this section, we develop a parity-based implementation
of the general algebraic method [7] for CED in FSMs, where
a set of parity trees performs lossless compaction of the cir-
cuit responses. Additional hardware is subsequently used to
predict the compacted error-free responses and a compara-
tor is employed to identify potential discrepancies between
the output of the compactor and the output of the predictor.

I
1
 .. I

r

OUTPUT

b
s+1

.. b
n

PREVIOUS STATE

NEXT STATE /

OUTPUT

FUNCTIONS

INPUT

NEXT

STATE

b
1
.. b

s

s-BIT STATE

REGISTER

Figure 1. FSM Example

In an effort to reduce the incurred overhead, this method at-
tempts to minimize the number of parity trees required for
lossless compaction and, by extension, the size of the predic-
tor and the comparator. We demonstrate how this method can
be employed for performing parity-based CED with bounded
latency in FSMs. The purpose of allowing latency is to re-
duce the overhead, i.e. the number of parity functions that
need to be constructed in order to guarantee detection of all
erroneous cases. The underlying principle for achieving this
is that by allowing a small, bounded latency, we have more
choices on how to detect each error and, therefore, a smaller
number of parity functions might suffice. Under the assump-
tion that the causing fault persists for at least p clock cycles
after triggering an error, we do not necessarily need to detect
the error during the first transition. Rather, we need to ensure
that the selected parity functions are capable of detecting an
effect of the fault along every possible path of length p, start-
ing from the first erroneous state.

3.1. Problem Formulation

Consider the FSM with r inputs, s state bits, and n − s
outputs shown in Fig. 1. For every combination of a se-
quence of inputs A = a1, . . . , ap, where aj ∈ 0, . . . , 2r − 1,
j ∈ 1, . . . , p, and previous state c, c ∈ 0, . . . , 2s − 1, any er-
ror caused by a fault f will manifest itself as a difference
between the sequence of error-free responses GM(A, c),
GM(A, c) ∈ (0, . . . , 2n−1)p, and the sequence of erroneous
responses BMf (A, c), BMf (A, c) ∈ (0, . . . , 2n −1)p. Dur-
ing each of the p FSM transitions, this difference is detectable
in a set of state and output bits bi, where i ∈ 1, . . . , n.
The concatenation of these p sets defines an Erroneous Case,
EC(A, c, f). Clearly, several combinations of transition se-
quences (A, c) and faults f may lead to the same erroneous
case, i.e. the same p sets of bits through which the effect
of fault f on transition sequence (A, c) may be detected
across the p transitions. The union of all erroneous cases,
F =

⋃
∀(A,c,f) EC(A,c,f), can be represented in tabular for-

mat in an error detectability table, as shown in Fig. 2. In this
table, super-columns correspond to the p transitions, columns
correspond to the n next state/output bits, rows correspond
to the m erroneous cases, and entries in the table indicate
the state/output bits at which each erroneous case may be de-
tected.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

b1

1

.

.

.

ErroneousCase
m

.

.

.

Erroneous Case2

Erroneous Case1

b2

1

.

.

.

1

...

.

.

.

bs

1

.

.

.

bs+1

.

.

.

...

.

.

.

1

bn

.

.

.

1

b1

.

.

.

b2

1

.

.

.

1

...

.

.

.

bs

.

.

.

bs+1

.

.

.

...

.

.

.

bn

.

.

.

1

Latency 2

.

.

.

b1

.

.

.

b2

1

.

.

.

1

...

.

.

.

bs

.

.

.

1

bs+1

.

.

.

...

.

.

.

1

bn

.

.

.

1

Latency pLatency 1

Figure 2. Error Detectability Table for CED with Bounded Latency

ORIGINAL FSM H/W

CED H/W

NEXT STATE
COMBINATIONAL

LOGIC

OUTPUT
COMBINATIONAL

LOGIC

PREDICTION
LOGIC

STATE
REGISTER

 OUTPUT
HOLD

REGISTER

PREDICTION
HOLD

REGISTER

PARITY
TREE

FUNCTIONS

INEQUALITY
COMPARATOR

CED OUTPUT
(ERROR IF '1')

s-bit
Next State

(n-s)-bit
Output

q-bit
Prediction

r-bit
Input

q

q

s

n-s

s

Figure 3. Proposed Methodology Overview

Detecting all circuit errors requires that at least one
state/output bit in each erroneous case in F be predicted
through additional hardware and compared to its actual run-
time value. To minimize the overhead, the number of pre-
dicted bits should be small. Yet, since faults on a state/output
bit may only be detected on this bit, it is likely that all
state/output bits will be included in the solution, leading
to duplication. To overcome this limitation, we employ
state/output compaction via parity trees. The key observa-
tion is that the parity (XOR) function of several state/output
bits, an odd number of which detects an erroneous case, also
detects the erroneous case. Therefore, it is possible that a
small number of parity functions compacting the state/output
bits will be adequate to cover all erroneous cases.

Using the information in the error detectability table, the
optimization objective of our method is to minimize the num-
ber of q parity bits that need to be constructed out of the next
state/output bits b1 through bn, such that all Erroneous Cases
are detected. An Erroneous Case is detected by a parity tree
if and only if the parity tree comprises an odd number of bits
bi that detect the Erroneous Case at any specific time-step
between 1 and p. We note that the problem may be mod-
elled as an NP-complete minimum cover problem, for which
several heuristics exist [15]. However, expanding the error
detectability table to explicitly represent all possible parity
functions for each latency step is infeasible, since there is an
exponential number of alternative parity combinations.

The benefit of allowing bounded latency stems from the
larger number of alternative ways to detect each Erroneous

Case. This can be seen in the last row of the error detectabil-
ity table of Fig. 2, where Erroneous Case m may be detected
by more bits and combinations of bits across the p transitions
than just in the first transition. Of course, it is also possible
that for some Erroneous Cases latency will not provide any
additional flexibility. This is the case, for example, for Erro-
neous Cases 1 and 2 in the table of Fig. 2. In the first case, the
fault only affects the first transition and cannot be detected at
a later time within p transitions. In the second case, the fault
affects exactly the same bits in every one of the p transitions.

Based on the above observations, the proposed method-
ology is very straightforward, as depicted in the form of a
block diagram in Fig. 3. Given an FSM with r inputs, s state
bits, and n − s outputs, XOR trees are employed to imple-
ment the q parity functions required for lossless state/output
bit compaction. Combinational logic is employed to predict
the values of the q bits that compact the n state/output bits
for each FSM transition, and a comparator is used to identify
any discrepancy. Similar to [16], registers are added to hold
the output and the predicted values so that comparison is per-
formed one clock cycle later, in order to also detect faults in
the state register. Thus, all FSM errors in the restricted error
model are detected within latency of p clock cycles.

4. Proposed Algorithm

In this section, we demonstrate how to model the prob-
lem as an integer program; we subsequently use randomized
rounding to identify feasible points - namely points satisfy-
ing all the constraints. Our integer program is an extension
of the result in [17], which may be viewed as a special case
of this section’s formulation when latency is equal to one1.

We start by introducing some notation that will be use-
ful throughout this section. Let [x] denote the sequence
1, 2, 3, . . . , x for any non-zero positive integer x. Assume
that the FSM has a total of n next state/output bits, denoted
by {b1, b2, . . . , bn} (see Fig. 1). We are also given a set of
m erroneous cases, denoted by F = {EC1, EC2 . . . , ECm}
and a target latency p, which is a non-zero positive integer.

The most important part of the input is a 3-dimensional
array2, which will be denoted by V . The dimensions of V are
m×n× p; we denote the (i, j, k) element of V by V (i, j, k)

1We remind that in the basic parity-based method all errors are detected
with a latency of one clock cycle to also detect faults in the state register.

2V is a tensor; since it is always 3-dimensional we avoid using tensor
terminology/notation.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

with i ∈ [m], j ∈ [n], k ∈ [p]. We use the notation V (:, j, k)
to denote all elements V (i, j, k) for all i ∈ [m]; V (i, :, k),
V (i, j, :) and all combinations are defined similarly. V is a
0-1 matrix, defined as follows:

Definition 1 V (i, j, k) is equal to 1 if and only if the erro-
neous case ECi is detected by the j-th output bit bj with
latency k; otherwise, V (i, j, k) is equal to 0.

Our problem may now be stated as follows:

Statement 1 Given a positive integer q, find q subsets
β1, . . . , βq of {b1, b2, . . . , bn} such that

cov(⊕β1) ∪ cov(⊕β2) ∪ . . . ∪ cov(⊕βq) = F
or report the lack thereof.

Here, ⊕β� (� ∈ [q]) denotes the XOR of bits in β� and
cov(⊕β�) denotes the erroneous cases covered by the XOR
of bits in β�. An erroneous case ECi is covered by the XOR
of the bits in β� if and only if

p∑
k=1

 ∑

by∈β�

V (i, y, k)

 mod 2

 ≥ 1

We remind the reader that, for boolean variables x1, x2,
x1 ⊕x2 = (x1 +x2) mod 2. Then, the above formula essen-
tially means that the XOR of the bits in β� detects ECi with
some latency k ∈ [p]. Thus, using q parity bits (the XORs of
the bits in β�, � ∈ [q]) we can detect all erroneous cases.

We note that if we can solve the above problem in time
T , then we may easily minimize q in T log n time: since
1 ≤ q ≤ n, we may perform binary search and find the
optimal q, as shown in Algorithm 1.

In the following, we will denote any subset of
{b1, b2, . . . , bn} by an n-dimensional 0-1 vector (e.g. the
subset {b1, b3, b4} may be represented by [1011 . . . 0]). The
problem may now be restated as follows:

Statement 2 Given a positive integer q, find q n-
dimensional binary vectors β(1), . . . , β(q) such that

q∑
�=1

 p∑

k=1

 ∑

y:β
(�)
y =1

V (1, y, k)

 mod 2

 ≥ 1

q∑
�=1

 p∑

k=1

 ∑

y:β
(�)
y =1

V (2, y, k)

 mod 2

 ≥ 1

...

q∑
�=1

 p∑

k=1

 ∑

y:β
(�)
y =1

V (m, y, k)

 mod 2

 ≥ 1

or report the lack thereof.

In order to understand the above constraints, observe that
if

∑p
k=1

((∑
y:β

(�)
y =1

V (i, y, k)
)

mod 2
)

is at least 1, the

XOR of the bits in β(�) detects the erroneous condition ECi

with latency at most p, where i ∈ [m]. Thus, in order for at
least one of the β(�), � ∈ [q] to detect ECi, it is enough to
satisfy the first constraint. We may now state our problem in
matrix notation:

Statement 3 Given a positive integer q, find q n-
dimensional binary vectors β(1), . . . , β(q) such that

q∑
�=1

[
p∑

k=1

(
V (:, :, k) · β(�) mod 2

)]
≥ �1m

or report the lack thereof, where �1m is an m-vector of 1s.

Notice that V (:, :, k) is a 2-dimensional array (a matrix of
dimensions m×n) that denotes the erroneous cases captured
by the output bits with latency exactly equal to k.

We now remove the mod operator from the statement:

Statement 4 Given a positive integer q, find vectors
β(�), � ∈ [q], r(�k), w(�k), � ∈ [q], k ∈ [p] such that

∀ k ∈ [p], V (:, :, k) · β(1) = 2 · w(1k) + r(1k)

∀ k ∈ [p], V (:, :, k) · β(2) = 2 · w(2k) + r(2k)

...

∀ k ∈ [p], V (:, :, k) · β(q) = 2 · w(qk) + r(qk)

p∑
k=1

(
r(1k) + . . . + r(qk)

)
≥ �1m

β(1), . . . , β(q) ∈ {0, 1}n

r(�k) ∈ {0, 1}m

w(�k) ∈ {0, 1, . . . , �n/2�}m

In order to understand the above constraints, observe that
e.g. r(1k) is an m-dimensional 0-1 vector denoting whether
{EC1, . . . , ECm} are detected by the XOR of the bits in the
set represented by β(1) with latency k. We note that w(1k) is
also an m-dimensional vector that removes the mod 2 opera-
tion. The sum of the r(�k) is, element-wise, at least one, thus
guaranteeing that every erroneous case is detected.

In statement 4, we described our problem as an integer
program. Our goal is to find a feasible point; namely, val-
ues for all r(�k), w(�k) and β(�) (a total of 2qpm + qn vari-
ables) such that all the restrictions of statement 4 are satis-
fied. Identifying a feasible point for an integer program is
NP-complete; we, therefore, employ a technique called ran-
domized rounding [18] to solve it. The idea of randomized
rounding is simple: solve the linear programming relaxation
of the integer program (easily done in polynomial time using

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

Data : matrix V

Result : vectors β(�) that detect all ECs

ITER = 103; left = 1; right = n;
while left < right do

q = �(right − left)/2�;
Find a feasible point for the LP of statement 5;
if none exists then

set left = q;

else
repeat

Use randomized rounding to create an integer
solution;

until all constraints of statement 4 are satisfied or
ITER repetitions are exceeded;
if all constraints of statement 4 are satisfied then

set right = q;

else
set left = q;

end
end

end
Report the minimal q s.t. all constraints of statement 4 are
satisfied and the corresponding β(�), � ∈ [q].

Algorithm 1: The overall algorithm

e.g. the Simplex algorithm) and round the resulting real val-
ues probabilistically. We now state the linear programming
relaxation of statement 4:

Statement 5 Given a positive integer q, find vectors
β(�), � ∈ [q], r(�k), w(�k), � ∈ [q], k ∈ [p] such that

∀ k ∈ [p], V (:, :, k) · β̃(1) = 2 · w̃(1k) + r̃(1k)

∀ k ∈ [p], V (:, :, k) · β̃(2) = 2 · w̃(2k) + r̃(2k)

...

∀ k ∈ [p], V (:, :, k) · β̃(q) = 2 · w̃(qk) + r̃(qk)

p∑
k=1

(
r̃(1k) + . . . + r̃(qk)

)
≥ �1m

β̃(1), . . . , β̃(q) ∈ [0, 1]n

r̃(�k) ∈ [0, 1]m

w̃(�k) ∈ [0, �n/2�]m

We round each of the x̃ variables as follows:

x =
{

1 ,with probability x̃
0 ,otherwise

(1)

Raghavan et al. [18] argue that this simple algorithm iden-
tifies a feasible point with high probability, if one exists. In
practice, we probabilistically round x a fixed number of times
and verify that a solution is found.

5. Experimental Results

The proposed methodology has been implemented and ap-
plied on several sequential MCNC benchmarks. After per-
forming state assignment, the circuits are synthesized and
mapped onto a standard-cell library using SIS [19]. Inter-
nally developed software employing fault simulation is used
to identify the error-free and erroneous responses to generate
the error detectability table of Fig. 2. While the stuck-at fault
model has been used as the source of errors, we emphasize
that the method applies for any restricted error model, as dis-
cussed in section 2. Subsequently, Algorithm 1 is applied to
compute the minimal number of parity functions for several
values of latency p.

The results are summarized in Table 1. Under the first ma-
jor heading, we provide details about the circuits that were
used: name, number of inputs, state bits, outputs, gate count
and the hardware cost reported by SIS. Under the second,
third and forth major heading, we provide the minimum num-
ber of parity functions required for complete fault coverage,
the gate count and the hardware cost reported by SIS for la-
tency p = 1, p = 2 and p = 3, respectively. The number
of parity functions (hardware cost) for the basic parity-based
method with latency p = 1 [17] for these examples is, on
average, 53.00% (22.40%) smaller than the number of func-
tions (hardware cost) necessary for duplicating the circuit.
Addition of one more clock cycle, i.e. for bounded latency
p = 2, reduces the number of parity bits (hardware cost)
by 11.70% (7.18%) over the number of parity bits (hardware
cost) required for latency p = 1. Further increase of the
bound to latency p = 3, yields an additional 7.23% (7.08%)
reduction in the number of parity bits (hardware cost).

As discussed in section 2, the benefits of adding latency
diminish as latency increases. In smaller FSMs, faults re-
sult to a large number of self-loops. For example, this is the
case for circuits donfile, s27, and s386. As the FSM size be-
comes larger, self-loops are less frequent and the benefits of
increasing the detection latency are more significant. This is
for example the case for circuits pma, s298, and s1488.

The reduction in the number of parity functions and the re-
duction in the hardware cost of the predictor are not necessar-
ily proportional. For example, this is the case for circuit dk16
where a latency of p = 2 reduces the number of parity func-
tions by 16.67%, yet the hardware overhead is reduced by
19.94%. More surprisingly, the hardware overhead increases
by 11.37% when latency, p = 2, is increased to p = 3. A
single complex parity function may require the same or more
area than a larger number of simple parity functions. To the
best of our knowledge, the literature lacks solutions that con-
sider the actual area cost of parity functions as a metric in
choosing which parity functions to select. In the absence
of such methods, the most promising direction is to reduce
the number of parity functions, anticipating that, on average,
functions will incur the same area cost.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

Original Circuit Latency p=1 Latency p=2 Latency p=3
Circuit Input State Output Gates Cost # of Gates Cost # of Gates Cost # of Gates Cost
Name Bits Bits Bits Trees Trees Trees

cse 7 4 7 196 256128 5 131 171680 5 131 171680 4 106 137344
donfile 2 5 1 97 128064 4 57 74704 4 78 103008 4 83 111360
dk16 2 5 3 240 317840 6 323 428736 5 257 342896 5 288 381872

dk512 1 4 3 74 96048 4 79 104400 4 77 101616 4 62 81200
ex1 9 5 19 263 343360 8 240 319232 7 211 280720 6 183 243600
keyb 7 5 2 228 298352 5 82 107648 4 64 83984 4 72 92800
pma 8 5 8 347 453792 6 186 243136 5 179 234784 4 149 193952
sse 7 4 7 131 178640 5 80 104864 4 64 82592 4 60 77952
styr 9 5 10 413 547056 8 217 287216 6 203 266336 5 155 206016

s1488 8 6 19 552 727552 8 256 335936 7 240 315984 6 228 300672
s27 4 3 1 20 25056 3 15 18096 3 15 18096 3 15 18096
s298 3 14 6 114 147552 8 324 428272 7 313 416672 7 295 396720
s386 7 6 7 123 158688 4 83 105328 4 83 105328 4 83 105328
tav 4 2 4 28 34336 4 31 39440 3 25 31552 3 33 42688
tbk 6 5 3 146 190240 5 160 207872 5 160 207872 5 160 207872
tma 7 5 6 218 285360 5 130 169824 4 115 150800 4 115 150800

Table 1. Experimental Results on MCNC Benchmark Circuits

6. Conclusion

We introduced a technique that allows concurrent error
detection with latency in FSMs. In order to preserve the level
of attainable coverage, we bound the detection latency to a
few cycles and we derive the necessary conditions to detect
all possible errors within the specified latency period. Since
a bounded delay is permitted in the detection of errors, the
trade-off between latency and hardware required for concur-
rent error detection can be beneficially explored. In order
to assess the effectiveness of this approach, we extended a
latency-free parity-based method to perform error detection
with bounded latency. We formulated the problem of mini-
mizing the number of required parity bits as an Integer Pro-
gram and we devised an algorithm based on Linear Program
relaxation and Randomized Rounding to solve it. Experi-
mental results indicate a monotonic reduction in the cost of
the CED hardware when latency is increased.

References

[1] M. Gossel and S. Graf, Error Detection Circuits, McGraw-
Hill, 1993.

[2] S. J. Piestrak, “Self-checking design in Eastern Europe,”
IEEE Design and Test of Computers, vol. 13, no. 1, pp. 16–25,
1996.

[3] S. Mitra and E. J. McCluskey, “Which concurrent error de-
tection scheme to choose?,” in International Test Conference,
2000, pp. 985–994.

[4] G. Aksenova and E. Sogomonyan, “Design of self-checking
built-in check circuits for automata with memory,” Automa-
tion and Remote Control, vol. 36, no. 7, pp. 1169–1177, 1975.

[5] S. Dhawan and R. C. De Vries, “Design of self-checking
sequential machines,” IEEE Transactions on Computers, vol.
37, no. 10, pp. 1280–1284, 1988.

[6] N. A. Touba and E. J. McCluskey, “Logic synthesis of mul-
tilevel circuits with concurrent error detection,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 16, no. 7, pp. 783–789, 1997.

[7] V. V. Danilov, N. V. Kolesov, and B. P. Podkopaev, “An al-
gebraic model for the hardware monitoring of automata,” Au-
tomation and Remote Control, vol. 36, no. 6, pp. 984–991,
1975.

[8] C. Bolchini, F. Salice, and D. Sciuto, “A novel methodology
for designing TSC networks based on the parity bit code,” in
European Design and Test Conference, 1997, pp. 440–444.

[9] R. Leveugle and G. Saucier, “Optimized synthesis of concur-
rently checked controllers,” IEEE Transactions on Comput-
ers, vol. 39, no. 4, pp. 419–425, 1990.

[10] S. H. Robinson and J. P. Shen, “Direct methods for synthesis
of self-monitoring state machines,” in Fault Tolerant Com-
puting Symposium, 1992, pp. 306–315.

[11] P. Drineas and Y. Makris, “SPaRe: selective partial replica-
tion for concurrent fault detection in FSMs,” in International
Conference on VLSI Design, 2003.

[12] J. F. Meyer and R. J. Sundstrom, “On-line diagnosis of un-
restricted faults,” IEEE Transactions on Computers, vol. 24,
no. 5, pp. 468–475, 1975.

[13] E. S. Sogomonyan, “The design of discrete devices with di-
agnostics in the course of operation,” Automation and Remote
Control, vol. 31, no. 11, pp. 1854–1860, 1970.

[14] L. P. Holmquist and L. L. Kinney, “Concurrent error detec-
tion for restricted fault sets in sequential circuits and micro-
programmed control units using convolutional codes,” in In-
ternational Test Conference, 1991, pp. 926–935.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W. H. Freeman,
1979.

[16] C. Zeng, N. Saxena, and E. J. McCluskey, “Finite state ma-
chine synthesis with concurrent error detection,” in Interna-
tional Test Conference, 1999, pp. 672–679.

[17] P. Drineas and Y. Makris, “Non-intrusive concurrent error de-
tection in FSMs through State/Output compaction and mon-
itoring via parity trees,” in Design Automation and Test in
Europe Conference, 2003, pp. 1164–1165.

[18] P. Raghavan and C. Thompson, “Randomized rounding:
A technique for provably good algorithms and algorithmic
proofs,” Combinatorica, vol. 7, no. 4, pp. 365–374, 1987.

[19] E. M. Sentovich et al., “SIS: a system for sequential circuit
synthesis,” ERL MEMO. No. UCB/ERL M92/41, EECS UC
Berkeley CA 94720, 1992.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04)

1530-1591/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

