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Randomization offers new benefits  
for large-scale linear algebra computations.

BY PETROS DRINEAS AND MICHAEL W. MAHONEY

M ATRICES ARE UBIQUITOUS in computer science, 
statistics, and applied mathematics. An m × n 
matrix can encode information about m objects 
(each described by n features), or the behavior of a 
discretized differential operator on a finite element 
mesh; an n × n positive-definite matrix can encode 
the correlations between all pairs of n objects, or the 
edge-connectivity between all pairs of nodes in a social 
network; and so on. Motivated largely by technological 
developments that generate extremely large scientific 
and Internet datasets, recent years have witnessed 
exciting developments in the theory and practice of 
matrix algorithms. Particularly remarkable is the use of 
randomization—typically assumed to be a property of the 
input data due to, for example, noise in the data

generation mechanisms—as an algo-
rithmic or computational resource for 
the develop ment of improved algo-
rithms for fundamental matrix prob-
lems such as matrix multiplication, 
least-squares (LS) approximation, low-
rank matrix approxi mation, and Lapla-
cian-based linear equ ation solvers.

Randomized Numerical Linear 
Algebra (RandNLA) is an interdisci-
plinary research area that exploits 
randomization as a computational 
resource to develop improved algo-
rithms for large-scale linear algebra 
problems.32 From a foundational per-
spective, RandNLA has its roots in 
theoretical computer science (TCS), 
with deep connections to mathemat-
ics (convex analysis, probability theory, 
metric embedding theory) and applied 
mathematics (scientific computing, 
signal processing, numerical linear 
algebra). From an applied perspec-
tive, RandNLA is a vital new tool for 
machine learning, statistics, and data 
analysis. Well-engineered implemen-
tations have already outperformed 
highly optimized software libraries 
for ubiquitous problems such as least-
squares,4,35 with good scalability in par-
allel and distributed envi ronments.52 
Moreover, RandNLA promises a sound 
algorithmic and statistical foundation 
for modern large-scale data analysis.

RandNLA: 
Randomized 
Numerical 
Linear 
Algebra

 key insights
 ˽ Randomization isn’t just used to model 

noise in data; it can be a powerful 
computational resource to develop 
algorithms with improved running 
times and stability properties as well as 
algorithms that are more interpretable in 
downstream data science applications.

 ˽ To achieve best results, random sampling 
of elements or columns/rows must be done 
carefully; but random projections can be 
used to transform or rotate the input data 
to a random basis where simple uniform 
random sampling of elements or rows/
columns can be successfully applied.

 ˽ Random sketches can be used directly 
to get low-precision solutions to data 
science applications; or they can be used 
indirectly to construct preconditioners for 
traditional iterative numerical algorithms 
to get high-precision solutions in 
scientific computing applications.

http://dx.doi.org/10.1145/2842602
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An Historical Perspective
To get a broader sense of RandNLA, recall 
that linear algebra—the mathematics 
of vector spaces and linear mappings 
between vector spaces—has had a long 
history in large-scale (by the standards 
of the day) statistical data analysis.46 For 
example, the least-squares method is 
due to Gauss, Legendre, and others, and 
was used in the early 1800s for fitting 
linear equations to data to determine 
planet orbits. Low-rank approximations 
based on Principal Component Analysis 
(PCA) are due to Pearson, Hotelling, and 
others, and were used in the early 1900s 
for exploratory data analysis and for 
making predictive models. Such meth-
ods are of interest for many reasons, but 
especially if there is noise or random-
ness in the data, because the leading 
principal components then tend to cap-
ture the signal and remove the noise.

With the advent of the digital com-
puter in the 1950s, it became apparent 
that, even when applied to well-posed 
problems, many algorithms performed 
poorly in the presence of the finite pre-
cision that was used to represent real 
numbers. Thus, much of the early work 
in computer science focused on solving 
discrete approximations to continu-
ous nu merical problems. Work by Turing 
and von Neumann (then Householder, 
Wilkinson, and others) laid much of the 
foundations for scientific computing and 
NLA.48,49 Among other things, this led to 
the introduction of problem- specific 
complexity measures (for example, the 
condition number) that characterize 
the beh avior of an input for a specific 
class of algorithms (for example, itera-
tive algorithms).

A split then occurred in the nascent 
field of computer science. Continuous 

linear algebra became the domain of 
applied mathematics, and much of 
computer science theory and prac-
tice became discrete and combina-
torial.44 Nearly all subsequent work 
in scientific computing and NLA 
has been deterministic (a notable 
exception being the work on integral 
evaluation using the Markov Chain 
Monte Carlo method). This led to 
high-quality codes in the 1980s and 
1990s (LINPACK, EISPACK, LAPACK, 
ScaLAPACK) that remain widely used 
today. Meanwhile, Turing, Church, 
and others began the study of compu-
tation per se. It became clear that sev-
eral seemingly different approaches 
(recursion theory, the λ-calculus, and 
Turing machines) defined the same 
class of functions; and this led to the 
belief in TCS that the concept of com-
putability is formally captured in a 
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between geography and genetics, 
there are several weaknesses of PCA/
SVD-based methods. One is running 
time: computing PCA/SVD approxi-
mations of even moderately large 
data matrices is expensive, especially 
if it needs to be done many times as 
part of cross validation or exploratory 
data analysis. Another is interpret-
ability: in general, eigenSNPs (that 
is, eigenvectors of individual- by-SNP 
matrices) as well as other eigenfea-
tures don’t “mean” anything in terms 
of the processes generating the data. 
Both issues have served as motiva-
tion to design RandNLA algorithms 
to compute PCA/SVD approximations 
faster than conventional numerical 
methods as well as to identify actual 
features (instead of eigenfeatures) 
that might be easier to interpret for 
domain scientists.

qualitative and robust way by these 
three equivalent approaches, inde-
pendent of the input data. Many of 
these developments were determin-
istic; but, motivated by early work on 
the Monte Carlo method, random-
ization—where the randomness is 
inside the algorithm and the algorithm 
is applied to arbitrary or worst-case 
data—was introduced and exploited 
as a powerful computational resource.

Recent years have seen these two 
very different perspectives start to 
converge. Motivated by modern mas-
sive dataset problems, there has been 
a great deal of interest in developing 
algorithms with improved running 
times and/or improved statistical 
properties that are more appropriate 
for obtaining insight from the enor-
mous quantities of noisy data that is 
now being generated. At the center of 

these developments is work on novel 
algorithms for linear algebra prob-
lems, and central to this is work on 
RandNLA algorithms.a In this article, 
we will describe the basic ideas that 
underlie recent developments in this 
interdisciplinary area.

For a prototypical data analysis 
example where RandNLA methods 
have been applied, consider Figure 
1, which illustrates an application 
in genetics38 (although the same 
RandNLA methods have been applied 
in astronomy, mass spectrometry 
imaging, and related areas33,38,53,54). 
While the low-dimensional PCA plot 
illustrates the famous correlation 

a Avron et al., in the first sentence of their 
Blendenpik paper, observe that RandNLA is 
“arguably the most exciting and innovative 
idea to have hit linear algebra in a long time.”4

Figure 1. (a) Matrices are a common way to model data. In genetics, for example, matrices can describe data from tens of thousands of  
individuals typed at millions of Single Nucleotide Polymorphisms or SNPs (loci in the human genome). Here, the (i, j)th entry is the genotype 
of the ith individual at the jth SNP. (b) PCA/SVD can be used to project every individual on the top left singular vectors (or “eigenSNPs”), 
thereby providing a convenient visualization of the “out of Africa hypothesis” well known in population genetics.

Single Nucleotide Polymorphmisms (SNPs)

in
di

vi
du

al
s

… AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …

Africa Middle East

EuropeOceania

M
ex

ic
an

s
South Central Asia

America

East Asia

0.02

(a)

(b)

0

–0.02

–0.04

–0.06

–0.08

–0.1

–0.03

–0.02

–0.01

0

0.01

0.02
–0.03

–0.02
–0.01

EigenSNP 2EigenSNP 1

E
ig

en
S

N
P

 3

0
0.01

0.02
0.03

AFRICA
AMERICA
CENTRAL SOUTH ASIA
EAST ASIA
EUROPE
GUJARATI
MEXICANS
MIDDLE EAST
OCEANIA



JUNE 2016  |   VOL.  59  |   NO.  6  |   COMMUNICATIONS OF THE ACM     83

review articles

Basic RandNLA Principles
RandNLA algorithms involve taking an 
input matrix; constructing a “sketch” 
of that input matrix—where a sketch 
is a smaller or sparser matrix that rep-
resents the essential information in 
the original matrix—by random sam-
pling; and then using that sketch as 
a surrogate for the full matrix to help 
compute quantities of interest. To be 
useful, the sketch should be similar 
to the original matrix in some way, for 
example, small residual error on the 
difference between the two matrices, 
or the two matrices should have simi-
lar action on sets of vectors or in down-
stream classification tasks. While 
these ideas have been developed in 
many ways, several basic design prin-
ciples underlie much of RandNLA: 
(i) randomly sample, in a careful 
 data-dependent manner, a small num-
ber of elements from an input matrix 
to create a much sparser sketch of the 
original matrix; (ii) randomly sample, 
in a careful data-dependent manner, a 
small number of columns and/or rows 
from an input matrix to create a much 
smaller sketch of the original matrix; 
and (iii) preprocess an input matrix 
with a random- projection-type matrix, 
in order to “spread out” or uniformize 
the information in the original matrix, 
and then use naïve data-independent 
uniform sampling of rows/columns/
elements in order to create a sketch.

Element-wise sampling. A naïve way 
to view an m × n matrix A is an array of 
numbers: these are the mn elements 
of the matrix, and they are denoted by 
Aij (for all i = 1, . . ., m and all j = 1, . . ., n). 
It is therefore natural to consider the 
following approach in order to create 
a small sketch of a matrix A: instead 
of keeping all its elements, randomly 
sample and keep a small number of 
them. Algorithm 1 is a meta-algorithm 
that samples s elements from a matrix 
A in independent, identically distrib-
uted trials, where in each trial a single 
element of A is sampled with respect to 
the importance sampling probability 
distribution pij. The algorithm outputs 
a matrix Ã that contains precisely the 
selected elements of A, after appropriate 
rescaling. This rescaling is fundamental 
from a statistical perspective: the sketch 
Ã is an estimator for A. This rescaling 
makes it an unbiased estimator since, 
element-wise, the expectation of the 

estimator matrix Ã is equal to the origi-
nal matrix A.

Algorithm 1 A meta-algorithm for  
element-wise sampling

Input: m × n matrix A; integer s > 0 
denoting the number of elements to  
be sampled; probability distribution pij 
(i = 1, . . ., m and j = 1, . . ., n) with ∑i, j pij = 1.

1. Let Ã be an all-zeros m × n matrix.

2. For t = 1 to s,

•• Randomly sample one element 
of A using the probability dis-
tribution pij.

•• Let Ait  jt
 denote the sampled 

element and set

  (1)

Output: Return the m × n matrix Ã.

How to sample is, of course, very 
important. A simple choice is to per-
form uniform sampling, that is, set pij 
= 1/mn, for all i, j, and sample each ele-
ment with equal probability. While sim-
ple, this suffers from obvious problems: 
for example, if all but one of the entries 
of the original matrix equal zero, and 
only a single non-zero entry exists, then 
the probability of sampling the single 
non-zero entry of A using uniform sam-
pling is negligible. Thus, the estimator 
would have very large variance, in which 
case the sketch would, with high prob-
ability, fail to capture the relevant struc-
ture of the original matrix. Qualitatively 
improved results can be obtained by 
using nonuniform data-dependent 
impor tance sampling distributions. For 
example, sampling larger elements (in 
absolute value) with higher probability 
is advantageous in terms of variance 
reduction and can be used to obtain 
worst-case additive-error bounds for 
low-rank matrix approximation.1,2,18,28 
More elaborate probability distribu-
tions (the so-called element-wise lever-
age scores that use information in the 
singular subspaces of A10) have been 
shown to provide still finer results.

The first results for Algorithm 12 
showed that if one chooses entries 
with probability proportional to their 
squared-magnitudes (that is, if 

 in which case larger 
magnitude entries are more likely to 
be chosen), then the sketch Ã is similar 

to the original matrix A, in the sense that 
the error matrix, A − Ã, has, with high 
probability, a small spectral norm. 
A more refined analysis18 showed that

 

 (2)
where ×2 and ×F are the spectral and 
Frobenius norms, respectively, of the 
matrix.b If the spectral norm of the dif-
ference A − Ã is small, then Ã can be 
used as proxy for A in applications. For 
example, one can use Ã to approximate 
the spectrum (that is, the singular val-
ues and singular vectors) of the origi-
nal matrix.2 If s is set to be a constant 
multiple of (m + n) ln (m + n), then the 
error scales with the Frobenius norm 
of the matrix. This leads to an additive-
error low-rank matrix approximation 
algorithm, in which AF is the scale 
of the additional additive error.2 This 
is a large scaling factor, but improving 
upon this with element-wise sampling, 
even in special cases, is a challenging 
open problem.

The mathematical techniques used  
in the proof of these element-wise sam-
pling results exploit the fact that the resid-
ual matrix A − Ã is a random matrix whose 
entries have zero mean and bounded 
variance. Bounding the spectral norm 
of such matrices has a long history in 
random matrix theory.50 Early RandNLA 
element-wise sampling bounds2 used 
a result of Füredi and Komlós on the 
spectral norm of symmetric, zero mean  
matrices of bounded variance.20 Sub-
sequently, Drineas and Zouzias18 intro-
duced the idea of using matrix measure 
concentration inequalities37,40,47 to sim-
plify the proofs, and follow-up work18 
has improved these bounds.

Row/column sampling. A more sop-
histicated way to view a matrix A is as 
a linear operator, in which case the 
role of rows and columns becomes 
more central. Much RandNLA research 
has focused on sketching a matrix by 
keeping only a few of its rows and/or 

b In words, the spectral norm of a matrix measures 
how much the matrix elongates or deforms the 
unit ball in the worst case, and the Frobenius 
norm measures how much the matrix elongates 
or deforms the unit ball on average. Sometimes 
the spectral norm may have better properties 
especially when dealing with noisy data, as dis-
cussed by Achlioptas and McSherry.2
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When using norm-squared sampling, 
one can prove that

  (5)

holds in expectation (and thus, by 
standard arguments, with high prob-
ability) for arbitrary A.13,19,d The proof  
of Equation (5) is a simple exercise 
using basic properties of expecta-
tion and var iance. This result can 
be generalized to approximate the 
product of two arbitrary matrices A 
and B.13 Proving such bounds with 
respect to other matrix norms is 
more challenging but very important 
for RandNLA. While Equation (5) 
trivially implies a bound for AT A − 
ÃT Ã2, proving a better spectral norm 
error bound necessitates the use of 
more sophisticated methods such as 
the Khintchine inequality or matrix-
Bernstein inequalities.42,47

Bounds of the form of Equation (5) 
immediately imply that Ã can be used 
as a proxy for A, for example, in order 
to approximate its (top few) singular 
values and singular vectors. Since Ã is 
an s × n matrix, with s  n, computing 
its singular values and singular vectors 
is a very fast task that scales linearly 
with n. Due to the form of Equation (5), 
this leads to additive-error low-rank 
matrix approximation algorithms, in 
which AF is the scale of the addi-
tional additive error.19 That is, while 
norm-squared sampling avoids pit-
falls of uniform sampling, it results 
in additive-error bounds that are only 
comparable to what element-wise 
sampling achieves.2,19

To obtain stronger and more use-
ful bounds, one needs information 
about the geometry or subspace 
structure of the high-dimensional 
Euclidean space spanned by the 
columns of A (if m  n) or the space 
spanned by the best rank-k approxi-
mation to A (if m ∼ n). This can be 
achieved with leverage score sam-
pling, in which pi is proportional to 

d That is, a provably good approximation to the 
product AT A can be computed using just a few 
rows of A; and these rows can be found by sam-
pling randomly according to a simple data- 
dependent importance sampling distribution. 
This matrix multiplication algorithm can be 
implemented in one pass over the data from 
external storage, using only O(sn) additional 
space and O(s2n) additional time.

columns. This method of sampling 
predates element-wise sampling algo-
rithms,19 and it leads to much stronger 
worst-case bounds.15,16

Algorithm 2 A meta-algorithm for row 
sampling

Input: m × n matrix A; integer s > 0 
denoting the number of rows to be 
sampled; probabilities pi (i = 1, . . ., m) 
with ∑i pi = 1.

1. Let Ã be the empty matrix.

2. For t = 1 to s,

•• Randomly sample one row of 
A using the probability distri-
bution pi.

•• Let Ait∗
  denote the sampled 

row and set

  (3)

Output: Return the s × n matrix Ã.

Consider the meta-algorithm for row 
sampling (column sampling is analo-
gous) presented in Algorithm 2. Much of 
the discussion of Algorithm 1 is relevant 
to Algorithm 2. In particular, Algorithm 
2 samples s rows of A in independent, 
identically distributed trials accord-
ing to the input probabilities pis; and 
the output matrix Ã contains pre-
cisely the selected rows of A, after a 
rescaling that ensures un-biasedness 
of appropriate estimators (for example, 
the exp ectation of ÃT Ã is equal to AT A, 
element-wise).13,19 In addition, uniform 
sampling can easily lead to very poor 
results, but qualitatively improved 
results can be obtained by using non-
uniform, data-dependent, importance 
sampling distributions. Some things, 
however, are different: the dimension 
of the sketch Ã is different than that of 
the original matrix A. The solution is 
to measure the quality of the sketch by 
comparing the difference between the 
matrices AT A and ÃT Ã. The simplest 
nonuniform distribution is known as 2 
sampling or norm-squared sampling, in 
which pi is proportional to square of 
the Euclidean norm of the ith rowc:

  (4)

c We will use the notation Ai*
 to denote the ith 

row of A as a row vector.

Motivated by 
modern massive 
dataset problems, 
there has been 
a great deal 
of interest in 
developing 
algorithms with 
improved running 
times and/or 
improved statistical 
properties that  
are more 
appropriate for 
obtaining insight 
from the enormous 
quantities of noisy 
data now being 
generated.
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the ith leverage score of A. To define 
these scores, for simplicity assume 
that m   n and that U is any m × n 
orthogonal matrix spanning the 
column space of A.e In this case, U T 
U is equal to the identity and UU T = 
PA is an m-dimensional projection 
matrix onto the span of A. Then, the 
importance sampling probablities of 
Equation (4), applied to U, equal

  (6)

Due to their historical importance 
in regression diagnostics and outlier 
detection, the pi’s in Equation (6) are 
known as statistical leverage scores.9,14  
In some applications of RandNLA, the 
largest leverage score is called the 
coherence of the matrix.8,14

Importantly, while one can naïvely 
compute these scores via Equation (6) 
by spending O (mn2) time to compute 
U exactly, this is not necessary.14 Let Π be 
the fast Hadamard Transform as used 
in Drineas et al.14 or the input-sparsity-
time random projection of Refs.12,34,36 
Then, in o(mn2) time, one can compute 
the R matrix from a QR decomposi-
tion of ΠA and from that compute 1 ± ε 
relative-error approximations to all the 
leverage scores.14

In RandNLA, one is typically inter-
ested in proving that

  (7)

either for arbitrary ε ∈ (0, 1) or for some 
fixed ε ∈ (0, 1). Approximate matrix 
multiplication bounds of the form 
of Equation (7) are very important 
in RandNLA algorithm design since 
the resulting sketch Ã preserves rank 
properties of the original data matrix 
A and provides a subspace embedding: 
from the NLA perspective, this is sim-
ply an acute perturbation from the 
original high-dimensional space to 
a much lower dimensional space.22 
From the TCS perspective, this pro-
vides bounds analogous to the usual 
Johnson–Lindenstrauss bounds, 
except that it preserves the geometry 
of the entire subspace.43

e A generalization holds if m ∼ n: in this case, U is 
any m × k orthogonal matrix spanning the best 
rank-k approximation to the column space of 
A, and one uses the leverage scores relative to the 
best rank-k approximation to A.14,16,33

Subspace embeddings were first 
used in RandNLA in a data-aware man-
ner (meaning, by looking at the input 
data to compute exact or approximate 
leverage scores14) to obtain sampling-
based relative-error approximation 
to the LS regression and related low-
rank CX/CUR approximation prob-
lems.15,16 They were then used in a 
data-oblivious manner (meaning, in 
conjuction with a random projection 
as a preconditioner) to obtain projec-
tion-based relative-error approxima-
tion to several RandNLA problems.43 
A review of data-oblivious subspace 
embeddings for RandNLA, including 
its relationship with the early work 
on least absolute deviations regres-
sion,11 has been provided.51 Due to 
the connection with data-aware and 
data-oblivious subspace embeddings, 
approximating matrix multiplication 
is one of most powerful primitives 
in RandNLA. Many error formulae 
for other problems ultimately boil 
down to matrix inequalities, where 
the randomness of the algorithm only 
appears as a (randomized) approxi-
mate matrix multiplication.

Random projections as precon-
ditioners. Preconditioning refers to 

the application of a transformation, 
called the preconditioner, to a given 
problem instance such that the trans-
formed instance is more easily solved 
by a given class of algorithms.f The 
main challenge for sampling-based 
RandNLA algorithms is the construc-
tion of the nonuniform sampling 
probabilities. A natural question 
arises: is there a way to precondition 
an input instance such that uniform 
random sampling of rows, columns, or 
elements yields an insignificant loss in 
approximation accuracy?

The obvious obstacle to sampling 
 uniformly at random from a matrix 
is that the relevant information in the 
matrix could be concentrated on a small 
number of rows, columns, or elements 
of the matrix. The solution is to spread 
out or uniformize this information, so 
that it is distributed almost uniformly 
over all rows, columns, or elements of 
the matrix. (This is illustrated in Figure 
2.) At the same time, the preprocessed 

f For example, if one is interested in iterative algo-
rithms for solving the linear system Ax = b, one 
typically transforms a given problem instance 
to a related instance in which the so-called 
condition number is not too large.

Figure 2. In RandNLA, random projections can be used to “precondition” the input data  
so that uniform sampling algorithms perform well, in a manner analogous to how 
traditional pre-conditioners transform the input to decrease the usual condition number  
so that iterative algorithms perform well (see (a)). In RandNLA, the random projection-
based preconditioning involves uniformizing information in the eigenvectors, rather than 
flattening the eigenvalues (see (b)).
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first two have to do with identifying non-
uniformity structure in the input data; 
and the third has to do with preconditi-
oning the input (that is, uniformizing the 
nonuniformity structure) so uniform ran-
dom sampling performs well. Depending 
on the area in which RandNLA algorithms 
have been developed and/or imple-
mented and/or applied, these principles 
can manifest themselves in very different 
ways. Relatedly, in applications where 
elements are of primary importance 
(for example, recommender systems26), 
element-wise methods might be most 
appropriate, while in applications where 
subspaces are of primary importance 
(for example, scientific computing25), 
column/row-based methods might be 
most appropriate.

Extensions and Applications of 
Basic RandNLA Principles
We now turn to several examples of prob-
lems in various domains where the basic 
RandNLA principles have been used in 
the design and analysis, implementa-
tion, and application of novel algorithms.

Low-precision approximations and 
high-precision numerical implemen-
tations: least-squares and low-rank 
approximation. One of the most fun-
damental problems in linear algebra is 
the least-squares (LS) regression prob-
lem: given an m × n matrix A and an 
m-dimensional vector b, solve

  (8)

where ×2 denotes the 2 norm of a vec-
tor. That is, compute the n-dimensional 
vector x that minimizes the Euclidean 
norm of the residual Ax − b.h If m  n, 
then we have the overdetermined (or 
overconstrained) LS problem, and its 
solution can be obtained in O(mn2) 
time in the RAM model with one of 
several methods, for example, solving 
the normal equations, QR decomposi-
tions, or the SVD. Two major successes 
of RandNLA concern faster (in terms 
of low-precision asymptotic worst-case 
theory, or in terms of high-precision 
wall-clock time) algorithms for this 
ubiquitous problem.

h Observe this formulation includes as a special 
case the problem of solving systems of linear 
equations (if m = n and A has full rank, then 
the resulting system of linear equations has a 
unique solution).

matrix should have similar properties 
(for example, singular values and singu-
lar vectors) as the original matrix, and 
the preprocessing should be computa-
tionally efficient (for example, it should 
be faster than solving the original prob-
lem exactly) to perform.

Consider Algorithm 3, our meta-
algorithm for preprocessing an input 
matrix A in order to uniformize infor-
mation in its rows or columns or ele-
ments. Depending on the choice of 
preprocessing (only from the left, only 
from the right, or from both sides) the 
information in A is uniformized in dif-
ferent ways (across its rows, columns, 
or elements, respectively). For pedagog-
ical simplicity, Algorithm 3 is described 
such that the output matrix has the 
same dimensions as the original matrix 
(in which case Π is approximately a ran-
dom rotation). Clearly, however, if this 
algorithm is coupled with Algorithm 
1 or Algorithm 2, then with trivial to 
implement uniform sampling, only the 
rows/columns that are sampled actu-
ally need to be generated. In this case 
the sampled version of Π is known as a 
random projection.

Algorithm 3 A meta-algorithm for pre-
conditioning a matrix for random sam-
pling algorithms

1:  Input: m × n matrix A, randomized pre-
processing matrices ΠL and/or ΠR.

2:  Output:

•• To uniformize information across 
the rows of A, return ΠLA.

•• To uniformize information across 
the columns of A, return AΠR.

•• To uniformize information across 
the elements of A, return ΠL AΠR.

There is wide latitude in the choice 
of the random matrix Π. For example, 
although Π can be chosen to be a ran-
dom orthogonal matrix, other construc-
tions can have much better algorithmic 
properties: Π can consist of appropriately-
scaled independent identically distrib-
uted (i.i.d.) Gaussian random variables, 
i.i.d. Rademacher random variable 
(+1 or −1, up to scaling, each with prob-
ability 50%), or i.i.d. random variables 
drawn from any sub-Gaussian distri-
bution. Implementing these variants 
depends on the time to generate the ran-
dom bits plus the time to perform the 

matrix-matrix multiplication that actu-
ally performs the random projection.

More interestingly, Π could be a 
so-called Fast Johnson Lindenstrauss 
Transform (FJLT). This is the product 
of two matrices, a random diagonal 
matrix with +1 or −1 on each diagonal 
entry, each with probability 1/2, and the 
Hadamard-Walsh (or related Fourier-
based) matrix.3 Implementing FJLT-based 
random projections can take advantage 
of well-studied fast Fourier techniques 
and can be extremely fast for arbitrary 
dense input matrices.4,41 Recently, there 
has even been introduced an extremely 
sparse random projection construction 
that for arbitrary input matrices can be 
implemented in “input-sparsity time,” 
that is, time depending on the number 
of nonzeros of A, plus lower-order terms, 
as opposed to the dimensions of A.12,34,36

With appropriate settings of prob-
lem parameters (for example, the 
number of uniform samples that are 
subsequently drawn, which equals 
the dimension onto which the data is 
projected), all of these methods pre-
condition arbitrary input matrices so 
that uniform sampling in the randomly 
rotated basis performs as well as non-
uniform sampling in the original basis. 
For example, if m   n, in which case 
the leverage scores of A are given by 
Equation (6), then by keeping only 
roughly O(n log n) randomly-rotated 
dimensions, uniformly at random, one 
can prove that the leverage scores of 
the preconditioned system are, up to 
logarithmic fluctuations, uniform.g 
Which construction for Π should be 
used in any particular application of 
RandNLA depends on the details of 
the problem, for example, the aspect 
ratio of the matrix, whether the RAM 
model is appropriate for the particu-
lar computational infrastructure, how 
expensive it is to generate random bits, 
and so on. For example, while slower 
in the RAM model, Gaussian-based 
random projections can have stronger 
conditioning properties than other 
constructions. Thus, given their ease 
of use, they are often more appropriate 
for certain parallel and cloud-comput-
ing architectures.25,35

Summary. Of the three basic RandNLA 
principles described in this section, the 

g This is equivalent to the statement that the 
coherence of the preconditioned system is small.
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One major success of RandNLA 
was the following random sampling 
algorithm for the LS problem: quickly 
compute 1 ± ε approximations to the 
leverage scores;14 form a subproblem 
by sampling with Algorithm 2 roughly 
Θ(n log(m)/ε) rows from A and the cor-
responding elements from b using 
those approximations as importance 
sampling probabilities; and return 
the LS solution of the subproblem.14,15 

Alternatively, one can run the fol-
lowing random projection algo-
rithm: precondition the input with a 
Hadamard-based random projection; 
form a subproblem by sampling with 
Algorithm 2 roughly Θ(n log(m)/ε) 
rows from A and the corresponding 
elements from b uniformly at ran-
dom; and return the LS solution of 
the subproblem.17, 43

Both of these algorithms return 1±ε 
relative-error approximate solutions 
for arbitrary or worst-case input; and 
both run in roughly Θ(mn log(n)/ε) 
= o(mn2) time, that is, qualitatively 
faster than traditional algorithms 
for the overdetermined LS problem. 
(Although this random projection 
algorithm is not faster in terms of 

asymptotic FLOPS than the corre-
sponding random sampling algo-
rithm, preconditioning with random 
projections is a powerful primitive 
more generally for RandNLA algo-
rithms.) Moreover, both of these algo-
rithms have been improved to run in 
time that is proportional to the num-
ber of nonzeros in the matrix, plus 
lower-order terms that depend on the 
lower dimension of the input.12

Another major success of RandNLA 
was the demonstration that the 
sketches constructed by RandNLA 
could be used to construct precon-
ditioners for high-quality traditional 
NLA iterative software libraries.4 To see 
the need for this, observe that because 
of its dependence on ε, the previous 
RandNLA algorithmic strategy (con-
struct a sketch and solve a LS problem 
on that sketch) can yield low-precision 
solutions, for example, ε = 0.1, but 
cannot practically yield high-preci-
sion solutions, for example, ε = 10−16. 
Blendenpik4 and LSRN35 are LS solvers 
that are appropriate for RAM and par-
allel environments, respectively, that 
adopt the following RandNLA algorith-
mic strategy: construct a sketch, using 

an appropriate random projection; 
use that sketch to construct a precon-
ditioner for a traditional iterative NLA 
algorithm; and use that to solve the pre-
conditioned version of the original full 
problem. This improves the ε dependence 
from poly(1/ε) to log(1/ε). Carefully-
engineered imple mentations of this 
approach are competitive with or beat 
high-quality numerical implementa-
tions of LS solvers such as those imple-
mented in LAPACK.4

The difference between these two 
algorithmic strategies (see Figure 3 
for an illustration) highlights impor-
tant differences between TCS and 
NLA approaches to RandNLA, as 
well as between computer science 
and scientific computing more gen-
erally: subtle but important differ-
ences in problem parameterization, 
between what counts as a “good” solu-
tion, and between error norms of inter-
est. Moreover, similar approaches 
have been used to extend TCS-style 
RandNLA algorithms for providing 1 ± 
ε relative-error low-rank matrix approxi-
mation16,43 to NLA-style RandNLA algo-
rithms for high-quality numerical 
low-rank matrix approximation.24,25,41 

Figure 3. (a) RandNLA algorithms for least-squares problems first compute sketches, SA and Sb, of the input data, A and b. Then, either  
they solve a least-squares problem on the sketch to obtain a low-precision approximation, or they use the sketch to construct a traditional 
preconditioner for an iterative algorithm on the original input data to get high-precision approximations. Subspace-preserving embedding:  
if S is a random sampling matrix, then the high leverage point will be sampled and included in SA; and if S is a random-projection-type 
matrix, then the information in the high leverage point will be homogenized or uniformized in SA. (b) The “heart” of RandNLA proofs is 
subspace-preserving embedding for orthogonal matrices: if UA is an orthogonal matrix (say the matrix of the left singular vectors of A),  
then SUA is approximately orthogonal.
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  (11)

s.t. Ãij = Aij, for all sampled entries Aij,

where ×∗ denotes the nuclear (or trace) 
norm of a matrix (basically, the sum 
of the singular values of the matrix). 
That is, if A is exactly low-rank (that is, 
A = Ak and thus A − Ak is zero) and sat-
isfies an incoherence assumption, 
then Equation (10) is satisfied, since 
A = Ak = Ã. Recently, the incoherence 
assumption has been relaxed, under 
the assumption that one is given oracle 
access to A according to a non-uniform 
sampling distribution that essentially 
corresponds to element-wise leverage  
scores.10 However, removing the assump-
tion that A has exact low-rank k, with k  
min{m, n}, is still an open problem.j

Informally, keeping only a few rows/
columns of a matrix seems more power-
ful than keeping a comparable number 
of elements of a matrix. For example, 
consider an m × n matrix A whose rank 
is exactly equal to k, with k  min{m, n}: 
selecting any set of k linearly indepen-
dent rows allows every row of A to be 
expressed as a linear combination of the 
selected rows. The analogous procedure 
for element-wise sampling seems harder. 
This is reflected in that state-of-the-art 
element-wise sampling algorithms use 
convex optimization and other heavier-
duty algorithmic machinery.

Solving systems of Laplacian-based 
linear equations. Consider the special 
case of the LS regression problem of 
Equation (8) when m = n, that is, the well-
known problem of solving the system 
of linear equations Ax = b. For worst-case 
dense input matrices A this problem can 
be solved in exactly O (n3) time, for example, 
using the partial LU decomposition and 
other methods. However, especially when 
A is positive semidefinite (PSD), iterative 
techniques such as the conjugate gra-
dients method are typically preferable, 
mainly because of their linear depen-
dency on the number of non-zero entries 
in the matrix A (times a factor depending 
on the condition number of A).

An important special case is when 
the PSD matrix A is the Laplacian matrix 

j It should be noted that there exists prior work 
on matrix completion for low-rank matrices 
with the addition of well-behaved noise; how-
ever, removing the low-rank assumption and 
achieving error that is relative to some norm of 
the residual A − Ak is still open.

For example, a fundamental structural 
condition for a sketching matrix to sat-
isfy to obtain good low-rank matrix 
approximation is the following. Let 
Vk ∈ Rn × k (resp., Vk,⊥ ∈ Rn × (n−k)) be any 
matrix spanning the top-k (resp., bot-
tom-(n − k) ) right singular subspace of 
A ∈ Rm × n, and let Σk (resp., Σk,⊥) be the 
diagonal matrix containing the top-k 
(resp., all but the top-k) singular values.  
In addition, let Z ∈ Rn × r (r ≥ k) be any 
matrix (for example, a random sampling 
matrix S, a random projection matrix Π, or 
a matrix Z constructed deterministically) 
such that  has full rank. Then,

 (9)

where × is any unitarily invariant 
matrix norm.

How this structural condition is used 
depends on the particular low-rank 
problem of interest, but it is widely used 
(either explicitly or implicitly) by low-rank 
RandNLA algorithms. For example, 
Equation (9) was introduced in the 
context of the Column Subset Selection 
Problem7 and was reproven and used to 
reparameterize low-rank random pro-
jection algorithms in ways that could be 
more easily implemented.25 It has also 
been used in ways ranging from devel-
oping improved bounds for kernel meth-
ods in machine learning21 to coupling 
with a version of the power method to 
obtain improved numerical implemen-
tations41 to improving subspace itera-
tion methods.24

The structural condition in Equation 
(9) immediately suggests a proof strat-
egy for bounding the error of RandNLA 
algorithms for low-rank matrix approxi-
mation: identify a sketching matrix Z 
such that  has full rank; and, at the 
same time, bound the relevant norms of 

 and  Importantly, in many 
of the motivating scientific computing 
applications, the matrices of interest 
are linear operators that are only implic-
itly represented but that are structured 
such that they can be applied to an 
arbitrary vector quickly. In these cases, 
FJLT-based or input-sparsity-based 
projections applied to arbitrary matri-
ces can be replaced with Gaussian-
based projections applied to these 
structured operators with similar com-
putational costs and quality guarantees.

Matrix completion. Consider the 

following problem, which is an ideal-
ization of the important recommender 
systems problem.26 Given an arbitrary 
m × n matrix A, reconstruct A by sam-
pling a set of O ( (m + n)poly(1/εa) ), as 
opposed to all mn, entries of the matrix 
such that the resulting approximation 
Ã satisfies, either deterministically or 
up to some failure probability,

  (10)

Here, a should be small (for example, 2); 
and the sample size could be increased 
by (less important) logarithmic factors 
of m, n, and ε. In addition, one would 
like to construct the sample and com-
pute Ã after making a small number of 
passes over A or without even touching 
all of the entries of A.

A first line of research (already men-
tioned) on this problem from TCS 
focuses on element-wise sampling:2 
sample entries from a matrix with prob-
abilities that (roughly) depend on their 
magnitude squared. This can be done in 
one pass over the matrix, but the result-
ing additive-error bound is much larger 
than the requirements of Equation (10), 
as it scales with the Frobenius norm of A 
instead of the Frobenius norm of A − Ak.

A second line of research from signal 
processing and applied mathemat-
ics has referred to this as the matrix 
completion problem.8 In this case, one is 
interested in computing Ã without even 
observing all of the entries of A. Clearly, 
this is not possible without assump-
tions on A.i Typical assumptions are 
on the eigenvalues and eigenvectors of 
A: for example, the input matrix A has 
rank exactly k, with k  min{m, n}, and 
also that A satisfies some sort of eigen-
vector delocalization or incoherence 
conditions.8 The simplest form of the 
latter is the leverage scores of Equation 
(6) are approximately uniform. Under 
these assumptions, one can prove that 
given a uniform sample of O ( (m + n) k  
ln (m + n) ) entries of A, the solution to 
the following nuclear norm minimiza-
tion problem recovers A exactly, with 
high probability:

i This highlights an important difference in 
problem parameterization: TCS-style ap-
proaches assume worst-case input and must 
identify nonuniformity strucutre, while ap-
plied mathematics approaches typically as-
sume well-posed problems where the worst 
nonuniformity structure is not present.
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of an underlying undirected graph G 
= (V, E), with n = |V| vertices and |E| 
weighted, undirected edges.5 Variants 
of this special case are common in 
unsupervised and semi-supervised 
machine learning.6 Recall the Laplacian 
matrix of an undirected graph G is an n 
× n matrix that is equal to the n × n diago-
nal matrix D of node weights minus the 
n × n adjacency matrix of the graph. In 
this special case, there exist random-
ized, relative-error algorithms for the 
problem of Equation (8).5 The running 
time of these algorithms is

O (nnz(A)polylog(n)),

where nnz(A) represents the number 
of non-zero elements of the matrix 
A, that is, the number of edges in 
the graph G. The first step of these 
algorithms corresponds to random-
ized graph sparsification and keeps a 
small number of edges from G, thus 
creating a much sparser Laplacian  
matrix . This sparse matrix  is sub-
sequently used (in a recursive man-
ner) as an efficient preconditioner to 
approximate the solution of the prob-
lem of Equation (8).

While the original algorithms in 
this line of work were major theoretical 
breakthroughs, they were not imme-
diately applicable to numerical imple-
mentations and data applications. In 
an effort to bridge the theory-practice 
gap, subsequent work proposed a much 
simpler algorithm for the graph sparsi-
fication step.45 This subsequent work 
showed that randomly sampling edges 
from the graph G (equivalently, rows 
from the edge-incidence matrix) with 
probabilities proportional to the effec-
tive resistances of the edges provides a 
sparse Laplacian matrix  satisfying 
the desired properties. (On the nega-
tive side, in order to approximate the 
effective resistances of the edges of G, a 
call to the original solver was necessary, 
clearly hindering the applicability of 
the simpler sparsification algorithm.45) 
The effective resistances are equivalent 
to the statistical leverage scores of the 
weighted edge-incidence matrix of G. 
Subsequent work has exploited graph 
theoretic ideas to provide efficient algo-
rithms to approximate them in time pro-
portional to the number of edges in the 
graph (up to polylogarithmic factors).27 
Recent improvements have essentially 

removed these polylogarithmic factors, 
leading to useful implementations of 
Laplacian-based solvers.27 Extending 
such techniques to handle general PSD 
input matrices A that are not Laplacian 
is an open problem.

Statistics and machine learning. 
RandNLA has been used in statistics 
and machine learning in several ways, 
the most common of which is in the 
so-called kernel-based machine learn-
ing.21 This involves using a PSD matrix 
to encode nonlinear relationships 
between data points; and one obtains 
different results depending on whether 
one is interested in approximating a 
given kernel matrix,21 constructing new 
kernel matrices of particular forms,39 
or obtaining a low-rank basis with 
which to perform downstream classi-
fication, clustering, and other related 
tasks.29 Alternatively, the analysis 
used to provide relative-error low-rank 
matrix approximation for worst-case 
input can also be used to provide 
bounds for kernel-based divide-and-
conquer algorithms.31 More generally, 
CX/CUR decompositions provide scal-
able and interpretable solutions to 
downstream data analysis problems 
in genetics, astronomy, and related 
areas.33,38,53,54 Recent work has focused 
on statistical aspects of the “algorith-
mic leveraging” approach that is cen-
tral to RandNLA algorithms.30

Looking Forward
RandNLA has proven to be a model 
for truly interdisciplinary research in this 
era of large-scale data. For example, while 
TCS, NLA, scientific computing, math-
ematics, machine learning, statistics, 
and downstream scientific domains are 
all interested in these results, each of 
these areas is interested for very different 
reasons. Relatedly, while technical results 
underlying the development of RandNLA 
have been nontrivial, some of the largest 
obstacles to progress in RandNLA have 
been cultural: TCS being cavalier about 
polynomial factors, ε factors, and work-
ing in overly idealized computational 
models; NLA being extremely slow to 
embrace randomization as an algo-
rithmic resource; scientific computing 
researchers formulating and implement-
ing algorithms that make strong domain-
specific assumptions; and machine 
learning and statistics researchers being 
more interested in results on hypoth-

RandNLA has 
proven to be a 
model for truly 
interdisciplinary 
research in this era 
of large-scale data.
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esized unseen data rather than the data 
being input to the algorithm.

In spite of this, RandNLA has already 
led to improved algorithms for several 
fundamental matrix problems, but it is 
important to emphasize that “improved” 
means different things to different 
people. For example, TCS is interested 
in these methods due to the deep con-
nections with Laplacian-based linear 
equation solvers5,27 and since fast ran-
dom sampling and random projection 
algorithms12,14,17,43 repre sent an improve-
ment in the asymptotic running time of 
the 200-year-old Gaussian elimination 
algorithms for least-squares problems 
on worst-case input. NLA is interested in 
these methods since they can be used to 
engineer variants of traditional NLA algo-
rithms that are more robust and/or faster 
in wall clock time than high-quality soft-
ware that has been developed over recent 
decades. (For example, Blendenpik 
“beats LAPACK’s direct dense least-
squares solver by a large margin on 
essentially any dense tall matrix;”4 the  
randomized approach for low-rank matrix 
approximation in scientific computing 
“beats its classical competitors in terms 
of accuracy, speed, and robustness;”25 
and least-squares and least absolute 
deviations regression problems “can be 
solved to low, medium, or high precision 
in existing distributed systems on up to 
terabyte- sized data.”52) Mathematicians 
are interested in these methods since 
they have led to new and fruitful funda-
mental mathematical questions.23,40,42,47 
Statisticians and machine learners are 
interested in these methods due to their 
connections with kernel-based learn-
ing and since the randomness inside the 
algorithm often implicitly implements a 
form of regularization on realistic noisy 
input data.21,29,30 Finally, data analysts are 
interested in these methods since they 
provide scalable and interpretable solu-
tions to downstream scientific data analy-
sis problems.33, 38,54 Given the central role 
that matrix problems have historically 
played in large-scale data analysis, we 
expect RandNLA methods will continue 
to make important contributions not only 
to each of those research areas but also to 
bridging the gaps between them. 
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