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Abstract

We propose a methodology for non-intrusive design of
concurrently self-testable FSMs. The proposed method is
similar to duplication, wherein a replica of the original
FSM acts as a predictor that immediately detects potential
faults by comparison to the original FSM. However, instead
of duplicating the complete FSM, the proposed method
replicates only a minimal portion adequate to detect all pos-
sible faults, yet at the cost of introducing potential fault de-
tection latency. Furthermore, in contrast to concurrent er-
ror detection approaches, which presume the ability to re-
synthesize the FSM and exploit parity-based state encoding,
the proposed method is non-intrusive and does not interfere
with the encoding and implementation of the original FSM.
Experimental results on FSMs of various sizes and densities
indicate that the proposed method detects 100% of the faults
with very low average fault detection latency. Furthermore,
a hardware overhead reduction of up to 33% is achieved, as
compared to duplication-based concurrent error detection.

1. Introduction

Concurrent test provides circuits with the ability to self-
examine their operational health during normal function-
ality and indicate potential malfunctions. While such an
indication is highly desirable, designing concurrently self-
testable circuits which also conform to the rest of the spec-
ifications is not trivial. Issues to be addressed include
the hardware cost and design effort incurred, performance
degradation due to interaction between the circuit and the
self-test logic, as well as the level of assurance required.

In this paper, we focus on controller circuits and we ex-
plore these trade-offs, in order to devise a non-intrusive
design methodology for concurrently self-testable FSMs.
Non-intrusiveness implies that hardware is only added in
parallel to the given FSM, which is encoded, optimized, and
implemented to meet specific requirements and may not be
modified. The additional logic detects all faults in the cir-
cuit, therefore rendering a self-testable design. Moreover,
self-test is performed concurrently and does not delay or
degrade the normal functionality of the FSM.
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The underlying principle of concurrent test is the addi-
tion of hardware that monitors the circuit inputs during nor-
mal operation and generates an a priori known property that
is expected to hold for the circuit outputs. A property veri-
fier is subsequently utilized to indicate any violation of the
expected property, thus detecting circuit malfunctions. The
simplest approach is to duplicate the circuit, imposing an
identity property between the original output and the replica
output, which may be simply examined by a comparator.
With the exception of common-mode failures [1], duplica-
tion will immediately detect any error in the circuit. How-
ever, it incurs significant hardware overhead that exceeds
100% of the original circuit. Given that electronic circuits
are employed in a wide range of applications, concurrent
test methods of various cost and efficiency are required.

Towards this end, we devise a concurrent self-test
method for FSMs, that reduces hardware overhead at the
cost of introducing fault detection latency. The method is
based on replication of a subset of state transitions, suffi-
cient to detect all structural faults, as opposed to duplication
which detects all functional errors. After reviewing related
work in section 2, the proposed method is presented and
analyzed in section 3. Experimental results regarding hard-
ware overhead, fault coverage, and fault detection latency
of the proposed method are provided in section 4.

2. Related Work

To motivate the proposed methodology, we first exam-
ine related work in the areas of concurrent self-test, concur-
rent error detection, and on-line test. Almost all previous
research efforts in these areas share the objective of being
able to detect all faults. What typically distinguishes them,
however, is their position within the trade-off space between
hardware overhead and fault detection latency. Most ap-
proaches fall in one of the two ends of this space.

Towards the low end, low cost self-test approaches have
been proposed for combinational circuits. C-BIST [2] em-
ploys input monitoring and existing off-line Built-In Self-
Test hardware, such as LFSRs and MISRs, to perform con-
current self-test. While hardware overhead is very low, the
method relies on an ordered appearance of all possible in-
put vectors before a signature indicating circuit correctness
can be calculated, resulting in very long fault detection la-
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tency. This problem is alleviated in the R-CBIST method
described in [3], where the requirement for a uniquely or-
dered appearance of all input combinations is relaxed at the
cost of a small RAM. Nevertheless, all input combinations
still need to appear before any indication of circuit correct-
ness is provided. In [4], a test vector based self-test method
is described and evaluated for combinational circuits.

Towards the high end, we find expensive concurrent error
detection methods for sequential circuits that check the cir-
cuit functionality at every clock cycle, therefore guarantee-
ing zero error detection latency. Reducing the area overhead
below the cost of duplication typically requires redesign of
the original circuit, thus leading to intrusive methodologies.
One of the first attempts is described in [5], where resynthe-
sis is employed to encode the states of the circuit, incorpo-
rating parity information and employing TSC checkers [6].
Limitations of this method, such as structural constraints re-
quiring an inverter-free design, are alleviated in [7], where
partitioning is employed to reduce the incurred hardware
overhead. Utilization of multiple parity bits is examined in
[8] within the context of FSMs. All these methods render
totally self-checking circuits and guarantee error detection
with zero latency; on the down side, they are intrusive and
only provide savings in the range of 10% over duplication.

Among the few existing approaches in between the two
ends, a method that exploits properties of non-linear adap-
tive filters is proposed in [9], achieving a 30% cost reduc-
tion. A similar technique is proposed in [10], where the
frequency response of linear filters is used as an invariance
property, achieving a 50% cost reduction but introducing la-
tency. Finally, a CFD approach exploiting transparency of
RT-Level components is described in [11], achieving over
90% fault security with 40% hardware overhead.

3. Proposed Method

The concurrent self-test method for FSMs proposed in
this paper explores the trade-off between incurred hardware
overhead and fault detection latency, while preserving the
ability to detect all faults. As an additional constraint, we
require that the proposed method be non-intrusive, leaving
the original implementation of the circuit (i.e. state encod-
ing and next state logic) intact. The proposed method tar-
gets the detection of faults as opposed to errors, therefore
imposing more lenient requirements in terms of fault de-
tection latency, as opposed to the stringent zero-latency re-
quired for concurrent error detection. Consequently, check-
ing is performed frequently, yet not at every clock cycle.
While the resulting circuits are not fault-secure and there-
fore do not guarantee correctness of the results, they are
still self-testable, thus guaranteeing eventual detection of all
faults. In the rest of this section, we describe the proposed
methodology and we analyze its expected performance.

3.1. Description

The proposed scheme is depicted and contrasted to du-
plication in figure 1. In duplication-based concurrent error
detection, a replica of the FSM1 is added and the results of
the two FSMs are compared at each clock cycle. Errors are
indicated by a test output that becomes ’1’. To avoid fault
masking by common-mode failures, design diversity [1] has
been examined, wherein the duplicate FSM is functionally
equivalent but structurally different than the original FSM.

In order to reduce the overhead of duplication, the pro-
posed method replicates only a portion of the original FSM,
capable of detecting all faults in the design. More specif-
ically, ATPG is performed on the combinational next state
logic of the original FSM, treating the previous state bits
as primary inputs, and a complete set of test vectors is ob-
tained2. These test vectors are subsequently synthesized
into a prediction logic that generates the expected next state
of the FSM when an input / previous state combination
matches a test vector. The outputs of the prediction logic
for input / previous state combinations that are not included
in the test vector set are treated as don’t cares. Thus, during
synthesis, these outputs are set to appropriate values min-
imizing the required hardware. As a result, the prediction
logic is less expensive than the duplicate next state logic.

However, since the output prediction logic will only gen-
erate the correct next state for input / previous state com-
binations included in the test vector set, the issue of false
alarms needs to be addressed. More specifically, the con-
current test output should not be asserted during normal
functionality, unless a fault has been detected. Therefore,
an additional function is now required, indicating whether
an input / previous state combination is a test vector. In
the opposite case, the comparison outcome is not a valid in-
dication of operational health of the FSM and is therefore
masked through the AND gate in figure 1. Notice also that
the predicted next state calculation is driven by the original
FSM state register and not by the predicted state register,
since the latter may not contain the correct value after an
input / previous state combination that is not a test vector.

The test vector set detects faults in the combinational
next state logic. In order to also detect the faults in the state
register, we delay the comparison of the predicted next state
by one clock cycle, similarly to [8]. Thus, instead of com-
paring the outputs of the predicted logic, we compare the
outputs of the state registers one clock cycle later, at the
cost of an additional flip-flop. Assuming that test responses
comprise both a logic ‘1’ and a logic ‘0’ at every bit posi-
tion, all faults in the state register will also be detected.

1 For simplicity, we assume that the FSM outputs are directly driven by
the state register. The method can be extended to include output logic.

2 An additional state reachability analysis step is needed to guarantee
effectiveness of the test vectors on the complete FSM, as explained shortly.
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Figure 1. Duplication vs. Proposed Methodology

Finally, as mentioned in footnote 2, additional process-
ing of the vectors generated by ATPG on the combinational
next state logic is necessary to guarantee their effective-
ness in the complete FSM. In the presence of a fault F ,
some valid FSM states may become unreachable. In order
to guarantee detection of F , we need to ensure that there
exists at least one test vector in the selected test set that de-
tects F from a state that is reachable in the presence of F .
Therefore, for every fault F the faulty FSM is built and a
Breadth-First-Search algorithm is applied to identify states
that are unreachable in the presence of F . In case the gen-
erated test set does not include such a vector, an additional
ATPG run is performed, excluding test vectors that com-
prise unreachable previous states as part of the input / pre-
vious state combination. Our experimental observation is
that such cases amount for less than 1% of all faults.

As shown in figure 1, unlike approaches such as [5, 7, 8]
that reduce the hardware overhead by re-encoding the FSM,
the proposed method leaves the original FSM intact. Fur-
thermore, and despite the addition of one extra function (IS

INPUT A TEST VECTOR), a considerable hardware over-
head reduction is expected. On the down side, faults go un-
detected until an appropriate test vector appears, thus intro-
ducing latency. However, given a sizeable test set, tests are
performed frequently and low average latency is expected.

3.2. Analysis

Assuming that ATPG yields a complete test set, the pro-
posed method guarantees fault coverage equivalent to dupli-
cation. We emphasize that test vectors are split in two parts:
the previous FSM state bits and the inputs bits.

The proposed scheme introduces latency in the detection
of an activated fault. Even though the dependence on the
circuit inputs makes it impossible to predict the introduced

latency, we stress that, assuming random inputs, the pro-
posed method checks for faults every time an input / previ-
ous state combination that is a selected test vector appears.
Empirical observations, as well as some theoretical analy-
sis [12], indicate that, for random next state prediction logic,
the ratio of such input / previous state combinations over all
possible input combinations is significant. Additionally, we
may reasonably assume that most “stuck-at” faults are de-
tected by many input / previous state combinations. Thus,
we expect the average latency to be very small.

We now outline a few observations on the hardware over-
head. We denote by n the number of inputs to the FSM and
by k the number of state bits; let m = n + k. The follow-
ing remark relates the hardware – assuming multilevel im-
plementation using 2-input gates – required to implement
a “fully-specified” random boolean function with m input
bits and one output bit to the hardware required to imple-
ment an “�-specified” random function with m input bits
and one output bit. We first define �-specified functions:

Definition 1 An �-specified function f : f0; 1gm ! f0; 1g
has at least d�2me “don’t cares” (� 2 [0; 1]). The positions
of the “don’t cares” are fixed a priori. A fully-specified
function is equivalent to a 0-specified function.

Remark 1 Almost all boolean functions f : f0; 1gm !
f0; 1g require at least 2m=m gates, if they are fully-
specified and (1� �)2m=m gates, if they are �-specified.

Proof (Sketch): The first statement is Shannon’s counting
argument [13]. For the second statement, we observe that
the number of functions f : f0; 1gm ! f0; 1g with da2me
“don’t cares” is 2d(1�a)2

me. Thus, the same counting ar-
gument proves our statement. For the statement to hold,
positions of the “don’t cares” should be pre-specified.
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We now relate the hardware required to implement a
fully-specified function with m input bits and one output
bit to the hardware required to implement a fully-specified
function with m input bits and k output bits, where k is a
small constant (k � 2m) and the k bits are uncorrelated.

Remark 2 Almost all boolean functions f : f0; 1gm !
f0; 1gk require at least k2m=m gates if the k output bits
are uncorrelated and fully specified.

Proof (Sketch): Again, we observe that the number of func-

tions f : f0; 1gm ! f0; 1gk is
�
22
m�k

= 22
mk

. Thus,
Shannon’s counting argument proves our statement.

The original circuit is a function f : f0; 1gn+k !
f0; 1gk. Our technique generates a set of input / previous
state combinations that comprise a set of test vectors for
f or, equivalently, a function ~f : f0; 1gn+k ! f0; 1gk.
Assuming for the moment that the k output bits are uncor-
related and the cardinality of the selected set of test vec-
tors is �2n+k, for some � 2 [0; 1], the hardware required
for the IS INPUT A TEST VECTOR component of figure 1
should be 1=k times the hardware required for the origi-
nal circuit. Similarly, the hardware required for the NEXT

STATE LOGIC FOR TEST VECTORS component of figure 1
is expected to be � times the hardware required for the orig-
inal circuit. Thus, the minimum hardware required for our
scheme should be (� + 1=k) times the minimum hardware
required for the the original circuit. Depending on � and
k, the hardware overhead of our technique might be sig-
nificantly smaller than duplication. We point that we can
only examine how the lower bound of the size of the pre-
diction logic behaves; indeed, tight bounds for circuit sizes
are notoriously hard to prove even under stringent assump-
tions. In practice, the k state bits representing the output of
the next state prediction logic are correlated. It is not clear,
however, that as the state bits become more and more cor-
related the size of the prediction logic over the original cir-
cuit size increases; one expects the size of the NEXT STATE

LOGIC FOR TEST VECTORS to decrease as correlation in-
creases. On the other hand, it seems natural that the size of
the IS INPUT A TEST VECTOR component over the origi-
nal circuit would increase. Finally, the NEXT STATE LOGIC

FOR TEST VECTORS component and the IS INPUT A TEST

VECTOR component are not implemented separately; in-
deed, in order to maximize logic sharing they are synthe-
sized together. Thus, the cost of the prediction logic is less
than the sum of the individual costs.

4. Experiments

We compare the proposed method to duplication in terms
of area overhead, fault coverage, and fault detection latency.
The experimental setup is described in this section, fol-
lowed by a presentation and discussion of the results.

4.1. Setup

In order to preserve generality, the experiments are ap-
plied on random FSMs. These FSMs are converted to pla
format, synthesized and optimized using the rugged script
of the SIS system [14], and mapped to a standard cell li-
brary comprising only 2-input gates. The hardware cost is
reported by SIS through the print map stats command. The
circuit is then converted to ISCAS89 [15] format.

An ATPG run is performed on the combinational next
state logic of the FSM using ATALANTA [16] to obtain
a complete test set. These vectors and the correspond-
ing fault-free responses, along with the additional function
that indicates whether an input combination is a test vec-
tor are then converted to pla format, synthesized and opti-
mized using the rugged script of the SIS system [14], and
mapped to a standard cell library comprising only 2-input
gates. The hardware cost is reported by SIS through the
print map stats command. Subsequently, the circuits are
converted to ISCAS89 [15] format, rendering the hardware
implementation of the prediction logic. The original FSM
and the prediction logic are combined and the concurrently
self-testable FSM is constructed. Two sequential ATPG
runs are then performed using HITEC [17]. In the first
ATPG run, both the test output and the original FSM outputs
are made observable, while in the second ATPG run, only
the test output is made observable. We emphasize that the
resulting fault coverage comprises faults both in the original
FSM and the prediction logic.

In order to calculate the average fault detection latency,
we generate sets of random inputs, which we fault simulate
twice on the constructed FSM using HOPE [18]. During
the first fault simulation we observe all outputs (including
the TEST output), while during the second fault simulation
we only observe the TEST output. The time step at which
a fault is detected during the first fault simulation is the
Fault Activation time, while the time step at which a fault
is detected during the second fault simulation is the Fault
Detection time. Fault Detection Latency is defined as the
time difference between Fault Activation and Fault Detec-
tion, therefore we can easily calculate the Fault Detection
Latency for each fault, as well as the average Fault Detec-
tion Latency. The number of faults detected only in the first
fault simulation but not in the second, i.e. faults sensitized
but not detected by the random vectors, is also reported.

4.2. Results

The experimental setup was applied on 10 different
“types” of FSMs, namely 10 different (K;n) combinations,
(8,1), (8,2), (16,1), (16,2), (32,1), (32,2), (32,3), (64,1),
(64,2), and (64,3). The proposed method was applied on
5 FSMs of each type and average results are reported.
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FSM Type 
(States_Inputs) 

Cost of Next 
State Logic 

Number of  
Test Vectors  

Cost of Test 
Vector Logic 

Hardware 
Overhead 

8_1 33408 10 / 16 33872 101.39 % 
8_2 70374 19 / 32 65578 93.18 % 

16_1 95275 20 / 32 83210 87.33 % 
16_2 186219 35 / 64 153429 82.39 % 
32_1 222411 38 / 64 178794 80.38 % 
32_2 423014 69 / 128 325882 77.03 % 
32_3 832571 128 / 256 615573 73.93 % 
64_1 504368 70 / 128 384346 76.20 % 
64_2 937744 129 / 256 688112 73.37 % 
64_3 1809757 237 / 512 1227689 67.83 % 

 Figure 2. Hardware Area Overhead of Proposed Method

FSM 
Type 

8_1 8_2 16_1 16_2 32_1 32_2 32_3 64_1 64_2 64_3 

Testable 
Faults 

148 249 324 584 682 1209 2269 1378 2550 4651 

Detected 
Faults 

142 243 316 578 672 1199 2269 1366 2538 4639 

 Figure 3. Fault Coverage of Proposed Method

The area overhead is compared to duplication in the table
of figure 2. The cost of the next state logic which is used as
a predictor in duplication is first reported, followed by the
number of test vectors and their cost, which comprises both
the NEXT STATE LOGIC FOR TEST VECTORS component
and the IS INPUT A TEST VECTOR component. The right-
most column shows the incurred overhead as a percentage
of the cost of duplication. An average reduction of 20% is
achieved. We note that the reduction increases with the size
of the FSM, reaching 33% for the (64,3) example.

The actual hardware overhead is close to the expected
overhead based on the analysis of section 3.2. We predicted
the ratio of our method over duplication to be a+1=k, where
a is the ratio of the 2n+k (state, input) combinations that are
test vectors. On average, the deviation between our predic-
tion and the observed overhead is only 3:12%, which we
attribute to the correlation of next state bits.

Figure 3 reports the average fault coverage results. The
middle row shows the number of testable faults in the
concurrently self-testable FSMs, as reported by sequen-
tial ATPG. The bottom row provides the number of faults
that are detected by the proposed methodology. All but a
small number of faults are detected. The few faults that
are not detected are faults on the primary outputs, which no
comparison-based method can detect [10]. Therefore, the
method detects the same number of faults as duplication on
the original FSM, as well as all faults in the prediction logic.

To obtain an experimental indication of the introduced
latency, we fault simulate a total of 5000 random patterns
and snapshots of the results are shown after 10, 50, 100,
500, 1000, and finally all 5000 patters have been applied.
For each snapshot, we provide the number of faults remain-
ing non-activated, the number of faults activated and de-
tected, and the number of faults activated but missed (not
yet detected). We also provide the maximum fault detec-
tion latency and the average fault detection latency for the
faults that are both activated and detected. Worst-case re-

sults are summarized in figure 4 for the (64; 3) FSM. Fig-
ure 5 presents a plot of faults activated and faults detected
on the (64; 3) FSM, as well as a plot of the average fault
detection latency on the (64; 1), (64; 2), and (64; 3) FSMs.

While the maximum latency ranges up to 4203 clock cy-
cles for the (64,3) FSM, the average latency is small, rang-
ing up to only 91.05 clock cycles, which is 2.16% of the
maximum latency. Additionally, most faults are detected
quickly, with 90% of the faults detected within 50% of the
average latency, while the other 50% is contributed by the
remaining 10%. For example, once 500 random vectors are
applied to the (64,3) circuit, 96.65% of the faults are acti-
vated and 90.58% are detected. The average fault detection
latency at this point is 38.94, which is 42.76% of the aver-
age latency when all faults are detected. Furthermore, the
plot of figure 5(a) shows that the number of faults activated
but not yet detected by the proposed method is small. As
indicated in the plot of figure 5(b), the average and the max-
imum latency increase sub-linearly with the circuit size.

5. Conclusions

Cost-efficient concurrent fault detection in FSMs ne-
cessitates a careful consideration of the conflicting objec-
tives of low hardware overhead, low fault detection latency,
and high fault coverage. Along these lines, we propose
a methodology for designing FSMs that can be self-tested
concurrently with their normal functionality, without pay-
ing the cost of duplication and without altering the FSM
implementation. Experimental results demonstrate that the
proposed methodology reduces the incurred hardware over-
head by as much as 33% over duplication-based concur-
rent error detection, while preserving the ability to detect
all faults in the circuit, yet at the cost of non-zero fault de-
tection latency. Nevertheless, the experimentally observed
average fault detection latency is very low, ranging up to 92
clock cycles for detecting all faults in the largest FSM.
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