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Abstract

The recent explosion of interest in graph cut methods in
computer vision naturally spawns the question: what en-
ergy functions can be minimized via graph cuts? This ques-
tion was first attacked by two papers of Kolmogorov and
Zabih [23, 24], in which they dealt with functions with pair-
wise and triplewise pixel interactions. In this work, we
extend their results in two directions. First, we examine
the case ofk-wise pixel interactions; the results are de-
rived from a purely algebraic approach. Second, we dis-
cuss the applicability of provably approximate algorithms.
Both of these developments should help researchers best un-
derstand what can and cannot be achieved when designing
graph cut based algorithms.
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1 Introduction

Since the early papers of Boykovet al. [9], there has
been an explosion of interest in using combinatorial meth-
ods for energy minimization within computer vision. In
particular, the techniques used are based on solving for
the minimum cut across a graph. These techniques have
spawned so much interest because they are effective: they
allow for high quality optimization of a fairly wide variety
of functions, in polynomial time. As a result, they have seen
use in a number of different computer vision applications,
including stereo [22], motion [10], and segmentation [8].

A natural and important question arises: what functions
can be minimized via graph cuts? The papers by Kolo-
mogorov and Zabih [23, 24] made good headway in attack-
ing this problem. These papers showed necessary and suffi-
cient conditions for the exact minimization of energy func-
tions where there are terms depending on pairs of pixels (the
so-calledF2 class) and where there are terms depending on
triples of pixels (the so-calledF3 class). There are two nat-
ural extensions to this work. The first is characterize what
is known aboutk-wise pixel interactions; the second is to
characterize when provably approximate energy minimiza-
tion can be achieved. More specifically, the main theoretical

contributions of this paper are the following:

1. What is possible in the case of exact minimization.

(a) A purely algebraic, and hence simplified, proof
of the regularity results of Kolmogorov and
Zabih [23, 24], for the casesF2 andF3.

(b) An extension of these algebraic methods to the
Fk case, and a discussion of the relationship
of these results to known results on submodular
functions.1

2. What is possible in the case of provably approxi-
mate minimization. It is well known that minimiza-
tion of an arbitrary function ofn discrete variables is
an NP-complete problem. However, NP-completeness
doesn’t tell the whole story: provably approximate so-
lutions are also acceptable in computer vision. Indeed,
in many applications in which the label set is of size
greater than 2, one has to resort to the use of iterations
of “large moves” such asα-expansions orα-β swaps
[10], which are in fact approximations to the energy
minimization. The idea is to sequentially minimize a
number of functions of binary variables exactly; such a
binary minimization is called a large move. However,
while the binary minimizations are exact, the overall
minimization is approximate (with provable bound –
see [10] for details). As algorithms based on these
large moves are approximate in any case, adding in an
extra level of approximation for the large move itself
(i.e. the binary minimization) is not unreasonable.

The remainder of the paper is organized as follows. In
Section 2, we investigate what can be said about exact al-
gorithms. In Section 3, we turn to the problem of provably
approximate algorithms.

2 Exact Algorithms

In this section, we extend the results of Kolmogorov and
Zabih [23, 24] on exact minimization of energy functions

1Submodular functions were discussed in [24], though not [23]. A more
thorough discussion of their relation to the problem at hand is given here.



via graph cuts. We begin, in Section 2.1, by laying out a
useful theorem on the types pairwise functions that can be
minimized via graph cut constructions. Using this simple
result, the rest of the section is posed in an entirely algebraic
manner, without explicit reference to graphs. In Section 2.2,
we show how the regularity conditions can be derived very
easily in the case of pairwise functions; in Section 2.3, we
use a somewhat longer proof for the triplewise case. Al-
though both of these results have already been proven in
[23, 24], our proofs serve two purposes: they are simplified,
purely algebraic proofs, making them easier to parse; and
they show how these ideas can be generalized to thek-wise
case, which we do in Section 2.4. In Section 2.5, we dis-
cuss the relationship of our conditions to the submodularity
conditions.

2.1 A Useful Theorem

We begin by stating a theorem which is very important
in the subsequent work. We note that this theorem is gen-
erally considered to be part of combinatorial optimization
folklore, and a version of it may be found in [28].

Theorem 1 Let xi ∈ {0, 1} and let E(x1, . . . , xn) =∑
i,j aijxixj + L, whereL represents terms that are lin-

ear in thexi plus any constants (i.e.L =
∑

i aixi + c).
ThenE can be minimized via graph cut techniques if and
only if aij ≤ 0 for all i, j.

Proof: We only prove the “if” direction; a proof of the
“only if” direction may be found in [28]. With a little ma-
nipulation, such anE can be rewritten as

E =
∑
i,j

a′ijxi(1− xj) + L′

wherea′ij = −aij and the linear termL′ is altered. Ignoring
the linear termL′ for the moment, it is easy to see that mini-
mizingE over the binary variablesxi is the same as finding
a minimum cut in a complete graph withn vertices, one
vertex corresponding to eachxi, and edge weights given by
wij = a′ij . The cut itself splits those vertices withxi = 0
from those withxi = 1; this is because choosingxi = 1
andxj = 0 addsa′ij to the energy, whereas any other set-
ting of xi andxj does not adda′ij to the energy.2 It is well
known, from the theory of combinatorial optimization [28],
that solving min-cut in polynomial time is possible if and
only if the edge weights are non-negative. Thus, we must
have thata′ij ≥ 0, so thataij ≤ 0.

2Note that we would usually seta′
ji = a′

ij , so thatxi = 0 andxj =
1 also yields the same result; this is the distinction between cuts across
directed and undirected graphs.

We may now turn to the issue of the linear termsL′. Note
that

L′ =
∑

i

a′ixi + c′

=
∑

i:a′
i≥0

a′ixi +
∑

i:a′
i<0

|a′i|(1− xi) + c′′

Thus, we can add such terms into the graph formulation by
simply adding in source (S) and sink (T) nodes, where S
corresponds to 0 and T corresponds to 1. In this case, for
eachi for which a′i ≥ 0, we add in an edge from the node
i to S with weighta′i; and for eachi for which a′i < 0, we
add in an edge from the nodei to T with weight |a′i|. All
of these weights are non-negative, and thus we can apply
graph cut techniques to optimize in polynomial time.�

2.2 Recasting theF2 Case

Before going on to discuss thek-wise case, we will dis-
cuss the simpler pairwise and triplewise cases. Of course,
the results for these cases have already been demonstrated
in [23, 24]; however, we use the same approach here as we
do for thek-wise case, so it is worth reviewing these cases.
(We also believe that the proofs presented here, which are
purely algebraic, are simpler than those in [23, 24].)

The class of energy functions belonging toF2 includes
all those with pairwise pixel interactions, i.e.

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑
i,j

Eij(xi, xj) (1)

We may now reprove the regularity results of [23, 24] very
simply using Theorem 1. Note that we may write

Eij(xi, xj) = E00
ij (1− xi)(1− xj) + E01

ij (1− xi)xj

+ E10
ij xi(1− xj) + E11

ij xixj

whereEαβ
ij = Eij(xi = α, xj = β). Similarly, we may

write
Ei(xi) = E0

i (1− xi) + E1
i xi

Putting these terms back into equation (1) gives

E(x1, . . . , xn) =
∑
i,j

(E00
ij + E11

ij − E01
ij − E10

ij )xixj + L

where againL includes terms that are linear in thexi, as
well as any constants. Applying Theorem 1 says that such
an energy can be minimized via graph cuts if and only if

E00
ij + E11

ij − E01
ij − E10

ij ≤ 0 ∀i, j

which is precisely the regularity condition of [23, 24].
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2.3 Recasting theF3 Case

The class of energy functions belonging toF3 includes
all those with triplewise pixel interactions, i.e.

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑
i,j

Eij(xi, xj)

+
∑
i,j,k

Eijk(xi, xj , xk)

Before proving any results, let us introduce some notation.
Greek letters, such asα andβ, will typically refer to subsets
of {1, . . . , n}. We definexα to be

∏
`∈α x`. Also, we let

Eijk
β = Eijk(xi = 1, i ∈ β).
Let us begin by expanding the functionEijk(xi, xj , xk)

in a polynomial series:

Eijk(xi, xj , xk) =
∑

α⊂{i,j,k}

aijk
α xα

To solve for the coefficients of the expansion,aijk
α , we can

plug in all values of the binary values, leading to 8 equations
in 8 unknowns. After some algebra, these equations can be
solved to yield

aijk
α =

∑
β⊂α

(−1)|α|−|β|Eijk
β

The functionEijk may therefore be written

Eijk(xi, xj , xk) = aijk
ij xixj + aijk

ik xixk + aijk
jk xjxk

+ aijk
ijkxixjxk + L

whereL is a subquadratic term.
The key step is to convertEijk, which is anF3 function,

into anF2 function via the introduction of an extra binary
variableyijk. In particular, note that

xixjxk = max
yijk∈{0,1}

[(xi + xj + xk − 2)yijk]

If aijk
ijk ≤ 0, we may write

aijk
ijkxixjxk = min

yijk∈{0,1}
[aijk

ijk(xi + xj + xk − 2)yijk]

which therefore gives

Eijk(xi, xj , xk) = min
yijk

[aijk
ij xixj + aijk

ik xixk + aijk
jk xjxk

+ aijk
ijkxiyijk + aijk

ijkxiyijk + aijk
ijkxiyijk + L]

(L is a modified subquadratic term from theL introduced
above.) Thus,Eijk is written as a pairwise (F2) function,
where we have introduced the extra variableyijk. In fact,
we must take the minimum overyijk; however, since the

entire functionE will ultimately be minimized, this step
simply introduces some extra variables to minimize over.

Now, what ifaijk
ijk > 0? In a similar manner to the above,

we can introduce an expansion

Eijk =
∑

α⊂{i,j,k}

āijk
α x̄α

wherex̄i = 1− xi (and following the previous convention,
x̄α =

∏
`∈α x̄`.) It can be shown that

āijk
α =

∑
β⊂α

(−1)|α|−|β|Ēijk
β

whereĒijk
β = Eijk(xi = 0, i ∈ β). In this case, some

inspection shows that̄aijk
ijk = −aijk

ijk. Therefore, ifaijk
ijk > 0,

thenāijk
ijk < 0, and (after some manipulation) we can write

Eijk(xi, xj , xk) = min
yijk

[āijk
ij xixj + āijk

ik xixk + āijk
jk xjxk

+ āijk
ijkxiyijk + āijk

ijkxiyijk + āijk
ijkxiyijk + L̄]

Note that the variables above arexi and notx̄i. This is due
to the fact that

x̄ix̄j = (1− xi)(1− xj)
= xixj + linear term+ constant

so that any terms of the form̄xix̄j can be effectively re-
placed byxixj without affecting the expression (except
through the precise forms of the subquadratic terms, which
we do not care about).

Finally, let

bijk
α =

{
aijk

α if aijk
ijk ≤ 0,

āijk
α otherwise.

Then we have that

E = min
all yijk

∑
i,j,k

[bijk
ij xixj + bijk

ik xixk + bijk
jk xjxk

+bijk
ijkxiyijk + bijk

ijkxiyijk + bijk
ijkxiyijk + Lijk]

}
Due to Theorem 1, we can ignore the linear termsLijk.
We also note that sincēaijk

ijk = −aijk
ijk, we must have that

bijk
ijk ≤ 0. Thus, we know that the terms involving theyijk

variables satisfy the conditions of Theorem 1 (namely, that
their coefficients be non-positive). Thus, we can look at the
remainder of the function, i.e.

E′ =
∑
i,j,k

bijk
ij xixj + bijk

ik xixk + bijk
jk xjxk

=
∑
ij

qijxixj
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whereqij =
∑

k bijk
ij . In this case, according to Theorem

1, the conditions under whichqij ≤ 0 are identical to the
conditions under which the energy can be minimized via
graph cut methods.

Using the expressions foraijk
α and āijk

α , a little algebra
shows that

bijk
ij = Eijk(0, 0, xk) + Eijk(1, 1, xk)

− Eijk(0, 1, xk)− Eijk(1, 0, xk)

wherexk = 0 if bijk
ij = aijk

ij andxk = 1 otherwise. Thus,

qij =
∑

k

[Eijk(0, 0, xk) + Eijk(1, 1, xk)

− Eijk(0, 1, xk)− Eijk(1, 0, xk)] (2)

It turns out that the condition thatqij ≤ 0 is precisely the
regularity condition of [23, 24]. To see this, let us introduce
the notationx−ij = {x`}` 6=i,j , and

Eproj
ij (xi, xj) = E(xi, xj , x−ij)

where we have assumed thex−ij are fixed, and therefore
have suppressed them on the left-hand side. Then

Eproj
ij (0, 0) =

∑
k

Eijk(0, 0, xk)+
∑

i′ 6=i,j′ 6=j,k′

Ei′j′k′(xi′ , xj′ , xk′)

The second term does not depend onxi or xj . Thus using
equation (2),qij ≤ 0 becomes

Eproj
ij (0, 0)+Eproj

ij (1, 1)−Eproj
ij (0, 1)−Eproj

ij (1, 0) ≤ 0

which is exactly the regularity condition of [23, 24].

2.4 The GenericFk Case

We now come to the most generic case of energy func-
tions withk-wise pixel interactions, labelledFk. We may
use similar, though perhaps simpler, arguments as in the
case ofF3 to establish sufficient conditions for a function
in Fk to be minimized via graph cut methods.

The first step is to realize that any function inFk can be
written as

E(x1, . . . , xn) =
∑

α⊂{1,...,n},|α|≤k

aαxα (3)

where againxα =
∏

`∈α x`. This fact can easily be proven,
though we do not do so here. As described in Section 2.3,
we can solve for the coefficientsaα by means of a linear
system of2k equations in2k unknowns; the result (whose
precise derivation is omitted here) is the same as in the case
of F3 functions, i.e.

aα =
∑
β⊂α

(−1)|α|−|β|Eβ (4)

The second step is to convert anFk function to anF2

function through the introduction of extra variables; this is
precisely analogous to what was done in Section 2.3. Note
that if |α| > 2

xα = max
yα∈{0,1}

[(∑
`∈α

x` − (|α| − 1)

)
yα

]

whereyα is the extra binary variable. Ifaα ≤ 0, we may
write

aαxα = min
yα∈{0,1}

[
aα

(∑
`∈α

x` − (|α| − 1)

)
yα

]
(5)

The final step is to use the above fact to note that ifaα ≤
0 for all α, we can combine equations (3) and (5) to yield

E(x1, . . . , xn) = L +
∑
i,j

aijxixj+

∑
α:|α|>2

min
yα∈{0,1}

[
aα

(∑
`∈α

x` − (|α| − 1)

)
yα

]

where as usual,L represents linear terms and the constant.
Thus, the minimization ofE can be rewritten as follows:

min
xi

E(xi) = min
xi,yα

Ẽ(xi, yα)

where

Ẽ(xi, yα) =
∑

α:|α|>2

∑
`∈α

aαx`yα +
∑
i,j

aijxixj + L

We can apply Theorem 1 to this function to discover thatE
can be minimized by graph cut techniques if

aα ≤ 0 ∀α : 2 ≤ |α| ≤ k

Plugging in the expression foraα from equation (4) leads
to the following sufficient conditions for minimization ofE
via graph cut methods:

∑
β⊂α

(−1)|α|−|β|Eβ ≤ 0 ∀α : 2 ≤ |α| ≤ k (6)

where as beforeEβ = E(xi = 1, i ∈ β). The inequalities
of (6) represent the main result of this section of the paper.

Note that an extra argument is invoked in the case ofF3,
to eliminate the condition thataα ≤ 0 for |α| = 3. Such an
argument relied on the fact that an expansion could also be
performed on thēxi variables, wherēxi = 1 − xi; it was
then shown that̄aα = −aα for |α| = 3, so that in this case
eitheraα ≤ 0 or āα ≤ 0. Unfortunately, this is not true for
k > 3; indeed, fork = 4 we have that̄aα = aα.
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2.5 Submodularity

A well known fact from the theory of combinatorial op-
timization is that the class of submodular functions can be
optimized in polynomial time [26]. This fact was noted in
[24] (though not [23]), but we wish to add some further dis-
cussion of these functions here.

SupposeS is a set withn elements. A set-valued func-
tion f : S → R is said to be submodular if

f(X ∩ Y ) + f(X ∪ Y ) ≤ f(X) + f(Y ) ∀X, Y ⊂ S

One can, of course, easily move from set-valued functions
to binary-valued functions, by letting inclusion of element
i in a set correspond toxi = 1, and exclusion toxi = 0.
We wish to make two comments regarding the relationship
between submodularity and the conditions described here:

1. The relationship between the conditions forFk de-
rived in (6) and submodularity is unknown, but the
conditions are not the same. This can be clearly seen
from the fact that the submodularity conditions always
involve exactly 4 terms, whereas the inequalities in (6)
can involve more.

2. It is not obvious from inspection as to how to specialize
the submodularity conditions to classes of functions
like Fk; these conditions will look the same, no matter
how many pixel are allowed to interact. (Of course, the
number of such conditions applying may decrease, but
the way in which this takes place is also not obvious
from inspection.) The new conditions, by contrast, re-
late to precisely the function classesFk which are rel-
evant for computer vision; in many vision applications,
the number of interacting pixelsk is fixed. Thus, from
a computer vision point-of-view, these conditions are
important. For example, it is clear from the inequali-
ties of (6) precisely which new inequalities get added
ask increases.

3 Provably Approximate Algorithms

Perhaps the most straight-forward question that arises
from the above discussion is how to address optimization
problems onn boolean variablesif the conditions for ex-
act optimization stated in Sections 2.2-2.5 arenot satisfied.
Not surprisingly, general formulations of such optimiza-
tion problems have been extensively studied in Theoretical
Computer Science and, in certain cases, polynomial time
approximation schemes are known. In this section, we shall
define the most general formulation of optimization prob-
lems onn boolean variables and we shall briefly review re-
cent, state-of-the-art,provablealgorithmic results for tack-
ling this general formulation. Our goal is to communicate

these recent developments to the Computer Vision commu-
nity, since we believe that some of the algorithmic ideas
developed in the Theoretical Computer Science community
are quite useful in practical settings. Our exposition should
serve as a roadmap to researchers seeking to bridge the gap
between theory and practical applications.

3.1 Defining Max-r-CSP optimization problems
on n Boolean variables

Consider the following optimization problem. We are
givenn boolean variablesx1, x2, . . . , xn ∈ {0, 1} and a set
of m functionsf1, f2, . . . , fm, where each function depends
onat mostr (out ofn) Boolean variables. LetZ be the set of
all 0-1 strings of lengthr – thus,|Z| = 2r, and letA(z) ber-
dimensionaln× n . . .× n︸ ︷︷ ︸

r

arrays for all 0-1 stringsz ∈ Z.

To understand what these arrays represent, consider a spe-
cific r-dimensional arrayA(z), z = 0 . . . 0︸ ︷︷ ︸

r

. The(i1, . . . , ir)

element of this array represents the value of a function on
the variablesxi1 , . . . , xir

whenxi1 = 0, . . . , xir
= 0; if

none of thef1, . . . , fm is a function of these variables, then
this entry ofA(z) is zero. LetP (x) = P (x1, . . . , xn) be the
polynomial

P (x) =
∑
z∈Z

n∑
i1,...,ir=1

A(z)(i1, . . . , ir)
∏

xi:zi=1

xi

∏
xi:zi=0

(1−xi)

Notice that the term
∏

xi:zi=1 xi

∏
xi:zi=0(1 − xi) deter-

mines whether the entries of anr-dimensional arrayA(z)

contribute to the value ofP (x), depending on the values
assumed by thexi’s. We now define the following opti-
mization problem:

OPT= max
x∈{0,1}n

P (x). (7)

It is easy to see that the above definition is a generalization
of the optimization problems defined for the energy func-
tions of Sections 2.2-2.4, where restrictive constraints were
placed on the entries of ther-dimensional arraysA(z). The
unconstrainedoptimization problem (7) is NP-hard, as well
as Max-SNP hard [21]. Thus, unlessP = NP , no poly-
nomial time approximation schemes (PTAS) exist for this
problem. We also note that any problem in the class Max-
SNP can be formulated as a Max-r-CSP problem for some
constantr. (Recall that a PTAS is an algorithm that for ev-
ery fixedε > 0 achieves an approximation ratio of1− ε in
time which ispoly(n) but perhaps exponential in1/ε. Such
a scheme is a fully polynomial time approximation scheme
(FPTAS) if the running time ispoly(n, 1/ε).)
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3.2 An easy algorithm for dense instances of Max-
r-CSP problems

In an important paper, Alonet. al. [1, 2] presented a
simple PTAS for a special class of Max-r-CSP problems.
Given the optimization problem of equation (7) onn vari-
ables, sampleuniformly at randomc variables, thus creating
a new,induced, optimization problem. We notice thatc is a
constant, independent ofn, to be specified shortly. Let

Pc(x) =
∑
z∈Z

c∑
i1,...,ir=1

A(z)
c (i1, . . . , ir)

∏
xi:zi=1

xi

∏
xi:zi=0

(1−xi)

In the above formula,A(z)
c is the inducedc× . . .× c︸ ︷︷ ︸

r

sub-

matrix of A(z) that emerges by keeping the elements that
correspond to thec sampled variables. [1, 2] prove that
solving the optimization problem

Z = max
x∈{0,1}c

Pc(x), (8)

returns a solutionZ such that, with high probability,∣∣∣∣nr

qr
Z −OPT

∣∣∣∣ ≤ εnrWmax, (9)

for anyε > 0, if c = poly(1/ε), independent ofn. Here we
assume thatWmax is a constant – independent ofn – that
denotes the maximal entry in the arraysA(z). A simple ap-
plication of the probabilistic method (see, e.g., [27]) shows
that if all theA(z) aredenseand their entries areΩ(1), i.e.,
eachA(z) contains at leastΩ(nr) non-zero elements, then
OPT = Ω(nr), and thus equation (9) proves the existence
of a FPTAS fordenseinstances of Max-r-CSP problems.
Finally, we note that solving the optimization problem of
equation (8) is straight-forward, sincec is independent of
n; for more details see [1, 2].

3.3 Other PTAS for dense instances of Max-r-CSP
problems

To make the following discussion more concrete, we
shall have as a running example a specific, well-known,
Max-2-CSP problem, the Max-Cut problem. The Max-Cut
problem is one of the most well studied problems in Theo-
retical Computer Science, and, along with numerous other
graph and combinatorial problems, is contained in the Max-
2-CSP class of problems [21]. In the weighted version of
the Max-Cut problem, the input consists of then × n ad-
jacency matrixA of an undirected graphG = (V,E) with
n vertices, and the objective of the problem is to find a cut,
i.e., a partition of the vertices into two subsetsV1 andV2,
such that the sum of the weights of the edges ofE that have

one endpoint inV1 and one endpoint inV2 is maximized. In
the format of equation (7),

MAX-CUT [G] = max
x∈{0,1}n

n∑
i,j=1

A(10)(i, j)xi(1− xj)

The Max-Cut problem has applications in such diverse
fields as statistical physics and circuit layout design [7] and
has been extensively studied theoretically [29, 19]. It is
known to beNP -hard, both for general graphs and when
restricted to dense graphs [3], where a graph onn ver-
tices is dense if it containsΩ(n2) edges. Thus, much effort
has gone into designing and analyzing approximation algo-
rithms for the Max-Cut problem. It is known that there ex-
ists a 0.878-approximation algorithm [19]; it is also known
from the PCP results of Aroraet. al. [4] that (unlessP =
NP ) there exists a constantα, bounded away from1, such
that there does not exist a polynomial timeα-approximation
algorithm. In particular, this means that there does not ex-
ist a polynomial time approximation scheme (PTAS) for the
general Max-Cut problem.

Work originating with [3] has focused on designing
PTASs for the Max-Cut problem, as well as larger classes
of NP -hard optimization problems, such as the Max-2-CSP
or the Max-r-CSP class of problems, when the problem in-
stances aredense[3, 11, 17, 20, 18, 1, 2]. An instance of a
Max-r-CSP problem is considered dense ifΩ(nr) entries in
A(z) are non-zero forall z ∈ Z. Intuitively, all the matrices
A(z) must be dense.

[3] and [11], using quite different methods, designed ap-
proximation algorithms for Max-Cut that achieve an addi-
tive error ofεn2Wmax (whereε > 0, ε ∈ Ω(1) is an error
parameter, andWmax is the maximal edge weight in the
graphG) in timepoly(n) (and exponential in1/ε). This re-
sults implies relative error for dense instances of such prob-
lems, since, using the probabilistic method [27], it is easy
to prove that a graph withΩ(n2) edges has a cut contain-
ing at leastΩ(n2) edges. [3] can be extended to solve all
Max-r-CSP optimization problems with an additive error
εnrWmax, whereWmax is the maximal entry in any of the
matricesA(z).

In [20] it was shown that a constant-sized (with respect
to n) sample of a graph is sufficient to determine whether a
graph has a cut close to a certain value. This work investi-
gated dense instances ofNP -hard problems from the view-
point of query complexity and property testing and yielded
an O(1/ε5) time algorithm to approximate, among other
problems, dense instances of Max-Cut. [17] and [18] exam-
ined the regularity properties of dense graphs and developed
a new method to approximate matrices; this led to a PTAS
for dense instances of all Max-2-CSP, and more generally
for dense instances of all Max-r-CSP, problems, assum-
ing that all entries in theA(z)’s areΩ(Wmax). Finally, we
note that it has been recently shown that there does exist a
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PTAS for Max-Cut and all Max-2-CSP problems restricted
to slightly subdense, i.e.,Ω(n2/ log n) edges, graphs [12].

3.4 Uniform vs. importance sampling

All the approximation algorithms of Section 3.3 involve
sampling elements of the input uniformly at random in order
to construct a sub-problem, which is then used to compute
an approximation to the original problem with additive er-
ror at mostεnrWmax [3, 11, 17, 20, 18, 1, 2]. Such methods
are clearly not useful for nondense graphs, since with such
an error bound a trivial approximate solution (zero) would
always suffice. Uniform sampling does have the advantage
that it can be carried out “blindly” since the “coins” can
be tossed before seeing the data. Subsequently, given either
random access or one pass, i.e., one sequential read, through
the data, samples from the data may be drawn and then used
to compute. Such uniform sampling is appropriate for prob-
lems that have nice uniformity or regularity properties [17].

With the additional flexibility of several passes over the
data, we mayuse one pass to assess the “importance” of a
piece (or set of pieces) of dataand determine the probabil-
ity with which it (or they) should be sampled, and a second
pass to actually draw the sample. Such importance sam-
pling has a long history [25]. The power of using infor-
mation to construct nonuniform sampling probabilities has
also been demonstrated in recent work examining so-called
oblivious versus so-called adaptive sampling [5, 6]. For in-
stance, it was proven that in certain cases approximation
algorithms (for matrix problems such as those discussed in
[13, 14, 15]) which use oblivious uniform sampling can-
not achieve the error bounds that are achieved by adaptively
constructing nonuniform sampling probabilities.

In [16], a PTAS is presented for all dense Max-2-CSP
problems, using nonuniform sampling probabilities in the
construction of the sub-problem to be solved. The use of
these methods improved previous results [20, 2]. To un-
derstand this result, we again focus on the Max-Cut prob-
lem. Let A be then × n adjacency matrix of a graph
G = (V,E), let ε be a constant independent ofn, and recall
that ‖A‖2F =

∑
ij A2

ij . The algorithm of [16], upon being
input A, returns an approximationZ to the Max-Cut ofA
such that with high probability

|Z −MAX-CUT [A]| ≤ εn ‖A‖F . (10)

The algorithm makes a small constant number of passes,
i.e., sequential reads, through the matrixA and then uses ad-
ditional space and time that is independent ofn in order to
compute the approximation. Judiciously-chosen and data-
dependent nonuniform probability distributions are used in
the sampling process in order to obtain bounds of the form
(10). The approach of [16] is quite intuitive and seems to
provide a first step towards a simple, practical algorithm:

pick a constant number – polynomially dependent in1/ε
– of boolean variables, and maximize the induced polyno-
mial. However, the boolean variables should be picked with
non-uniform probabilities, i.e., they they should be picked
with probabilities that depend on the influence of the vari-
ables on the function output. To make this point clearer, it is
useful to think of Max-Cut: instead of solving Max-Cut on
an induced subgraph of vertices that are chosen uniformly
at random, we should pick the vertices with non-uniform
probabilities that depend on theirdegrees.

To assess the quality of the error bound (10), we again
focus on the Max-Cut problem; our observations general-
ize to all problems in Max-2-CSP. Notice that in general√

2 |E| = ‖A‖F < n, where|E| is the cardinality of the
edge set of an unweighed graphG. In this case, the error
bound (10) becomesεn

√
2 |E|. This is an improvement

over the previous results ofεn2 [20, 2].
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