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Abstract contributions of this paper are the following:
The recent explosion of interest in graph cut methods in 1+ Whatis possible in the case of exact minimization.
computer vision naturally spawns the question: what en-

ergy functions can be minimized via graph cuts? This ques- (2) A purely algebraic, and hence simplified, proof

of the regularity results of Kolmogorov and

tion was first attacked by two papers of Kolmogorov and . 2 3
. ) ) i _ ) . Zabih [23, 24], for the caseB“ and F>.
Zabih [23, 24], in which they dealt with functions with pair- [ ] | e i F
wise and triplewise pixel interactions. In this work, we (b) AQ extension of these algebraic methods to the
extend their results in two directions. First, we examine F" case, and a discussion of the relationship

of these results to known results on submodular

the case ofk-wise pixel interactions; the results are de- >
functions.

rived from a purely algebraic approach. Second, we dis-
cuss the applicability of provably approximate algorithms.
Both of these developments should help researchers best un-
derstand what can and cannot be achieved when designing
graph cut based algorithms.

2. What is possible in the case of provably approxi-
mate minimization. It is well known that minimiza-
tion of an arbitrary function of. discrete variables is
an NP-complete problem. However, NP-completeness
doesn't tell the whole story: provably approximate so-
lutions are also acceptable in computer vision. Indeed,
in many applications in which the label set is of size

1 Introduction greater than 2, one has to resort to the use of iterations

of “large moves” such aa-expansions ot-5 swaps

[10], which are in fact approximations to the energy

minimization. The idea is to sequentially minimize a

Keywords: energy minimization, graph cuts.

Since the early papers of Boykat al. [9], there has
been an explosion of interest in using combinatorial meth- _ ) 1
ods for energy minimization within computer vision. In number of functions of binary variables exactly; such a
particular, the techniques used are based on solving for ~ Pinary minimization is called a large move. However,
the minimum cut across a graph. These techniques have ~ While the binary minimizations are exact, the overall
spawned so much interest because they are effective: they ~ Minimization is approximate (with provable bound —
allow for high quality optimization of a fairly wide variety see [10] for details). As algorithms based on these
of functions, in polynomial time. As a result, they have seen large moves are approximate in any case, adding in an
use in a number of different computer vision applications, extra level of approximation for the large move itself
including stereo [22], motion [10], and segmentation [8]. (i.e. the binary minimization) is not unreasonable.

A natural and important question arises: what functions The remainder of the paper is organized as follows. In

can be minimized via graph cuts? The papers by Kolo- gation 2, we investigate what can be said about exact al-
mogorov and Zabih 23, 24] made good headway in attaCk'_gorithms. In Section 3, we turn to the problem of provably
ing this problem. These papers showed necessary and Sumépproximate algorithms.

cient conditions for the exact minimization of energy func-
tions where there are terms depending on pairs of pixels (the .
so-calledF? class) and where there are terms depending on2 Exact Algorithms

triples of pixels (the so-calle@? class). There are two nat- _ _

ural extensions to this work. The first is characterize what _ I this section, we extend the results of Kolmogorov and
is known aboutk-wise pixel interactions; the second is to Zabih [23, 24] on exact minimization of energy functions

qharaCterize When provably app.r(?Ximate energy minimilza' 1submodular functions were discussed in [24], though not [23]. A more
tion can be achieved. More specifically, the main theoretical thorough discussion of their relation to the problem at hand is given here.




via graph cuts. We begin, in Section 2.1, by laying out a  We may now turn to the issue of the linear terfisNote
useful theorem on the types pairwise functions that can bethat
minimized via graph cut constructions. Using this simple

result, the rest of the section is posed in an entirely algebraic L' = Z a;i +c

manner, without explicit reference to graphs. In Section 2.2, i

we §h0_w how the regulgrlty condmgns can be dgrlved very = Z alx; + Z lah|(1 — ) + ¢
easily in the case of pairwise functions; in Section 2.3, we il >0 iral <0

use a somewhat longer proof for the triplewise case. Al-

though both of these results have already been proven inThus, we can add such terms into the graph formulation by
[23, 24], our proofs serve two purposes: they are simplified, simply adding in source (S) and sink (T) nodes, where S
purely algebraic proofs, making them easier to parse; andcorresponds to 0 and T corresponds to 1. In this case, for
they show how these ideas can be generalized té-thise eachi for whicha > 0, we add in an edge from the node
case, which we do in Section 2.4. In Section 2.5, we dis- 7 to S with weighta/; and for each for whicha; < 0, we
cuss the relationship of our conditions to the submodularity add in an edge from the nodeo T with weight|a;|. All
conditions. of these weights are non-negative, and thus we can apply

graph cut techniques to optimize in polynomial timed

2.1 A Useful Theorem _
2.2 Recasting ther? Case

We begin by stating a theorem which is very important ) ) . o
in the subsequent work. We note that this theorem is gen- Before going on to discuss thiewise case, we will dis-

erally considered to be part of combinatorial optimization CUSS the simpler pairwise and triplewise cases. Of course,
folklore, and a version of it may be found in [28]. the results for these cases have already been demonstrated

in [23, 24]; however, we use the same approach here as we
do for thek-wise case, so it is worth reviewing these cases.
(We also believe that the proofs presented here, which are
purely algebraic, are simpler than those in [23, 24].)

The class of energy functions belongingZ3 includes
all those with pairwise pixel interactions, i.e.

E(xy,...,2y) = ZEZ(CQ) + ZEij(mivmj) 1)
i .3

Theorem 1 Let z; € {0,1} and let E(z1,...,2,) =
>i; aijrivj + L, where L represents terms that are lin-
ear in thex; plus any constants (i.eL = ). a;z; + c).
ThenE can be minimized via graph cut techniques if and
only ifa;; < 0forall 4, j.
Proof: We only prove the “if” direction; a proof of the
“only if” direction may be found in [28]. With a little ma-
nipulation, such at’ can be rewritten as We may now reprove the regularity results of [23, 24] very
simply using Theorem 1. Note that we may write
E=) a.z;,(1—z;)+ L
ZJ =) Eij(ziyaj) = B (L= 2) (1 — xj) + B (1 — 23)a;
10 11

wherea]; = —a;; and the linear terni’ is altered. Ignoring T Eju(l = z) + By,
the linear terml’ for the moment, it is easy to see that mini-
mizing E over the binary variables; is the same as finding
a minimum cut in a complete graph with vertices, one
vertex corresponding to eaef), and edge weights given by
w;; = aj;. The cut itself splits those vertices with = 0 Putting these terms back into equation (1) gives
from those withz; = 1; this is because choosing = 1
andz; = 0 addsa;; to the energy, whereas any other set- E(x1,...,2,) = Z(E?].O + E}jl — Efjl — E}JQ)xixj + L
ting of z; andx; does not ad(zk;j to the energy. It is well i
known, from the theory of combinatorial optimization [28],
that solving min-cut in polynomial time is possible if and Where againL includes terms that are linear in the, as

have that}; > 0, so thata;; < 0. an energy can be minimized via graph cuts if and only if

where B} = Ej(z; = a,z; = B). Similarly, we may
write

00 11 01 10 .
2Note that we would usually set;, = aj;, so thatr; = 0 andz; = Eij + Eij - Eij - Eij <0 Vi,j

1 also yields the same result; this is the distinction between cuts across ) ) »
directed and undirected graphs. which is precisely the regularity condition of [23, 24].



2.3 Recasting ther? Case entire functionE will ultimately be minimized, this step
simply introduces some extra variables to minimize over.

The class of energy functions belongingd includes Now, what ifaii;',j; > 0? In a similar manner to the above,
all those with triplewise pixel interactions, i.e. we can introduce an expansion
_iik=
E(l‘l,...,l‘n) :ZEi(-ri)'i‘ZEij(xiyxj) Eljk = Z al"Xq
i ij aC{ij,k}
+ Z Eiji(xi, xj, Tk) wherez; = 1 — z; (and following the previous convention,
W4k Xa = [[yeq Te-) It can be shown that
Before proving any results, let us introduce some notation. aiik — Z (_1)|a\—\B\Eijk
G i i “ b
reek letters, such asandg, will typically refer to subsets s
of {1,...,n}. We definex, to be[],., z¢. Also, we let .
EZ,J’“ = Bz = 1,i € B). where E/" = Eijk(x‘i. = 0,1 € B). In this case, some
Let us begin by expanding the functid®)x (z;, z;, xx) inspection shows thﬁgk, = —a%. Therefore, ifag’; >0,
in a polynomial series: thena,’; < 0, and (after some manipulation) we can write
Eijk(ajia L, .Tk) - Z a’g Xa Eijk(wi; Zj, (L’k) = mln[&gkmixj + L_l;ikl'ixk + C_l;]kkl'jxk

ac{i,jk} Yijk

. o + @ vy + a9 wyie + a2 ey 4+ L
To solve for the coefficients of the expansiafy*, we can kg AT A+ L
plug in all values of the binary values, leading to 8 equations Note that the variables above argand notz;. This is due
in 8 unknowns. After some algebra, these equations can beo the fact that

solved to yield
y TiTj = (1 — l’l)(l — a?j)

b = (-~ PIEgE = z,2; + linear term+ constant
C .
pea so that any terms of the form;z; can be effectively re-
The functionE; ;; may therefore be written placed byz;z; without affecting the expression (except
- - - through the precise forms of the subquadratic terms, which
Eijp(xi, 2, 01) = apf wixj + ag vy, + af) w we do not care about).

+ a:ﬁjﬁ’;mimﬁk +L Finally, let
i i B ijk i o idk
wherelL is a subquadratic term. bidk = %_k if a5, S 0,
The key step is to convef; ;;,, which is anF? function, ay"” otherwise

into anF? function via the introduction of an extra binary

variabley; ;. In particular, note that Then we have that

LiZjTp = yijirg{%(,l}[(xi +x; + Tk — 2)Yijk] E= aﬁr;i_r_lk Z[bgkml% + b;ikxlxk + bﬂkmjxk
ij
7,
ijk ; il ik ik
If a5, < 0, we may write +b 7k TiYijk + 0 TiYije + 0 Tiije + Lijk]}
ayziwxy, = nél{% 1}[ag’,j(xi + x5 4+ T — 2)yisn] Due to Theorem 1, we can ignore the linear terfs,.
e We also note that since’y = —a’;, we must have that
which therefore gives b7 < 0. Thus, we know that the terms involving thg;

variables satisfy the conditions of Theorem 1 (namely, that
their coefficients be non-positive). Thus, we can look at the
remainder of the function, i.e.

ik
Eiji(z,xj, x) = minfa’

. ijk . ijk .
J T + a3, TiTk + Ay TjTh

Yijk

+ ajg]]zxzynk + agllzxiyijk + ag:xiyijk + L] L L L

. . . . E = b s + b xay + 0w

(L is a modified subquadratic term from tteintroduced Z ig T Tk kT Bk Sk

above.) ThusE; ;. is written as a pairwiseX?) function,

where we have introduced the extra variabjg,. In fact, = Z QijTil;
ij

we must take the minimum oveyr;;,; however, since the

4,3,k



whereg;; = >, bj;’“ In this case, according to Theorem The second step is to convert &¥ function to anr?
1, the conditions under whicfy; < 0 are identical to the  function through the introduction of extra variables; this is
conditions under which the energy can be minimized via precisely analogous to what was done in Section 2.3. Note
graph cut methods. that if || > 2

Using the expressions fai/* anda’/*, a little algebra

shows that X, = max KZ zp — (o] — 1)) ya]
lea

BIF = Bij(0,0,28) + Eyji(1, 1, 23) vl
— Eijk(0,1, ) — Bk (1,0, z) wh_erey,l is the extra binary variable. ., < 0, we may
wherez;, = 0if b/" = a}/* andz;, = 1 otherwise. Thus, ne
Gij = Z[Eijk(o,o,xk) + Eiji(1,1,z) foa = yarél{iél,l} [aa (% ve = (ol = 1)> ya] )
— E’;k(o, Lay) — Eir(1,0,24)] 2) The final step is to use the above fact to note thag, ik

0 for all «, we can combine equations (3) and (5) to yield
It turns out that the condition that; < 0 is precisely the

regularity condition of [23, 24]. To see this, let us introduce E(z1,...,x0) =L+ Y ajziz;+

the notationz_;; = {x,}¢+; ;, and i
PrOJ (. ) — o L .
)= Ha) = iy [ (e i) ]
where we have assumed the;; are fixed, and therefore alal>2 o
have suppressed them on the left-hand side. Then where as usuall, represents linear terms and the constant.
; hus, the minimization of’ can be rewritten as follows:
EPT7(0,0) =Y Eiju(0,0,z1)+ > Eyju(ws,ap, xk} i
k vk min E(z;) = min F(z;, ys)

Ty Ti Yo

The second term does not dependagror ;. Thus using

equation (2)¢;; < 0 becomes where

EP7°9(0,0) + B9 (1,1) — B (0,1) — EX(1,0) < 0 Bwi,ya) = D> D aaeye+ Y aiwiv; + L
ala|>2 Lea )

which is exactly the regularity condition of [23, 24]. ) ) )
We can apply Theorem 1 to this function to discover that

2.4 The GenericF* Case can be minimized by graph cut techniques if
. o < :2< <
We now come to the most generic case of energy func- Ga <0 Va:2<la| <k

tions with k-wise pixel interaCtionS, Iabelleﬂ.k We may P|ugg|ng in the expression f@ra from equation (4) leads

use similar, though perhaps simpler, arguments as in they the following sufficient conditions for minimization @
case ofF? to establish sufficient conditions for a function g graph cut methods:

in * to be minimized via graph cut methods.
The first step is to realize that any function## can be

written as ST ()ellE; <0 Vai2<lal <k (6)
E(x1,...,2,) = > GaXa ©) Aca

ac{l,..,n} |o|<k

where as befor&s = E(z; = 1,¢ € ). The inequalities
of (6) represent the main result of this section of the paper.

Note that an extra argument is invoked in the casgaf
to eliminate the condition that, < 0 for |o| = 3. Such an
argument relied on the fact that an expansion could also be
%erformed on the; variables, wherg; = 1 — z;; it was
then shown that, = —a,, for |a| = 3, so that in this case
- Z(_l)lal—lﬁlEﬁ (4) eithera, < 0 ora, < 0. Unfortunately, this is not true for

k > 3; indeed, fork = 4 we have thati, = a.

where agaix, = [[,c, z¢. This fact can easily be proven,
though we do not do so here. As described in Section 2.3,
we can solve for the coefficients, by means of a linear
system of2* equations ir2* unknowns; the result (whose
precise derivation is omitted here) is the same as in the cas
of 72 functions, i.e.

BCa



2.5 Submodularity these recent developments to the Computer Vision commu-
nity, since we believe that some of the algorithmic ideas
A well known fact from the theory of combinatorial op- developed in the Theoretical Computer Science community
timization is that the class of submodular functions can be are quite useful in practical settings. Our exposition should
optimized in polynomial time [26]. This fact was noted in serve as a roadmap to researchers seeking to bridge the gap
[24] (though not [23]), but we wish to add some further dis- between theory and practical applications.
cussion of these functions here.
SupposeS is a set withn elements. A set-valued func-

fion f + S — R is said to be submodular if 3.1 Defining Max+-CSP optimization problems

on n Boolean variables

FXNY)+f(XUuY)<f(X)+fY) VX, YCS

Consider the following optimization problem. We are
givenn boolean variables; , xo, ..., x, € {0,1} and a set
of m functionsfy, fo, ..., fm, where each function depends
onat most (out ofn) Boolean variables. Lef be the set of
all 0-1 strings of length —thus,| Z| = 2", and letA*) ber-
dimensionah x n ... x n arrays for all 0-1 strings € Z.

N—————’

One can, of course, easily move from set-valued functions
to binary-valued functions, by letting inclusion of element
1 in a set correspond to; = 1, and exclusion ta;; = 0.

We wish to make two comments regarding the relationship
between submodularity and the conditions described here:

1. The relationship between the conditions f6F de-
rived in (6) and submodularity is unknown, but the
conditions are not the same. This can be clearly seen

H N T
from the fact that the submodularity conditions always oo nent of this array represents the value of a function on
involve exactly 4 terms, whereas the inequalities in (6) the variables: . whenz, —= 0 o= 0 if
119 1r 1 T IR Tr 1

can involve more. none of thefi, . .., f., is a function of these variables, then

2. Itis not obvious from inspection as to how to specialize this entry ofA*) is zero. LetP(x) = P(x1,..., ) be the
the submodularity conditions to classes of functions Polynomial
like F*; these conditions will look the same, no matter

how many pixel are allowed to interact. (Of course, the = o .
A ( P@)=Y > A9 [[ « [ G-=)
0

M
To understand what these arrays represent, consider a spe-
cific r-dimensional arrayd*), z = 0...0. The(iy, ..., i,)

number of such conditions applying may decrease, but
the way in which this takes place is also not obvious
from inspection.) The new conditions, by contrast, re-
late to precisely the function class&$ which are rel-
evant for computer vision; in many vision applications,
the number of interacting pixelsis fixed. Thus, from

a computer vision point-of-view, these conditions are
important. For example, it is clear from the inequali-
ties of (6) precisely which new inequalities get added

ZEZ i1,..,0p=1 Tiiz;=1 XTiizi=

Notice that the tern{[, .. _, =[], .. _o(1 — ;) deter-
mines whether the entries of ardimensional array4(*)
contribute to the value of(z), depending on the values
assumed by the;'s. We now define the following opti-
mization problem:

ask increases. OPT= max P(z). @
ze{0,1}n
3 Provably Approximate Algorithms It is easy to see that the above definition is a generalization

of the optimization problems defined for the energy func-

Perhaps the most straight-forward question that arisestions of Sections 2.2-2.4, where restrictive constraints were
from the above discussion is how to address optimization placed on the entries of thedimensional arraysi(*). The
problems onn boolean variabled the conditions for ex-  unconstraineptimization problem (7) is NP-hard, as well
act optimization stated in Sections 2.2-2.5 ao¢satisfied. as Max-SNP hard [21]. Thus, unlegs= NP, no poly-
Not surprisingly, general formulations of such optimiza- nomial time approximation schemes (PTAS) exist for this
tion problems have been extensively studied in Theoreticalproblem. We also note that any problem in the class Max-
Computer Science and, in certain cases, polynomial timeSNP can be formulated as a MaxSP problem for some
approximation schemes are known. In this section, we shallconstant-. (Recall that a PTAS is an algorithm that for ev-
define the most general formulation of optimization prob- ery fixede > 0 achieves an approximation ratio bf- ¢ in
lems onn boolean variables and we shall briefly review re- time which ispoly(n) but perhaps exponential irye. Such
cent, state-of-the-arprovablealgorithmic results for tack- a scheme is a fully polynomial time approximation scheme
ling this general formulation. Our goal is to communicate (FPTAS) if the running time igoly(n,1/¢).)



3.2 Aneasy algorithm for dense instances of Max-  one endpoint i’y and one endpoint ifr; is maximized. In
r-CSP problems the format of equation (7),

In an important paper, Aloet. al. [1, 2] presented a MAX-CUT [G] = max Z A010) (i, j)ai(1 — 2)
simple PTAS for a special class of Max€SP problems. e€{0. 1} =)
Given the optimization problem of equation (7) arvari-
ables, samplaniformly at randone variables, thus creating
a new,induced optimization problem. We notice thais a
constant, independent of to be specified shortly. Let

The Max-Cut problem has applications in such diverse
fields as statistical physics and circuit layout design [7] and
has been extensively studied theoretically [29, 19]. It is
known to beN P-hard, both for general graphs and when
c restricted to dense graphs [3], where a graphnower-
Poz)=>_ Y AP(,....i,) [ = J] (1-=:) ticesis dense if it contair@(n?) edges. Thus, much effort

2€Z 01,0 ip=1 zizi=1l  wiz=0 has gone into designing and analyzing approximation algo-
rithms for the Max-Cut problem. It is known that there ex-
In the above formulad” is the induced: x . .. x ¢ sub- ists a 0.878-approximation algorithm [19]; it is also known
- from the PCP results of Aroret. al. [4] that (unlessP =

matrix of A(*) that emerges by keeping the elements that N P) there exists a constant bounded away from, such
correspond to the sampled variables. [1, 2] prove that thatthere does not exist a polynomial time@pproximation

solving the optimization problem algorithm. In particular, this means that there does not ex-
ist a polynomial time approximation scheme (PTAS) for the
Z = Jnax P(z), (8)  general Max-Cut problem.
' Work originating with [3] has focused on designing
returns a solutior¥ such that, with high probability, PTASs for the Max-Cut problem, as well as larger classes
of N P-hard optimization problems, such as the MRGSP

©) or the Max#-CSP class of problems, when the problem in-
stances ardensd3, 11, 17, 20, 18, 1, 2]. Aninstance of a
Max-r-CSP problem is considered dens@{f»") entries in

foranye > 0, if ¢ = poly(1/e), independent ok. Here we  4(2) are non-zero foall z € Z. Intuitively, all the matrices
assume thally,,x is a constant — independent of- that A® must be dense.

Ly OPT‘ < en" Winax,
q”‘

denotes the maximal entry in the arrays”. A simple ap- [3] and [11], using quite different methods, designed ap-
plication of the probabilistic method (see, e.g., [27]) shows proximation algorithms for Max-Cut that achieve an addi-
that if all the A*) aredenseand their entries ar(1), .., tive error ofen? Wiy (Wheree > 0, € € (1) is an error

eachA(®) contains at leas®(n") non-zero elements, then parameter, andV,,.. is the maximal edge weight in the
OPT = Q(n"), and thus equation (9) proves the existence graph() in time poly(n) (and exponential in /¢). This re-
of a FPTAS fordenseinstances of Max-CSP problems.  syits implies relative error for dense instances of such prob-
Finally, we note that solving the optimization problem of |ems, since, using the probabilistic method [27], it is easy
equation (8) is Straight-forward, sinegs independent of to prove that a graph Wltm(n2) edges has a cut contain-
n; for more details see [1, 2]. ing at least)(n?) edges. [3] can be extended to solve all
Max-r-CSP optimization problems with an additive error
3.3 Other PTAS for dense instances of Max-CSP en” Winax, WhereW,,.. is the maximal entry in any of the
problems matricesA ).
In [20] it was shown that a constant-sized (with respect
To make the following discussion more concrete, we ton) sample of a graph is sufficient to determine whether a
shall have as a running example a specific, well-known, graph has a cut close to a certain value. This work investi-
Max-2-CSP problem, the Max-Cut problem. The Max-Cut gated dense instances8fP-hard problems from the view-
problem is one of the most well studied problems in Theo- point of query complexity and property testing and yielded
retical Computer Science, and, along with numerous otheran O(1/¢°) time algorithm to approximate, among other
graph and combinatorial problems, is contained in the Max- problems, dense instances of Max-Cut. [17] and [18] exam-
2-CSP class of problems [21]. In the weighted version of ined the regularity properties of dense graphs and developed
the Max-Cut problem, the input consists of thex n ad- a new method to approximate matrices; this led to a PTAS
jacency matrixA of an undirected grapty’ = (V, E) with for dense instances of all Max-2-CSP, and more generally
n vertices, and the objective of the problem is to find a cut, for dense instances of all MaxCSP, problems, assum-
i.e., a partition of the vertices into two subsétsand V5, ing that all entries in thet(®)’s areQ(Whax). Finally, we
such that the sum of the weights of the edge& dfat have note that it has been recently shown that there does exist a



PTAS for Max-Cut and all Max-2-CSP problems restricted pick a constant number — polynomially dependent jia

to slightly subdense, i.eQ(n?/logn) edges, graphs [12]. - of boolean variables, and maximize the induced polyno-
mial. However, the boolean variables should be picked with
3.4 Uniform vs. importance sampling non-uniform probabilities, i.e., they they should be picked

with probabilities that depend on the influence of the vari-

All the approximation algorithms of Section 3.3 involve ables on the function output. To make this point clearer, it is
sampling elements of the input uniformly at random in order useful to think of Max-Cut: instead of solving Max-Cut on
to construct a sub-problem, which is then used to computean induced subgraph of vertices that are chosen uniformly
an approximation to the original problem with additive er- at random, we should pick the vertices with non-uniform
ror at moskn” W« [3, 11, 17, 20, 18, 1, 2]. Such methods probabilities that depend on thelegrees
are clearly not useful for nondense graphs, since with such To assess the quality of the error bound (10), we again
an error bound a trivial approximate solution (zero) would focus on the Max-Cut problem; our observations general-
always suffice. Uniform sampling does have the advantageize to all problems in Max-2-CSP. Notice that in general
that it can be carried out “blindly” since the “coins” can +/2|E| = ||A||» < n, where|E] is the cardinality of the
be tossed before seeing the data. Subsequently, given eithegdge set of an unweighed graph In this case, the error
random access or one pass, i.e., one sequential read, througdound (10) becomesn+/2|E|. This is an improvement
the data, samples from the data may be drawn and then usedver the previous results ef.? [20, 2].
to compute. Such uniform sampling is appropriate for prob-
Iems_that have r_1i_ce unifor_m?t_y or regularity properties [17]. Acknowledgments
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