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Abstract

We give two provably accurate feature-
selection techniques for the linear SVM. The
algorithms run in deterministic and random-
ized time respectively. Our algorithms can be
used in an unsupervised or supervised set-
ting. The supervised approach is based on
sampling features from support vectors. We
prove that the margin in the feature space
is preserved to within ε-relative error of the
margin in the full feature space in the worst-
case. In the unsupervised setting, we also
provide worst-case guarantees of the radius of
the minimum enclosing ball, thereby ensur-
ing comparable generalization as in the full
feature space and resolving an open problem
posed in Dasgupta et al. (2007). We present
extensive experiments on real-world datasets
to support our theory and to demonstrate
that our methods are competitive and often
better than prior state-of-the-art, for which
there are no known provable guarantees.

1 Introduction

The linear Support Vector Machine (SVM) is a pop-
ular classification method (Cristianini and Shawe-
Taylor, 2000). Few theoretical results exist for fea-
ture selection with SVMs. Empirically, numerous fea-
ture selection techniques work well (e.g. Guyon et al.
(2002); Fung and Mangasarian (2004)). We present a
deterministic and a randomized feature selection tech-
nique for the linear SVM with a provable worst-case
performance guarantee on the margin. The feature
selection is unsupervised if features are selected obliv-
iously to the data labels; otherwise, it is supervised.
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Our algorithms can be used in an unsupervised or su-
pervised setting. In the unsupervised setting, our algo-
rithm selects a number of features proportional to the
rank of the data and preserves both the margin and
radius of minimum enclosing ball to within ε-relative
error in the worst-case, thus resolving an open problem
posed in Dasgupta et al. (2007). In the supervised set-
ting, our algorithm selects O(#support vectors) fea-
tures using only the set of support vectors, and pre-
serves the margin for the support vectors to within
ε-relative error in the worst-case.

SVM basics. The training data has n points xi ∈ Rd,
with respective labels yi ∈ {−1,+1} for i = 1 . . . n.
For linearly separable data, the primal SVM learning
problem constructs a hyperplane w∗ which maximizes
the geometric margin (the minimum distance of a data
point to the hyperplane), while separating the data.
For non-separable data the “soft” 1-norm margin is
maximized. The dual lagrangian formulation of the
soft 1-norm SVM reduces to the following quadratic
program:

max
αi

:
n∑
i=1

αi − 1
2

n∑
i,j=1

αiαjyiyjx
T
i xj

subject to:
n∑
i=1

yiαi = 0; 0 ≤ αi ≤ C, i = 1 . . . n.

(1)
The regularizer C is part of the input and the hy-
perplane classifier can be constructed from the αi.
The out-of-sample performance is related to the V C-
dimension of the resulting “fat”-separator. Assuming
that the data lie in a ball of radius B, and that the
hypothesis set consists of hyperplanes of width γ (the
margin), then the V C-dimension is O(B2/γ2) (Vapnik
(1998)). Thus, by the V C-bound (Vapnik and Chervo-
nenkis (1971)), the out-of-sample error is bounded by
the in-sample error and a term monotonic in B2/γ2.

Our Contributions. We give two provably accu-
rate feature selection techniques for linear SVM in
both unsupervised and supervised settings with worst-
case performance guarantees on the margin. We use
the single set spectral sparsification technique (BSS)
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1 from Batson et al. (2009) as our deterministic algo-
rithm (the algorithm runs in deterministic time, hence
the name ‘deterministic’) and leverage-score sampling
(Dasgupta et al. (2007)) as the randomized algorithm.
We give a new simple method of extending unsuper-
vised feature selection to supervised in the context
of SVMs by running the unsupervised technique on
the support vectors. This allows us to select only
O(#support vectors) features for the deterministic al-
gorithm (Õ(#support vectors) features for the ran-
domized algorithm, where Õ hides the logarithmic fac-
tors) while still preserving the margin on the sup-
port vectors. Since the support vectors are a suffi-
cient statistic for learning a linear SVM, preserving
the margin on the support vectors should be enough
for learning on all the data with the sampled feature
set.

More formally, let γ∗ be the optimal margin for the
support vector set (which is also the optimal mar-
gin for all the data). The optimal margin γ∗ is
obtained by solving the SVM optimization problem
using all the features. For a suitably chosen num-
ber of features r, let γ̃∗ be the optimal margin ob-
tained by solving the SVM optimization problem us-
ing the support vectors in the sampled feature space.
We prove that the margin is preserved to within ε-
relative error: γ̃∗2 ≥ (1− ε) γ∗2. For the determin-
istic algorithm, the number of features required is
r = O(#support vectors/ε2), whereas the randomized
algorithm requires r = Õ(#support vectors/ε2) fea-
tures to be selected.

In the unsupervised setting, by running our algorithm
on all the data, instead of only the support vectors, we
get a stronger result statistically, but using more fea-
tures. The deterministic algorithm requires O(ρ/ε2)
features to be selected, while the randomized algo-
rithm requires O(ρ/ε2 log(ρ/ε2)) features to be se-
lected. Again, defining γ̃∗ as the optimal margin ob-
tained by solving the SVM optimization problem using
all the data in the sampled feature space, we prove that
γ̃∗2 ≥ (1− ε) γ∗2. We can now also prove that the data
radius is preserved, B̃2 ≤ (1 + ε)B2. This means that
B2/γ∗2 is preserved to within ε-relative error, which
means that the generalisation error is also preserved
to within ε-relative error. The rank of the data is the
effective dimension of the data, and one can construct
this many combinations of pure features that preserve
the geometry of the SVM exactly. What makes our
result non-trivial is that we select this many pure fea-
tures and preserve the geometry of the SVM to within
ε-relative error.

On the practical side, we provide an efficient heuristic

1We call single-set spectral sparsification BSS after the
authors Batson, Spielman and Srivatsava

for our supervised feature selection using BSS which
allows our algorithm to scale-up to large datasets.
While the main focus of this paper is theoretical, we
compare both supervised and unsupervised versions of
feature selection using single-set spectral sparsification
and leverage-score sampling with the corresponding
supervised and unsupervised forms of Recursive Fea-
ture Elimination (RFE) (Guyon et al. (2002)), LPSVM
(Fung and Mangasarian (2004)), uniform sampling
and rank-revealing QR factorization (RRQR) based
method of column selection. Feature selection based
on the single-set spectral sparsification and leverage-
score sampling technique is competitive and often bet-
ter than RFE and LPSVM, and none of the prior art
comes with provable performance guarantees in either
the supervised or unsupervised setting.

Related Work. All the prior art is heuristic in that
there are no performance guarantees; nevertheless,
they have been empirically tested against each other.
Our algorithm comes with provable bounds, and per-
forms comparably or better in empirical tests. We give
a short survey of the prior art: Guyon et al. (2002)
and Rakotomamonjy (2003) proposed SVM based cri-
teria to rank features based on the weights. Weston
et al. (2000) formulated a combinatorial optimization
problem to select features by minimising B2/γ2. We-
ston et al. (2003) used the zero norm to perform er-
ror minimization and feature selection in one step. A
Newton based method of feature selection using lin-
ear programming was given in Fung and Mangasar-
ian (2004). Tan et al. (2010) formulated the `0-norm
Sparse SVM using mixed integer programming. Do
et al. (2009b) proposed R-SVM which performs feature
selection and ranking by optimizing the radius-margin
bound with a scaling factor, and extend this work in
Kalousis and Do (2013) using a quadratic optimiza-
tion problem with quadratic constraints. Another line
of work includes the doubly regularised Support Vec-
tor Machine (DrSVM) (Wang et al., 2006) which uses a
mixture of `2-norm and `1-norm penalties to solve the
SVM optimization problem and perform variable se-
lection. Subsequent works on DrSVM involve reducing
the computational bottleneck (Wang et al. (2008),Ye
et al. (2011)). Gilad-Bachrach et al. (2004) formulate
the margin as a function of set of features and score to
sets of features according to the margin induced. Park
et al. (2012) studied the Fisher consistency and oracle
property of penalized SVM where the dimension of in-
puts is fixed and showed that their method is able to
identify the right model in most cases.
Paul et al. (2013, 2014) used random projections on
linear SVM and showed that the margin and data-
radius are preserved. However, this is different from
our work, since they used linear combinations of fea-
tures and we select pure features.
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BSS and leverage-score sampling have been used to
select features for k-means (Boutsidis and Magdon-
Ismail (2013); Boutsidis et al. (2009)), regularized
least-squares classifier (Dasgupta et al. (2007); Paul
and Drineas (2014)). Our work further expands this
research into sparsification algorithms for machine
learning.

2 Background

Notation: A,B, . . . denote matrices and α,b, . . . de-
note column vectors; ei (for all i = 1 . . . n) is the stan-
dard basis, whose dimensionality will be clear from
context; and In is the n×n identity matrix. The Singu-
lar Value Decomposition (SVD) of a matrix A ∈ Rn×d
of rank ρ ≤ min {n, d} is equal to A = UΣVT , where
U ∈ Rn×ρ is an orthogonal matrix containing the left
singular vectors, Σ ∈ Rρ×ρ is a diagonal matrix con-
taining the singular values σ1 ≥ σ2 ≥ . . . σρ > 0, and
V ∈ Rd×ρ is a matrix containing the right singular
vectors. The spectral norm of A is ‖A‖2 = σ1.

Matrix Sampling Formalism: Let A be the data
matrix consisting of n points and d dimensions, S ∈
Rd×r be a matrix such that AS ∈ Rn×r contains r
columns of A (S is a sampling matrix as it samples r
columns of A). Let D ∈ Rr×r be the diagonal matrix
such that ASD ∈ Rn×r rescales the columns of A that
are in AS. We will replace the sampling and re-scaling
matrices by a single matrix R ∈ Rd×r, where R = SD
first samples and then rescales r columns of A.

Let X be a generic data matrix in d dimensions whose
rows are data vectors xTi , and let Y be the diago-
nal label matrix whose diagonal entries are the labels,
Yii = yi. Let α = [α1, α2, . . . , αn] ∈ Rn be the vec-
tor of lagrange multipliers to be determined by solving
eqn. (2). In matrix form, the SVM dual optimization
problem is

maxα : 1Tα− 1
2α

TYXXTYα

subject to: 1TYα = 0; 0 ≤ α ≤ C.
(2)

(In the above, 1, 0, C are vectors with the implied
constant entry.) When the data and label matrices
contain all the data, we will emphasize this using the
notation Xtr ∈ Rn×d, Ytr ∈ Rn×n. Solving (2) with
these full data matrices gives a solution α̇∗. The data
xi for which α̇∗i > 0 are support vectors and we de-
note by Xsv ∈ Rp×d, Ysv ∈ Rp×p the data and la-
bel matrices containing only the p support vectors.
Solving (2) with (Xtr,Ytr) or (Xsv,Ysv) result in
the same classifier. Let α∗ be the solution to (2)
for the support vector data. The optimal separating
hyperplane is w∗ = (Xtr)TYtrα̇∗ = (Xsv)TYsvα∗,
where Xsv is the support vector matrix. The geo-
metric margin of the optimal separating hyperplane is

γ∗ = 1/ ‖w∗‖2, where ‖w∗‖22 =
∑n
i=1 α

∗
i . The data

radius is B = minx∗ maxxi ‖xi − x∗‖2.

Our goal is to study how the SVM performs when run
in the sampled feature space. Let X, Y be data and
label matrices (such as those above) and R ∈ Rd×r a
sampling and rescaling matrix which selects r columns
of X. The transformed dataset into the r selected fea-
tures is X̃ = XR, and the SVM optimization problem
in this feature space becomes

maxα̂ : 1T α̂− 1
2 α̂

TYXRRTXTYα̂,

subject to: 1TYα̂ = 0; 0 ≤ α̂ ≤ C.
(3)

For the supervised setting, we select features from the
support vector matrix and so we set X = Xsv and
Y = Ysv and we select r1 � d features using R. For
the unsupervised setting, we select features from the
full data matrix and so we set X = Xtr and Y = Ytr

and we select r2 � d features using R.

3 Our main tools

In this section, we describe our main tools of feature
selection from the numerical linear algebra literature,
namely single-set spectral sparsification and leverage-
score sampling.
Single-set Spectral Sparsification. The BSS algo-
rithm (Batson et al. (2009)) is a deterministic greedy
technique that selects columns one at a time. The
algorithm samples r columns in deterministic time,
hence the name deterministic sampling. Consider the
input matrix as a set of d column vectors VT =
[v1,v2, ....,vd], with vi ∈ R` (i = 1, .., d) . Given `
and r > `, we iterate over τ = 0, 1, 2, ..r − 1. De-
fine the parameters Lτ = τ −

√
r`, δL = 1, δU =(

1 +
√
`/r
)
/
(

1−
√
`/r
)

and Uτ = δU

(
τ +
√
`r
)

.

For U,L ∈ R and A ∈ R`×` a symmetric positive
definite matrix with eigenvalues λ1, λ2, ..., λ`, define
Φ (L,A) =

∑`
i=1

1
λi−L and Φ̂ (U,A) =

∑`
i=1

1
U−λi as

the lower and upper potentials respectively. These po-
tential functions measure how far the eigenvalues of A
are from the upper and lower barriers U and L respec-
tively. We define L (v, δL,A, L) and U (v, δU ,A, U) as
follows:

L (v, δL,A, L) =

vT (A− (L+ δL) I`)
−2

v

Φ (L+ δL,A)− Φ (L,A)
− vT (A− (L+ δL) I`)

−1
v

U (v, δU ,A, U) =

vT ((U + δU ) I` −A)
−2

v

Φ̂ (U,A)− Φ̂ (U + δU ,A)
+vT ((U + δU ) I` −A)

−1
v.

At every iteration, there exists an index iτ and a
weight tτ > 0 such that, tτ

−1 ≤ L (vi, δL,A, L)
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and tτ
−1 ≥ U (vi, δU ,A, U) . Thus, there will be

at most r columns selected after τ iterations. The
running time of the algorithm is dominated by the
search for an index iτ satisfying U (vi, δU ,Aτ , Uτ ) ≤
L (vi, δL,Aτ , Lτ ) and computing the weight tτ . One
needs to compute the upper and lower potentials
Φ̂ (U,A) and Φ (L,A) and hence the eigenvalues of
A. Cost per iteration is O

(
`3
)

and the total cost is

O
(
r`3
)
. For i = 1, .., d, we need to compute L and U

for every vi which can be done in O
(
d`2
)

for every

iteration, for a total of O
(
rd`2

)
. Thus total running

time of the algorithm is O
(
rd`2

)
. We include the al-

gorithm in the supplementary material. We present
the following lemma for the single-set spectral sparsi-
fication algorithm. The proof is included in the sup-
plementary material.

Lemma 1. Given V ∈ Rd×` satisfying VTV = I` and
r > `, we can deterministically construct sampling and
rescaling matrices S ∈ Rd×r and D ∈ Rr×r such that

for R = SD,
∥∥∥VTV −VTRRTV

∥∥∥
2
≤ 3
√
`/r

Leverage-Score Sampling. Our randomized feature
selection method is based on importance sampling or
the so-called leverage-score sampling of Dasgupta et al.
(2007). Let V be the top-ρ right singular vectors of
the training set X. A carefully chosen probability dis-
tribution of the form

pi =
‖Vi‖22
n

, for i = 1, 2, ..., d, (4)

i.e. proportional to the squared Euclidean norms of
the rows of the right-singular vectors is constructed.
Select r rows of V in i.i.d trials and re-scale the rows
with 1/

√
pi. The time complexity is dominated by the

time to compute the SVD of X.

Lemma 2. Let ε ∈ (0, 1/2] be an accuracy parameter
and δ ∈ (0, 1) be the failure probability. Given V ∈
Rd×` satisfying VTV = I`. Let p̃ = min{1, rpi}, let

pi be as Eqn. 4 and let r = O
(
n
ε2 log

(
n

ε2
√
δ

))
. Con-

struct the sampling and rescaling matrix R. Then with

probability at least 0.99,
∥∥∥VTV −VTRRTV

∥∥∥
2
≤ ε.

4 Theoretical Analysis

Though our feature selection algorithms are relatively
simple, we show that running the linear SVM in the
selected feature space results in a classifier with prov-
ably comparable margin to the SVM classifier obtained
from the full feature space. Our main results are in
Theorems 1 & 2. We state the theorems for BSS, but
similar theorems can be stated for leverage-score sam-
pling. We include them in the Supplementary mate-
rial.

4.1 Margin is preserved by Supervised
Feature Selection

Theorem 1 says that you get comparable margin from
solving the SVM on the support vectors (equivalently
all the data) and from solving the SVM on support vec-
tors in a feature space with only O(#support vectors)
features.

Theorem 1. Given ε ∈ (0, 1), run supervised BSS-
feature selection on Xsv with r1 = 36p/ε2, to obtain
the feature sampling and rescaling matrix R. Let γ∗

and γ̃∗ be the margins obtained by solving the SVM
dual (2) with (Xsv,Ysv) and (XsvR,Ysv) respectively.
Then, γ̃∗2 ≥ (1− ε) γ∗2.

Proof. Let Xtr ∈ Rn×d, Ytr ∈ Rn×n be the feature
matrix and class labels of the training set (as defined

in Section 2) and let α̇∗ = [α∗1, α
∗
2, . . . , α

∗
n]
T ∈ Rn

be the vector achieving the optimal solution for the
problem of eqn. (2). Then,

Zopt =
n∑
j=1

α̇∗j −
1

2
α̇∗TYtrXtr

(
Xtr

)T
Ytrα̇∗ (5)

Let p ≤ n be the support vectors with α̇j > 0. Let

α∗ =
[
α∗1, α

∗
2, . . . , α

∗
p

]T ∈ Rp be the vector achieving
the optimal solution for the problem of eqn. (5). Let
Xsv ∈ Rp×d, Ysv ∈ Rp×p be the support vector matrix
and the corresponding labels respectively. Let E =
VTV − VTRRTV. Then, we can write eqn (5) in
terms of support vectors as,

Zopt =

p∑
i=1

α∗i −
1

2
α∗TYsvXsv (Xsv)

T
Ysvα∗

=

p∑
i=1

α∗i −
1

2
α∗TYsvUΣVTVΣUTYsvα∗

=

p∑
i=1

α∗i −
1

2
α∗TYsvUΣVTRRTVΣUTYsvα∗

−1

2
α∗TYsvUΣEΣUTYsvα∗. (6)

Let α̃∗ =
[
α̃∗1, α̃

∗
2, . . . , α̃

∗
p

]T ∈ Rp be the vector achiev-
ing the optimal solution for the dimensionally-reduced
SVM problem of eqn. (6) using X̃

sv
= XsvR. Using

the SVD of Xsv,

Z̃opt =

p∑
i=1

α̃∗i −
1

2
α̃∗TYsvUΣVTRRTVΣUTYsvα̃∗.

(7)
Since the constraints on α∗, α̃∗ do not depend on the
data it is clear that α̃∗ is a feasible solution for the
problem of eqn. (6). Thus, from the optimality of α∗,
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and using eqn. (7), it follows that

Zopt =

p∑
i=1

α∗i −
1

2
α∗TYsvUΣVTRRTVΣUTYsvα∗

−1

2
α∗TYsvUΣEΣUTYsvα∗

≥
p∑
i=1

α̃∗i −
1

2
α̃∗TYsvUΣVTRRTVΣUTYsvα̃∗

−1

2
α̃∗TYsvUΣEΣUTYsvα̃∗

= Z̃opt −
1

2
α̃∗TYsvUΣEΣUTYsvα̃∗. (8)

We now analyze the second term using standard sub-
multiplicativity properties and VTV = I. Taking
Q = α̃∗TYsvUΣ,

1

2
α̃∗TYsvUΣEΣUTYsvα̃∗

≤ 1

2
‖Q‖2 ‖E‖2

∥∥∥QT
∥∥∥
2

=
1

2
‖E‖2 ‖Q‖

2
2

=
1

2
‖E‖2

∥∥∥α̃∗TYsvUΣVT
∥∥∥2
2

=
1

2
‖E‖2

∥∥α̃∗TYsvXsv
∥∥2
2
. (9)

Combining eqns. (8) and (9), we get

Zopt ≥ Z̃opt −
1

2
‖E‖2

∥∥α̃∗TYsvXsv
∥∥2
2
. (10)

We now proceed to bound the second term in the right-
hand side of the above equation. Towards that end,
we bound the difference:∣∣∣α̃∗TYsvUΣ

(
VTRRTV −VTV

)
ΣUTYsvα̃∗

∣∣∣
=

∣∣∣α̃∗TYsvUΣ (−E) ΣUTYsvα̃∗
∣∣∣

≤ ‖E‖2
∥∥α̃∗TYsvUΣ

∥∥2
2

= ‖E‖2
∥∥∥α̃∗TYsvUΣVT

∥∥∥2
2

= ‖E‖2
∥∥α̃∗TYsvXsv

∥∥2
2
.

We can rewrite the above inequality as∣∣∣ ∥∥α̃∗TYsvXsvR
∥∥2
2
−
∥∥α̃∗TYsvXsv

∥∥2
2

∣∣∣
≤ ‖E‖2

∥∥α̃∗TYsvXsv
∥∥2
2

≤
‖E‖2

1− ‖E‖2

∥∥α̃∗TYsvXsvR
∥∥2
2
.

Combining with eqn. (10), we get

Zopt ≥ Z̃opt −
1

2

(
‖E‖2

1− ‖E‖2

) ∥∥α̃∗TYsvXsvR
∥∥2
2
.

(11)

Now recall that w∗T = α∗TYsvXsv, w̃∗T =
α̃∗TYsvXsvR, ‖w∗‖22 =

∑p
i=1 α

∗
i , and ‖w̃∗‖22 =∑p

i=1 α̃
∗
i . Then, the optimal solutions Zopt and Z̃opt

can be expressed as follows:

Zopt = ‖w∗‖22 −
1

2
‖w∗‖22 =

1

2
‖w∗‖22 . (12)

Z̃opt = ‖w̃∗‖22 −
1

2
‖w̃∗‖22 =

1

2
‖w̃∗‖22 . (13)

Combining eqns. (11), (12) and (13), we get ‖w∗‖22 ≥
‖w̃∗‖22 −

(
‖E‖2

1−‖E‖2

)
‖w̃∗‖22 =

(
1− ‖E‖2

1−‖E‖2

)
‖w̃∗‖22 .

Let γ∗ = ‖w∗‖−12 be the geometric margin of the prob-

lem of eqn. (6) and let γ̃∗ = ‖w̃∗‖−12 be the geometric
margin of the problem of eqn. (7). Then, the above

equation implies: γ∗2 ≤
(

1− ‖E‖2
1−‖E‖2

)−1
γ̃∗2 ⇒ γ̃∗2 ≥(

1− ‖E‖2
1−‖E‖2

)
γ∗2. The result follows because ‖E‖2 ≤

ε/2 by our choice of r, and so ‖E‖2/(1−‖E‖2) ≤ ε.

4.2 Geometry is preserved by Unsupervised
Feature Selection

In the unsupervised setting, the next theorem says
that with a number of features proportional to the
rank of the training data (which is at most the num-
ber of data points), we preserve B2/γ2, thus ensuring
comparable generalization error bounds (B is the ra-
dius of the minimum enclosing ball).

Theorem 2. Given ε ∈ (0, 1), run unsupervised
BSS-feature selection on the full data Xtr with r2 =
O
(
ρ/ε2

)
, where ρ = rank(Xtr), to obtain the feature

sampling and rescaling matrix R. Let γ∗ and γ̃∗ be
the margins obtained by solving the SVM dual (2) with
(Xtr,Ytr) and (XtrR,Ytr) respectively; and, let B and
B̃ be the radii for the data matrices Xtr and XtrR re-
spectively. Then,

B̃2

γ̃∗2
≤ (1 + ε)

(1− ε)
B2

γ∗2
= (1 +O(ε))

B2

γ∗2
.

Proof. (sketch) The proof has two parts. First, as in
Theorem 1 we prove that γ̃∗2 ≥ (1− ε) · γ∗2. This
proof is almost identical to the proof of Theorem 1
(replacing (Xsv,Ysv) with (Xtr,Ytr)), and so we omit
it. Second, we prove that B̃2 ≤ (1+ε)B2. We give the
result (with proof) in the supplementary material as
Theorem 3 . The theorem follows by combining these
two results.

5 Experiments

We compared BSS and leverage-score sampling with
RFE (Guyon et al. (2002)), LPSVM (Fung and
Mangasarian (2004)), rank-revealing QR factoriza-
tion (RRQR), random feature selection and full-data
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Table 1: Most frequently selected features using the synthetic dataset.

r1 = 30 r1 = 40
k = 40 k = 50 k = 40 k = 50

BSS 40, 39, 34, 36, 37 50, 49, 48, 47, 44 40, 39, 34, 37, 36 50, 49, 48, 47, 44
Lvg 40, 39, 37, 36, 34 50, 49, 48, 47, 46 40, 39, 37, 31, 32 50, 49, 48, 31, 47
RFE 40, 39, 38, 37, 36 50, 49, 48, 47, 46 40, 39, 38, 37, 36 50, 49, 48, 47, 46

LPSVM 40, 39, 38, 37, 34 50, 49, 48, 43, 40 40, 39, 38, 37, 34 50, 49, 48, 43, 40
RRQR 40, 30, 29, 28, 27 50, 30, 29, 28, 27 40, 39, 38, 37, 36 50, 40, 39, 38, 37

without feature selection on synthetic and real-world
datasets. For the supervised case, we first run SVM on
the training set, then run a feature selection method
on the support-vector set and recalibrate the model us-
ing the support vector-set. For unsupervised feature
selection, we perform feature selection on the train-
ing set. For LPSVM, we were not able to control the
number of features and report the out-of-sample er-
ror using the features output by the algorithm. We
did not extrapolate the values of out-of-sample er-
ror for LPSVM. We repeated random feature selec-
tion and leverage-score sampling five times. We per-
formed ten-fold cross-validation and repeated it ten
times. For medium-scale datasets like TechTC-300
we do not perform approximate BSS. For large-scale
datasets like Reuters-CCAT (Lewis et al. (2004)) we
use the approximate BSS method as described in Sec-
tion 5.4. We used LIBSVM (Chang and Lin (2011))
as our SVM solver for medium-scale datasets and LI-
BLINEAR (Fan et al. (2008)) for large-scale datasets.
We do not report running times in our experiments,
since feature selection is an offline-task. We imple-
mented all our algorithms in MATLAB R2013b on an
Intel i-7 processor with 16GB RAM. BSS and leverage-
score sampling are better than LPSVM and RRQR
and comparable to RFE on 49 TechTC-300 datasets.

5.1 BSS Implementation Issues
At every iteration, there can be multiple columns
which satisfy the condition U (vi, δU ,Aτ , Uτ ) ≤
L (vi, δL,Aτ , Lτ ) . Batson et al. (2009) suggest picking
any column which satisfies this constraint. Selecting a
column naively leaves out important features required
for classification. Therefore, we choose the column vi
which has not been selected in previous iterations and
whose Euclidean-norm is highest among the candidate
set. Columns with zero Euclidean norm never get se-
lected by the algorithm. In our implementation, we
do not use the data center as one of the inputs (since
computing the center involves solving a quadratic pro-
gram).

5.2 Experiments on Supervised Feature
Selection

Synthetic Data: We generate synthetic data as
described in Bhattacharyya (2004), where we control

the number of relevant features in the dataset. The
dataset has n data-points and d features. The class
label yi of each data-point was randomly chosen to be
1 or -1 with equal probability. The first k features of
each data-point xi are the relevant features and are
drawn from yiN (−j, 1) distribution, where N

(
µ, σ2

)
is a random normal distribution with mean µ and
variance σ2 and j varies from 1 to k. The remaining
(d−k) features are chosen from a N (0, 1) distribution
and are noisy features. By construction, among
the first k features, the kth feature has the most
discriminatory power, followed by (k − 1)th feature
and so on. We set n to 200 and d to 1000. We set k
to 40 and 50 and ran two sets of experiments. We set
the value of r1, i.e. the number of features selected,
to 30 and 40 for all experiments. We performed
ten-fold cross-validation and repeated it ten times.
We used LIBSVM with default settings and set C = 1.
We compared with the other methods. The mean
out-of-sample error was 0 for all methods for both
k = 40 and k = 50. Table 1 shows the set of five most
frequently selected features by the different methods
for one such synthetic dataset. The top features
picked up by the different methods are the relevant
features by construction and also have good discrim-
inatory power. This shows that supervised BSS and
leverage-score sampling are as good as any other
method in terms of feature selection. We repeated our
experiments on ten different synthetic datasets and
each time, the five most frequently selected features
were from the set of relevant features. Thus, by
selecting only 3% -4% of all features, we show that we
are able to obtain the most discriminatory features
along with good out-of-sample error using BSS and
leverage-score sampling.

TechTC-300: For our first real dataset, we use 49
datasets of TechTC-300 (Davidov et al. (2004)) which
contain binary classification tasks. Each data matrix
consists of 150-280 documents (the rows of the data
matrix), and each document is described with respect
to 10,000-50,000 words (features are columns of the
matrix). We removed all words with at most four let-
ters from the datasets. We set the parameter C = 1
in LIBSVM and used default settings. We tried dif-
ferent values of C for the full-dataset and the out-
of-sample error averaged over 49 TechTC-300 docu-
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Figure 1: Plots of out-of-sample error (eout) of Supervised and Unsupervised BSS and leverage-score compared with other
methods for 49 TechTC-300 documents averaged over ten ten-fold cross validation experiments. Vertical bars represent
standard deviation.

Table 2: A subset of the TechTC matrices of our study
id1 id2

(i) Arts: Music: Styles: Opera Arts: Education: Language: Reading Instructions
(ii) Arts: Music: Styles: Opera US Navy: Decommisioned Attack Submarines
(iii) US: Michigan: Travel & Tourism Recreation:Sailing Clubs: UK
(iv) US: Michigan: Travel & Tourism Science: Chemistry: Analytical: Products
(v) US: Colorado: Localities: Boulder Europe: Ireland: Dublin: Localities

Table 3: Frequently occurring terms of the five TechTC-300 datasets of Table 2 selected by supervised BSS and
Leverage-score sampling.

BSS Leverage-score Sampling
(i) reading, education, opera, frame reading, opera, frame, spacer
(ii) submarine, hullnumber, opera, tickets hullnumber, opera, music, tickets
(iii) michigan, vacation, yacht, sailing sailing, yacht, michigan, vacation
(iv) chemical, michigan, environmental, asbestos travel, vacation, michigan, services, environmental
(v) ireland, dublin, swords, boulder, colorado ireland, boulder, swords, school, grade

Table 4: Results of Approximate BSS. CCAT (train / test): (23149 / 781265), d=47236. Mean and standard deviation
(in parenthesis) of out-of-sample error (eout). Eout of full-data is 8.66 ± 0.54.

Eout r1 BSS (t = 128) BSS (t = 256) RRQR RFE LPSVM
CCAT 1024 10.53 (0.59) 10.35 (0.64) 9.97 (0.62) 8.92 (0.57) 9.97 (0.55)
CCAT 2048 11.13 (0.66) 10.63 (0.62) 10.04 (0.66) 8.56 (0.54) 9.97 (0.55)

ments did not change much, so we report the results
of C = 1. We set the number of features to 300, 400
and 500. Fig 1 shows the out-of-sample error for the
49 datasets for r1 = 300 and r1 = 500. We include
the results of r1 = 400 in the supplementary material.
For the supervised feature selection, BSS is compa-
rable to RFE and leverage-score sampling and better
than RRQR, LPSVM, full-data and uniform sampling

in terms of out-of-sample error. For LPSVM, the num-
ber of selected features averaged over 49 datasets was
greater than 500, but it performed worse than BSS
and leverage-score sampling. Leverage-score sampling
is comparable to BSS and better than RRQR, LPSVM,
full-data and uniform sampling and slightly worse than
RFE.
We list the most frequently occurring words selected
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by supervised BSS and leverage-score for the r1 = 300
case for five TechTC-300 datasets over 100 training
sets. Table 2 shows the names of the five TechTC-
300 document-term matrices. The words shown in
Table 3 were selected in all cross-validation experi-
ments for these five datasets. The words are closely
related to the categories to which the documents
belong, which shows that BSS and Leverage-score
sampling select important features from the support-
vector matrix. For example, for the document-pair
(ii), where the documents belong to the category of
“Arts:Music:Styles:Opera” and “US:Navy: Decommi-
sioned Attack Submarines”, the BSS algorithm selects
submarine, hullnumber, opera, tickets and Leverage-
score sampling selects hullnumber, opera, music, tick-
ets which are closely related to the two classes. Thus,
we see that using only 2%-4% of all features we are
able to obtain good out-of-sample error.

5.3 Experiments on Unsupervised Feature
Selection

For the unsupervised feature selection case, we per-
formed experiments on the same 49 TechTC-300
datasets and set r2 to 300, 400 and 500.We include
the results for r2 = 300 and r2 = 500 in Fig 1. For
LPSVM, the number of selected features averaged over
49 datasets was close to 300. In the unsupervised case,
BSS and leverage-score sampling are comparable to
each other and also comparable to the other methods
RRQR, LPSVM and RFE. These methods are better
than random feature selection and full-data without
feature selection. This shows that unsupervised BSS
and leverage-score sampling are competitive feature se-
lection algorithms.
Supervised feature selection is comparable to un-
supervised feature selection for BSS, Leverage-score
sampling and RFE, while unsupervised RRQR and
LPSVM are better than their supervised versions.
Running BSS (or leverage-score sampling) on the
support-vector set is equivalent to running BSS (or
leverage-score sampling) on the training data. How-
ever, RRQR and LPSVM are primarily used as unsu-
pervised feature selection techniques and so they per-
form well in that setting. RFE is a heuristic based
on SVM and running RFE on the support-vectors is
equivalent to running RFE on the training data.

5.4 Approximate BSS

We describe a heuristic to make supervised BSS scal-
able to large-scale datasets. For datasets with large
number of support vectors, we premultiply the sup-
port vector matrix X with a random gaussian matrix
G ∈ Rt×p to obtain X̂ = GX and then use BSS to
select features from the right singular vectors of X̂.
The right singular vectors of X̂ closely approximates

the right singular vectors of X. Hence the columns
selected from X̂ will be approximately same as the
columns selected from X. We performed experiments
on a subset of Reuters Corpus dataset, namely reuters-
CCAT, which contains binary classification task. We
used the L2-regularized L2-loss SVM formulation in
the dual form in LIBLINEAR and set the value of C
to 10. We experimented with different values of C
on the full-dataset, and since there was small change
in classificaton accuracy among the different values of
C, we chose C = 10 for our experiments. We pre-
multiplied the support vector matrix with a random
gaussian matrix of size t × p, where p is the number
of support vectors and t was set to 128 and 256. We
repeated our experiments five times using five differ-
ent random gaussian matrices to get around the ran-
domness. We set the value of r1 in BSS to 1024 and
2048. LPSVM selects 1898 features for CCAT. Table 4
shows the results of our experiments. We observe that
the out-of-sample error using approx-BSS is close to
that of RRQR and comparable to RFE, LPSVM and
full-data. The out-of-sample error of approx-BSS de-
creases with an increase in the value of t. This shows
that we get a good approximation of the right singular
vectors of the support vector matrix with an increase
in number of projections.

6 Conclusions

Our simple method of extending an unsupervised fea-
ture selection method into a supervised one for SVM
not only has a provable guarantee, but also works well
empirically: BSS and leverage-score sampling are com-
parable and often better than prior state-of-the-art
feature selection methods for SVM, and those meth-
ods don’t come with guarantees.
Our supervised sparsification algorithms only preserve
the margin for the support vectors in the feature space.
We do not make any claims about the margin of the
full data in the feature space constructed from the sup-
port vectors. This appears challenging and it would be
interesting to see progress made in this direction: can
one choose O(#support vectors) features for the full
data set and obtain provable guarantees on the mar-
gin and data radius? There have been recent advances
in approximate leverage-scores for large-scale datasets.
A possible future work in this direction would be to see
if those algorithms indeed work well with SVMs.
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