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Abstract

Let X be a data matrix of rank ρ, repre-
senting n points in d-dimensional space. The
linear support vector machine constructs a
hyperplane separator that maximizes the 1-
norm soft margin. We develop a new obliv-
ious dimension reduction technique which is
precomputed and can be applied to any input
matrix X. We prove that, with high probabil-
ity, the margin and minimum enclosing ball
in the feature space are preserved to within
ε-relative error, ensuring comparable gener-
alization as in the original space. We present
extensive experiments with real and synthetic
data to support our theory.

1 Introduction

The Support Vector Machine (SVM) (Cristianini and
Shawe-Taylor, 2000) is a popular classifier in machine
learning today. The training data set consists of n
points xi ∈ Rd, with respective labels yi ∈ {−1,+1}
for i = 1 . . . n. For linearly separable data, the primal
form of the SVM learning problem is to construct a
hyperplane w∗ which maximizes the geometric margin
(the minimum distance of a data point to the hyper-
plane), while separating the data. For non-separable
data the “soft” 1-norm margin is maximized. The dual
lagrangian formulation of the problem leads to the fol-
lowing quadratic program:

max
{αi}

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjx
T
i xj

subject to

n∑
i=1

yiαi = 0,

0 ≤ αi ≤ C, i = 1 . . . n.

(1)
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In the above formulation, the unknown lagrange mul-
tipliers {αi}ni=1 are constrained to lie inside the “box
constraint” [0, C]n, where C is part of the input. In
order to measure the out-of-sample performance of the
SVM, we can use the VC-dimension of fat-separators.
Assuming that the data lie in a ball of radius B,
and that the hypothesis set consists of hyperplanes of
width γ (corresponding to the margin), then the V C-
dimension of this hypothesis set is O(B2/γ2) (Vapnik,
1998). Now, given the in-sample error, we can obtain
a bound for the out-of-sample error, which is mono-
tonic in the VC-dimension (Vapnik and Chervonenkis,
1971).

The main intuition behind our work is that if we can
preserve a subspace geometry, then we should be able
to preserve the performance of a distance based al-
gorithm, like the SVM classifier. We construct di-
mension reduction matrices R ∈ Rd×r which produce
r-dimensional feature vectors x̃i = RTxi; the matri-
ces R do not depend on the data. We show that for
the data in the dimension-reduced space, the mar-
gin of separability and the minimum enclosing ball
radius are preserved, since the subspace geometry is
preserved. So, an SVM with an appropriate struc-
ture defined by the margin (width) of the hyperplanes
(Vapnik and Chervonenkis, 1971) will have compara-
ble VC-dimension and, thus, generalization error. To
state our results precisely, we first need some SVM
basics.

1.1 Notation and SVM Basics

A,B, . . . denote matrices and α,b, . . . denote column
vectors; ei (for all i = 1 . . . n) is the standard ba-
sis, whose dimensionality will be clear from context;
and In is the n × n identity matrix. The Singular
Value Decomposition (SVD) of a matrix A ∈ Rn×d of
rank ρ ≤ min {n, d} is equal to A = UΣVT , where
U ∈ Rn×ρ is an orthogonal matrix containing the left
singular vectors, Σ ∈ Rρ×ρ is a diagonal matrix con-
taining the singular values σ1 ≥ σ2 ≥ . . . σρ > 0, and
V ∈ Rd×ρ is a matrix containing the right singular
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vectors. The spectral norm of A is ‖A‖2 = σ1.

We introduce matrix notation that we will use for
the remainder of the paper. Let X ∈ Rn×d be the
matrix whose rows are the vectors xTi , Y ∈ Rn×n
be the diagonal matrix with entries Yii = yi, and
α = [α1, α2, . . . , αn] ∈ Rn be the vector of lagrange
multipliers to be determined by solving eqn. (1). The
SVM optimization problem is

max
α

1Tα− 1

2
αTYXXTYα

subject to 1TYα = 0; and 0 ≤ α ≤ C.
(2)

(In the above, 1, 0, C are vectors with the implied
constant entry.) Let α∗ be an optimal solution of the
above problem. The optimal separating hyperplane is
given by w∗ = XTYα∗ =

∑n
i=1 yiα

∗
ixi, and the points

xi for which α∗i > 0, i.e., the points which appear in the
expansion w∗, are the support vectors. The geometric
margin, γ∗, of this canonical optimal hyperplane is
γ∗ = 1/ ‖w∗‖2, where ‖w∗‖22 =

∑n
i=1 α

∗
i . The data

radius is B = minx∗ maxxi
‖xi − x∗‖2. It is this γ∗

and B that factor into the generalization performance
of the SVM through the ratio B/γ∗.

1.2 Dimension Reduction

Our goal is to study how the SVM performs under (lin-
ear) dimensionality reduction transformations in the
feature space. Let R ∈ Rd×r be the dimension re-
duction matrix that reduces the dimensionality of the
input from d to r < d. We will choose R to be a
random projection matrix (see Section 2). The trans-
formed dataset into r dimensions is given by X̃ = XR,
and the SVM optimization problem becomes

max
α̃

1T α̃− 1

2
α̃TYXRRTXTYα̃,

subject to 1TYα̃ = 0, and 0 ≤ α̃ ≤ C.
(3)

Solving the dimensionally-reduced problem above is
computationally more efficient than solving the orig-
inal, d-dimensional problem. We will present a con-
struction for R that leverages the fast Hadamard
transform. The running time needed to apply this
construction to the original data matrix is O (nd log r).
Notice that while this running time is nearly linear on
the size of the original data, it does not take advantage
of any sparsity in the input. In order to address this
deficiency, we leverage the recent work of Clarkson and
Woodruff (2013), which proposes a construction for R
that can be applied to X in O

(
nnz(X) + poly

(
nε−1

))
time; here nnz (X) denotes the number of non-zero
entries of X. To the best of our knowledge, this is
the first independent implementation and evaluation
of this potentially ground-breaking random projection

technique (a few experimental results were presented
by Clarkson and Woodruff (2013)). All constructions
for R are oblivious of the data and hence they can be
precomputed. Also, all generalization bounds that de-
pend on the final margin and radius of the data will
continue to hold.

1.3 Our Contribution

Let ρ be the rank of X. In the transformed space,
let the resulting margin after solving the optimization
problem be γ̃∗, and assume that the projected data
have data radius B̃. Our main theoretical result is to
show that, for suitably chosen values of r, both the
margin and the data radius are preserved to relative
error:

γ̃∗2 ≥ (1− ε) γ∗2; B̃2 ≤ (1 + ε)B2.

Thus, it is possible to obliviously reduce the di-
mension of the data while preserving the good
generalization properties of the SVM. We briefly
discuss the appropriate values of r: if R is the
randomized Hadamard transform, we need to set
r = O

(
ρε−2 · log

(
ρdδ−1

)
· log

(
ρε−2δ−1 log

(
ρdδ−1

)))
;

if R is constructed as described in Clark-
son and Woodruff (2013), then r =
O
(
ρε−4 log (ρ/δε) (ρ+ log (1/δε))

)
. The running

time needed to apply the former transform on X is
O (nd log r); the running time needed to apply the
latter transform is O

(
nnz(X) + poly

(
nε−1

))
.

1.4 Prior work

The work most closely related to our results is that of
Krishnan et al. (2008), which improved upon Balcazar
et al. (2001), and showed that by using sub-problems
based on Gaussian random projections, one can obtain
a solution to the SVM problem with a margin that
is relative-error close to the optimal. Their sampling
complexity (the parameter r in our parlance) depends
on B4, and, most importantly, on 1/γ∗2. This bound
is not directly comparable to our result, which only
depends on the rank of the data manifold, and holds
regardless of the margin of the original problem (which
could be arbitrarily small). Our results dramatically
improve the running time needed to apply the random
projections; our running times are (theoretically) lin-
ear in the number of non-zero entries in X, whereas
Krishnan et al. (2008) necessitates O(ndr) time to ap-
ply R on X.

Shi et al. (2012) discussed the theory of margin and an-
gle preservation after random projections using Gaus-
sian matrices for binary and multi-class problems.
There are two main differences between their result
and ours. They show margin preservation to within
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additive error, whereas we give margin preservation
to within relative error. This is a big difference, es-
pecially when the margin is small. Moreover, they
analyze only the separable case. We analyze the gen-
eral non-separable dual problem and give a result in
terms of the norm of the weight vector. For the sepa-
rable case, the norm of the weight vector directly re-
lates to the margin. For the non-separable case, one
has to analyze the actual quadratic program, and our
result essentially claims that the solution in the trans-
formed space will have comparably regularized weights
as the solution in the original space. Shi et al. (2009)
used hash kernels (which approximately preserved in-
ner product like random projections), to design a bi-
ased approximation of the kernel matrix and showed
that their generalization bounds on the hash kernel
and the original kernel differed by the inverse of the
product of the margin and number of datapoints. For
smaller margins, this difference will be high. Our gen-
eralization bounds are independent of the original mar-
gin and hold for arbitrarily small margins.

Zhang et al. (2012) developed algorithms to accurately
recover the optimal solution to the original SVM op-
timization problem using a Gaussian random projec-
tion. This is different from our work since we analyze
generalization performance using random projection
and do not try to recover the solution. Finally, it is
worth noting that random projection techniques have
been applied extensively in the compressed sensing lit-
erature, and our theorems have the same flavor to a
number of results in that area. However, to the best
of our knowledge, the compressed sensing literature
has not investigated the 1-norm soft-margin SVM op-
timization problem.

2 Random Projection Matrices

Random projections are extremely popular techniques
in order to deal with the curse-of-dimensionality. Let
the data matrix be X ∈ Rn×d (n data points in Rd)
and let R ∈ Rd×r (with r � d) be a random pro-
jection matrix. Then, the projected data matrix is
X̃ = XR ∈ Rn×r (n points in Rr). If R is carefully
chosen, then all pairwise Euclidean distances are pre-
served with high probability. Thus, the geometry of
the set of points in preserved, and it is reasonable to
hope that an optimization objective such as the one
that appears in SVMs will be only mildly perturbed.

There are many possible constructions for the matrix
R that preserve pairwise distances. The most com-
mon one is a matrix R whose entries are i.i.d. standard
Gaussian random variables (Indyk and Motwani, 1998;
Dasgupta and Gupta, 2003). Achlioptas (2003) argued
that the random sign matrix – RS for short – i.e., a
matrix whose entries are set to +1 or −1 with equal

probability, also works. Li et al. (2006) used the sparse
random projection matrix whose entries were set to +1
or −1 with probability 1/2

√
d and 0 with probability

(1 − 1/
√
d). These constructions take O (ndr) time

to compute X̃. More recently, faster methods of con-
structing random projections have been developed, us-
ing, for example, the Fast Hadamard Transform (Ailon
and Chazelle, 2006) – FHT for short. The Hadamard-
Walsh matrix for any d that is a power of two is defined
as

Hd =

[
Hd/2 Hd/2

Hd/2 −Hd/2

]
∈ Rd×d,

with H1 = +1. The normalized Hadamard-Walsh ma-

trix is
√

1
dHd, which we simply denote by H. We set:

Rsrht =

√
d

r
DHS, (4)

a rescaled product of three matrices. D ∈ Rd×d is a
random diagonal matrix with Dii equal to ±1 with
probability 1

2 . H ∈ Rd×d is the normalized Hadamard
transform matrix. S ∈ Rd×r is a random sampling ma-
trix which randomly samples columns of DH; specif-
ically, each of the r columns of S is independent and
selected uniformly at random (with replacement) from
the columns of Id, the identity matrix. This construc-
tion assumes that d is a power of two. If not, we just
pad X with columns of zeros (affecting run times by
at most a factor of two). The important property of
this transform is that the projected features X̃ = XR
can be computed efficiently in O (nd log r) time (see
Theorem 2.1 of Ailon and Liberty (2008) for details).
An important property of R (that follows from prior
work) is that it preserves orthogonality. While the
randomized Hadamard transform is a major improve-
ment over prior work, it does not take advantage of any
sparsity in the input matrix. To fix this, very recent
work (Clarkson and Woodruff, 2013) shows that care-
fully constructed random projection matrices can be
applied in input sparsity time by making use of gener-
alized sparse embedding matrices. Their construction
of R is somewhat complicated and we present it in the
full version of our paper (Paul et al., 2012). We will
call the method of Clarkson and Woodruff (2013) to
construct a sparse embedding matrix CW.

3 Geometry of SVM is preserved
under Random Projection

We now state and prove our main result, namely that
solving the SVM optimization problem in the pro-
jected space results in comparable margin and data
radius as in the original space. These results are de-
pendent on the main technical result from numerical
linear algebra literature which we state in the lemma
below.
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Lemma 1. Fix ε ∈ (0, 12 ], δ ∈ (0, 1]. Let V ∈ Rd×ρ
be any matrix with orthonormal columns and set R =
Rsrht as in eqn (4), with r = O(ρε−2 · log(ρdδ−1) ·
log(ρε−2δ−1 log(ρdδ−1))). Then, with probability at
least 1− δ, ‖VTV −VTRRTV‖2 ≤ ε.

Remark. Let R be the random sign matrix described
in Section 2. Then, ‖VTV −VTRRTV‖2 ≤ ε still
holds with probability at least 1 − 1/n, by setting
r = O

(
ρε−2 log ρ log d

)
. The proof of this result is

essentially the same, using Theorem 3.1(i) of Magen
and Zouzias (2011). A similar result can be proven for
the construction of Clarkson and Woodruff (2013) by
setting r = O

(
ρε−4 log (ρ/δε) (ρ+ log (1/δε))

)
. These

lemmas can be found in the full version of our paper
(Paul et al., 2012).

Theorem 1. Let ε be an accuracy parame-
ter, R ∈ Rd×r be any matrix for which
‖VTV −VTRRTV‖2 ≤ ε, and let X̃ = XR. Let
γ∗ and γ̃∗ be the margins obtained by solving the SVM
problems using data X and X̃ respectively (eqns. (2)
and (3)). Then, γ̃∗2 ≥ (1− ε) · γ∗2.

In words, Theorem 1 argues that for suitably large r
(linear in the rank of X up to logarithmic factors), the
margin is preserved. Theorem 1 will follow from the
technical result that ‖VTV −VTRRTV‖2 ≤ ε holds
with high probability depending on the choice of the
random projection matrix.
Proof: (of Theorem 1) Let E = VTV − VTRRTV,

where E ∈ Rρ×ρ, and α∗ = [α∗1, α
∗
2, . . . , α

∗
n]
T ∈ Rn

be the vector achieving the optimal solution for the
problem of eqn. (2) in Section 1. Then,

Zopt =

n∑
i=1

α∗i −
1

2
α∗TYXXTYα∗

=
n∑
i=1

α∗i −
1

2
α∗TYUΣVTVΣUTYα∗

=

n∑
i=1

α∗i −
1

2
α∗TYUΣVTRRTVΣUTYα∗

−1

2
α∗TYUΣEΣUTYα∗. (5)

Let α̃∗ = [α̃∗1, α̃
∗
2, . . . , α̃

∗
n]
T ∈ Rn be the vector achiev-

ing the optimal solution for the dimensionally-reduced
SVM problem of eqn. (3) using X̃ = XR. Using the
SVD of X, we get

Z̃opt =

n∑
i=1

α̃∗i −
1

2
α̃∗TYUΣVTRRTVΣUTYα̃∗.

(6)
Since the constraints on α∗, α̃∗ do not depend on the
data (see eqns. (2) and (3)), it is clear that α̃∗ is a
feasible solution for the problem of eqn. (2). Thus,
from the optimality of α∗, and using eqn. (6), it follows
that

Zopt =

n∑
i=1

α∗i −
1

2
α∗TYUΣVTRRTVΣUTYα∗

−1

2
α∗TYUΣEΣUTYα∗

≥
n∑
i=1

α̃∗i −
1

2
α̃∗TYUΣVTRRTVΣUTYα̃∗

−1

2
α̃∗TYUΣEΣUTYα̃∗

= Z̃opt −
1

2
α̃∗TYUΣEΣUTYα̃∗. (7)

We now analyze the second term using standard sub-
multiplicativity properties and VTV = Iρ. Taking
Q = α̃∗TYUΣ,

1

2
α̃∗TYUΣEΣUTYα̃∗ ≤ 1

2
‖Q‖2 ‖E‖2

∥∥∥QT
∥∥∥
2

=
1

2
‖E‖2 ‖Q‖

2
2

=
1

2
‖E‖2

∥∥∥α̃∗TYUΣVT
∥∥∥2
2

=
1

2
‖E‖2

∥∥α̃∗TYX
∥∥2
2
. (8)

Combining eqns. (7) and (8), we get

Zopt ≥ Z̃opt −
1

2
‖E‖2

∥∥α̃∗TYX
∥∥2
2
. (9)

We now proceed to bound the second term in the right-
hand side of the above equation. Towards that end,
we bound the difference:∣∣∣α̃∗TYXRRTXTYα̃∗ − α̃∗TYXXTYα̃∗

∣∣∣
=

∣∣∣α̃∗TYUΣ
(
VTRRTV −VTV

)
ΣUTYα̃∗

∣∣∣
=

∣∣∣α̃∗TYUΣ (−E) ΣUTYα̃∗
∣∣∣

≤ ‖E‖2
∥∥α̃∗TYUΣ

∥∥2
2

= ‖E‖2
∥∥∥α̃∗TYUΣVT

∥∥∥2
2

= ‖E‖2
∥∥α̃∗TYX

∥∥2
2
.

We can rewrite the above inequality as∣∣∣ ∥∥α̃∗TYXR
∥∥2
2
−
∥∥α̃∗TYX

∥∥2
2

∣∣∣ ≤ ‖E‖2
∥∥α̃∗TYX

∥∥2
2
;

thus, ∥∥α̃∗TYX
∥∥2
2
≤ 1

1− ‖E‖2

∥∥α̃∗TYXR
∥∥2
2
.

Combining with eqn. (9), we get

Zopt ≥ Z̃opt −
1

2

(
‖E‖2

1− ‖E‖2

) ∥∥α̃∗TYXR
∥∥2
2
. (10)

Now recall from our discussion in Section 1 that w∗T =
α∗TYX, w̃∗T = α̃∗TYXR, ‖w∗‖22 =

∑n
i=1 α

∗
i , and



     502

Paul, Boutsidis, Magdon-Ismail, Drineas

‖w̃∗‖22 =
∑n
i=1 α̃

∗
i . Then, the optimal solutions Zopt

and Z̃opt can be expressed as follows:

Zopt = ‖w∗‖22 −
1

2
‖w∗‖22 =

1

2
‖w∗‖22 , (11)

Z̃opt = ‖w̃∗‖22 −
1

2
‖w̃∗‖22 =

1

2
‖w̃∗‖22 . (12)

Combining eqns. (10), (11), and (12), we get

‖w∗‖22 ≥ ‖w̃∗‖22 −
(
‖E‖2

1− ‖E‖2

)
‖w̃∗‖22

=

(
1−

‖E‖2
1− ‖E‖2

)
‖w̃∗‖22 . (13)

Let γ∗ = ‖w∗‖−12 be the geometric margin of the prob-

lem of eqn. (2) and let γ̃∗ = ‖w̃∗‖−12 be the geometric
margin of the problem of eqn. (3). Then, the above
equations imply:

γ∗2 ≤
(

1−
‖E‖2

1− ‖E‖2

)−1
γ̃∗2

⇒ γ̃∗2 ≥
(

1−
‖E‖2

1− ‖E‖2

)
γ∗2. (14)

�

Our second theorem argues that the radius of the min-
imum ball enclosing all projected points (the rows of
the matrix XR) is very close to the radius of the min-
imum ball enclosing all original points (the rows of the
matrix X). The proof can be found in the full version
of our paper (Paul et al., 2012).

Theorem 2. Let ε be an accuracy parameter, δ ∈
(0, 1) and consider the SVM formulations of eqns. (2)
and (3), let B be the radius of the minimum ball en-
closing all points in the full-dimensional space, and let
B̃ be the radius of the ball enclosing all points in the
projected subspace. For R as in Theorem 1, with prob-
ability at least 1− δ, B̃2 ≤ (1 + ε)B2.

4 Experiments

We describe experimental evaluations on two real-
world datasets, namely a collection of document-term
matrices (the TechTC-300 dataset (Davidov et al.,
2004) and a population genetics dataset (the joint
Human Genome Diversity Panel or HGDP (Li et al.,
2008) and the HapMap Phase 3 data (Paschou et al.,
2010) and also on three synthetic datasets. The
synthetic datasets and the TechTC-300 dataset cor-
respond to binary classification tasks and the joint
HapMap-HGDP dataset corresponds to a multi-class
classification task, and our algorithms perform well
here as well.

In our experimental evaluations, we implemented ran-
dom projections using three different methods: RS,

FHT, and CW (see Section 2 for definitions) in MAT-
LAB version 7.13.0.564 (R2011b). We ran the algo-
rithms using the same values of r (the dimension of
the projected feature space) for all algorithms, but we
varied r across different datasets. We used LIBSVM
(Chang and Lin, 2011) as our linear SVM solver with
default settings. In all cases, we ran our experiments
on the original full data (referred to as “full” in the
results), as well as on the projected data. We parti-
tioned the data randomly for ten-fold cross-validation
in order to estimate out-of-sample error. We repeated
this partitioning ten times to get ten ten-fold cross-
validation experiments. In order to estimate the effect
of the randomness in the construction of the random
projection matrices, we repeated our cross-validation
experiments ten times using ten different random pro-
jection matrices for all datasets. We report in-sample
error (εin), out-of-sample error (εout), the time to com-
pute random projections (trp), the total time needed
to both compute random projections and run SVMs
on the lower-dimensional problem (trun), and the mar-
gin (γ). All results are averaged over the ten cross-
validation experiments and the ten choices of random
projection matrices. For each of the aforementioned
quantities, we report both its mean value µ and its
standard deviation σ. For the multi-class experiment
of Section 4.3, we do not report a margin.

Table 1: Synthetic data: εout decreases as a function of r in
all three families of matrices, using any of the three random
projection methods. µ and σ indicate the mean and the
standard deviation of εout over ten matrices in each family
D1, D2, and D3, ten ten-fold cross-validation experiments,
and ten choices of random projection matrices for the three
methods that we investigated (a total of 1,000 experiments
for each family of matrices).

εout Projected Dimension r
256 512 1024 full

D1
CW (µ) 24.08 19.45 16.66 15.10

(σ) 4.52 4.15 3.52 2.60
RS (µ) 24.1.0 19.46 16.36 15.10

(σ) 4.45 3.79 3.22 2.60
FHT (µ) 23.52 19.59 16.67 15.10

(σ) 4.21 4.05 3.37 2.60

D2
CW (µ) 25.94 21.07 17.33 15.44

(σ) 4.13 4.16 3.45 2.54
RS (µ) 25.80 20.80 17.47 15.44

(σ) 4.40 3.93 3.42 2.54
FHT (µ) 25.33 21.23 17.58 15.44

(σ) 3.69 4.24 3.53 2.54

D3
CW (µ) 27.62 22.97 18.93 15.83

(σ) 3.46 3.22 3.32 2.00
RS (µ) 28.15 23.00 18.72 15.83

(σ) 3.02 3.48 2.78 2.00
FHT (µ) 27.92 23.41 18.73 15.83

(σ) 3.46 3.60 3.02 2.00
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4.1 Synthetic datasets

The synthetic datasets are separable by construction.
More specifically, we first constructed a weight vec-
tor w ∈ Rd, whose entries were selected in i.i.d.
trials from a Gaussian distribution N (µ, σ) of mean
µ and standard-deviation σ. We experimented with
the following three distributions: N (0, 1), N (1, 1.5),
and N (2, 2). Then, we normalized w to create ŵ =
w/ ‖w‖2. Let Xij = N (0, 1); then, we set xi to be
equal to the i-th row of X, while yi = sign

(
ŵTxi

)
.

We generated families of matrices of different dimen-

Table 2: Synthetic data: γ increases as a function of r in
all three families of matrices. See the caption of Table 1
for an explanation of µ and σ.

γ Projected Dimension r
256 512 1024 full

D1
CW (µ) 5.72 6.67 7.16 7.74

(σ) 0.58 0.58 0.59 0.59
RS (µ) 5.73 6.66 7.18 7.74

(σ) 0.57 0.55 0.55 0.59
FHT (µ) 5.76 6.64 7.15 7.74

(σ) 0.56 0.58 0.56 0.59

D2
CW (µ) 6.62 8.09 8.88 9.78

(σ) 0.64 0.62 0.59 0.66
RS (µ) 6.65 8.10 8.88 9.78

(σ) 0.64 0.60 0.63 0.66
FHT (µ) 6.66 8.06 8.84 9.78

(σ) 0.63 0.65 0.63 0.66

D3
CW (µ) 7.69 9.84 11.07 12.46

(σ) 0.67 0.60 0.71 0.69
RS (µ) 7.61 9.85 11.05 12.46

(σ) 0.59 0.6212 0.62 0.69
FHT (µ) 7.63 9.83 11.11 12.46

(σ) 0.67 0.64 0.64 0.69

sions. More specifically, family D1 contained ma-
trices in R200×5,000; family D2 contained matrices
in R250×10,000; and family D3 contained matrices in
R300×20,000. We generated ten datasets for each of the
familiesD1, D2, andD3, and we report average results
over the ten datasets. We set r to 256, 512, and 1024
and set C to 1,000 in LIBSVM for all the experiments.
Tables 1 and 2 show εout and γ for the three datasets
D1, D2, and D3. εin is zero for all three data families.
As expected, εout and γ improve as r grows for all three
random projection methods. Also, the time needed to
compute random projections is very small compared to
the time needed to run SVMs on the projected data.
Figure 1 shows the combined running time of random
projections and SVMs, which is nearly the same for all
three random projection methods. It is obvious that
this combined running time is much smaller than the
time needed to run SVMs on the full dataset (with-
out any dimensionality reduction). For instance, for
r = 1024, trun for D1, D2, and D3 is (respectively) 6,
9, and 25 times smaller than trun on the full-data.
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Figure 1: Total (average) running times, in seconds, of
random projections and SVMs on the lower-dimensional
data for each of the three families of synthetic data. Ver-
tical bars indicate the, relatively small, standard deviation
(see the caption of Table 1).

4.2 The TechTC-300 dataset

For our first real dataset, we use the TechTC-300 data,
consisting of a family of 295 document-term data ma-
trices. The TechTC-300 dataset comes from the Open
Directory Project (ODP), which is a large, compre-
hensive directory of the web, maintained by volunteer
editors. Each matrix in the TechTC-300 dataset con-
tains a pair of categories from the ODP. Each category
corresponds to a label, and thus the resulting classifi-
cation task is binary. The documents that are collected
from the union of all the subcategories within each cat-
egory are represented in the bag-of-words model, with
the words constituting the features of the data (Davi-
dov et al., 2004). Each data matrix consists of 150-280
documents (the rows of the data matrix X), and each
document is described with respect to 10,000-40,000
words (features, columns of the matrix X). Thus,
TechTC-300 provides a diverse collection of data sets
for a systematic study of the performance of the SVM
on the projected versus full data. We set the param-
eter C to 500 in LIBSVM for all 295 document-term
matrices and set r to 128, 256, and 512. We use a
lower value of C than for the other data sets for com-
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Table 3: Results on the Techtc300 dataset, averaged over
295 data matrices using three different random projection
methods. The table shows how εout, γ, trp (in seconds),
and trun (in seconds) depend on r. µ and σ indicate the
mean and the standard deviation of each quantity over 295
matrices, ten ten-fold cross-validation experiments, and ten
choices of random projection matrices for the three meth-
ods that we investigated.

Projected Dimension r
128 256 512 full

εout

CW(µ) 24.63 22.84 21.26 17.35
(σ) 10.57 10.37 10.17 9.45

RS(µ) 24.58 22.90 21.38 17.35
(σ) 10.57 10.39 10.23 9.45

FHT (µ) 24.63 22.93 21.35 17.35
(σ) 10.66 10.39 10.2 9.45

γ
CW (µ) 1.66 1.88 1.99 2.09

(σ) 3.68 3.79 3.92 4.00
RS (µ) 1.66 1.88 1.99 2.09

(σ) 3.65 3.80 3.91 4.00
FHT (µ) 1.66 1.88 1.98 2.09

(σ) 3.65 3.81 3.88 4.00

trp
CW (µ) 0.0046 0.0059 0.0075 −−

(σ) 0.0019 0.0026 0.0033 −−
RS (µ) 0.0429 0.0855 0.1719 −−

(σ) 0.0178 0.0356 0.072 −−
FHT (µ) 0.0443 0.0882 0.1764 −−

(σ) 0.0206 0.0413 0.0825 −−

trun

CW (µ) 1.23 2.22 4.63 4.85
(σ) 0.87 0.93 1.93 2.12

RS (µ) 0.99 1.53 3.02 4.85
(σ) 0.97 0.59 1.12 2.12

FHT (µ) 0.95 1.46 2.83 4.85
(σ) 0.96 0.55 1.02 2.12

putational reasons: larger C is less efficient. We note
that our classification accuracy is slightly worse (on
the full data) than the accuracy presented in Section
4.4 of Davidov et al. (2004), because we did not fine-
tune the SVM parameters as they did, since that is
not the focus of this study. For every dataset and
every value of r we tried, the in-sample error on the
projected data matched the in-sample error on the full
data. We thus focus on εout, the margin γ, the time
needed to compute random projections trp, and the to-
tal running time trun. We report our results averaged
over 295 data matrices. Table 3 shows the behavior
of these parameters for different choices of r. As ex-
pected, εout and the margin γ improve as r increases,
and they are nearly identical for all three random pro-
jection methods. The time needed to compute random
projections is smallest for CW, followed by RS and
FHT. As a matter of fact, trp for CW is ten to 20
times faster than RS and FHT for different values of
r. This is predicted by the theory in Clarkson and
Woodruff (2013), since CW is optimized to take ad-
vantage of input sparsity. However, this advantage

is lost when SVMs are applied on the dimensionally-
reduced data. Indeed, the combined running time trun
is fastest for FHT, followed by RS and CW. In all
cases, the total running time is smaller than the SVM
running time on full dataset. For example, in the case
of FHT, setting r = 512 achieves a running time trun
which is about 70% faster than running SVMs on the
full dataset; εout increases by less than 4%.
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Figure 2: εout as a function of r in the Hapmap-HGDP
dataset for three different random projection methods and
two different classification tasks. Vertical bars indicate the
standard-deviation over the ten ten-fold cross-validation
experiments and the ten choices of the random projection
matrices for each of the three methods.

4.3 The HapMap-HGDP dataset

Predicting ancestry of individuals using a set of ge-
netic markers is a well-studied classification problem.
We use a population genetics dataset from the Human
Genome Diversity Panel (HGDP) and the HapMap
Phase 3 dataset (see Paschou et al. (2010) for de-
tails), in order to classify individuals into broad ge-
ographic regions, as well as into (finer-scale) popu-
lations. We study a total of 2,250 individuals from
approximately 50 populations and five broad geo-
graphic regions. The features in this dataset corre-
spond to 492, 516 Single Nucleotide Polymorphisms
(SNPs), which are well-known biallelic loci of genetic
variation across the human genome. Each entry in
the resulting 2, 250× 492, 516 matrix is set to +1 (ho-
mozygotic in one allele), −1 (homozygotic in the other
allele), or 0 (heterozygotic), depending on the geno-
type of the respective SNP for a particular sample.
Missing entries were filled in with −1, +1, or 0, with
probability 1/3. Each sample has a known population
and region of origin, which constitute its label. We
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Figure 3: Total running time in seconds (random projec-
tions and SVM classification on the dimensionally-reduced
data) for Hapmap-HGDP dataset for three different pro-
jection methods using both regional and population-level
labels. Notice that the time needed to compute random
projection is independent of the classification labels. Ver-
tical bars indicate standard-deviation, as in Figure 2.

set r to 256, 512, 1024, and 2048 in our experiments.
Since this task is a multi-class classification problem,
we used LIBSVM’s one-against-one technique for clas-
sification. We ran two sets of experiments: in the first
set, the classification problem is to assign samples to
broad regions of origin, while in the second experi-
ment, our goal is to classify samples into (fine-scale)
populations. We set C to 1,000 in LIBSVM for all the
experiments. The in-sample error is zero in all cases.
Figure 2 shows the out-of-sample error for regions and
populations classification, which are nearly identical
for all three random projection methods. For regional
classification, we estimated εout to be close to 2%, and
for population-level classification, εout is close to 20%.
This experiment strongly supports the computational
benefits of our methods in terms of main memory. X
is 2, 250× 492, 516, which is too large to fit into mem-
ory in order to run SVMs. Figure 3 shows that the
combined running time for three different random pro-
jection methods are nearly identical for both regions
and population classification tasks. However, the time
needed to compute the random projections is different

from one method to the next. FHT is fastest, followed
by RS and CW. In this particular case, the input ma-
trix in quite dense, and CW seems to be outperformed
by the other two methods.

5 Conclusions and open problems

We present theoretical and empirical results indicating
that random projections are a useful dimensionality
reduction technique for SVM classification problems
that handle sparse or dense data in high-dimensional
feature spaces. Our theory predicts that the dimen-
sionality of the projected space (denoted by r) has to
grow essentially linearly (up to logarithmic factors) in
ρ (the rank of the data matrix) in order to achieve
relative error approximations to the margin and the
radius of the minimum ball enclosing the data. Such
relative-error approximations imply excellent general-
ization performance. However, our experiments show
that considerably smaller values for r (e.g., in the case
of the TechTC data, setting r to 1/70-th of all avail-
able features) results in classification that is essentially
as accurate as running SVMs on all available features,
despite the fact that the matrices have full numerical
rank. This seems to imply that our theoretical re-
sults can be improved. FHT and RS work well on
dense data while CW is an excellent choice for sparse
data, as indicated by our experiments. However, this
solid performance of CW (which is predicted by the
theoretical bounds of Clarkson and Woodruff (2013)))
comes at a cost, at least according to our experimental
evaluation: solving the SVM optimization problem on
the resulting low-dimensional dataset is quite expen-
sive, and, as a result, the total running time of the
CW method is eventually higher than that of FHT
and RS. This seems to indicate that more research
is necessary in terms of random projection methods
that are both fast (e.g., can be applied on the input
matrix in time that is proportional to the number of
non-zero entries in the matrix), but also result in low-
dimensional data matrices that are “friendly” (e.g.,
correspond to well-structured problem instances) for
SVM solvers. Understanding this aspect of random
projection matrices is important and it has not been
investigated at all in existing literature.
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