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Overview

We will cover this material in relatively more detail, but will still
skip a lot ...

@ Norms {Measuring the length/mass of mathematical quantities}

General norms
Vector p norms
Matrix norms induced by vector p norms
Frobenius norm

@ Singular Value Decomposition (SVD)

The most important tool in Numerical Linear Algebra

© Least Squares problems

Linear systems that do not have a solution

N
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Norms



General Norms

How to measure the mass of a matrix or length of a vector

Norm || - || is function R™*" — R with

@ Non-negativity ||A]| >0, |[[A]=0 < A=0
@ Triangle inequality  ||JA+ B|| < ||A|l + ||B]]
© Scalar multiplication  [[a A|| = |a| ||A|| for all & € R.

Properties
e Minus signs || — Al = ||A]
@ Reverse triangle inequality | ||A|| = ||B]| | < ||A — B|

@ New norms

For norm || - || on R™*", and nonsingular M € R™*™

1A 2 IMA]| is also a norm
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Vector p Norms

For x € R™ and integer p > 1

¢ n 1/p

d

= (Z IXi\p)
i=1

@ One norm  |[|x|]; = 2;21 |XJ|

o Euclidean (two) norm  [|x[l2 = /3 °7_; %[> = VxTx

o Infinity (max) norm  |x||cc = Maxi<j<n |Xj]
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Exercises

@ Determine ||1||, for 1 € R" and p=1,2,00

@ For x € R" with x; = j, 1 < j < n, determine closed-form
expressions for ||x||, for p=1,2,00
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Inner Products and Norm Relations

For x,y € R"”

@ Cauchy-Schwartz inequality

;
Eyl < X2 lyll2

o Holder inequality

)Tyl < Ikl liylloe X7yl < [Xlloo [lylla
@ Relations
Ixlloo < X[t < nlx[[oo
X2 < Ixlln < Vnllx[l2
Xl[oo < IIXll2 < VN0
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Exercises

© Prove the norm relations on the previous slide

@ For x € R" show  ||x|l2 < v/[|X]|oo |1
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Vector Two Norm

@ Theorem of Pythagoras
For x,y € R"

2 2 2
xTy=0 < |x*yl3 =I5+ lyl3

@ Two norm does not care about orthonormal matrices
For x € R” and V € R™*" with VTV =1,

IVX[l2 = [Ix]l2



Vector Two Norm

@ Theorem of Pythagoras
For x,y € R"

2 2 2
xTy=0 < |x*yl3 =I5+ lyl3

@ Two norm does not care about orthonormal matrices
For x € R” and V € R™*" with VTV =1,

IVX[l2 = [Ix]l2

IVXIB = (V2T (V) = x7 VTV x = xTx = [Ix[3



Exercises

For x,y € R" show

© Parallelogram equality
Ix -+ ylI3 + [Ix = ylI3 = 2 (IIxIIZ + lIyll3)

@ Polarization identity

1

xTy =2 (Ix+ylz — lIx—yl3)

e

10/49



Matrix Norms (Induced by Vector p Norms)

For A € R™*" and integer p > 1

def _ NA]
1Al = b=

ax x_[|Ayll
S I R P

@ One Norm: Maximum absolute column sum
Al = max Z|3u| = max HAeJ”l

@ Infinity Norm: Maximum absolute row sum
n

[Alloe = max 2} Ja] = max AT el
<
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Matrix Norm Properties

Every norm realized by some vector y # 0

[AY|l
Al = P
HYHP

= ||Az|, where z= llzllp =1

.
1ylle

{Vector y is different for every A and every p}

Submultiplicativity

@ Matrix vector product: For A € R™ " and y € R"
IAY [, < 1ALl
@ Matrix product: For A € R™*" and B € R™*/

IABI[p < [[AllolIBIl,
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More Matrix Norm Properties

For A € R™*" and permutation matrices P € R™*M Q € R"™"
p

@ Permutation matrices do not matter

IPAQ, = [IAll,

@ Submatrices have smaller norms than parent matrix

B Ap

If PAQ = <A21 N

) then [|B]|, < [|Allp
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Exercises

@ Different norms realized by different vectors
Find y and z so that ||A||1 = ||Ay]|1 and ||A]|cc = ||Az]|s when

S

@ If Q € R"™*" is permutation then ||Q||, =1
© Prove the two types of submultiplicativity
Q@ If D =diag (d11 e d,,,,) then

IDllp = max |dj]

1<i<n

@ If A € R™" nonsingular then ||A||,||A7Y, > 1
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Norm Relations and Transposes

For A € R™*n
@ Relations between different norms
1
WHAHOOS [All2 < vVm Al
1
— Al < ||A < A
\/EH 1< [Alz < Vn|All

@ Transposes

AT = [Alle A lloo = IAllL  [IAT]l2 = [|A]l2
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Proof: Two Norm of Transpose

{True for A =0, so assume A # 0}

o Let ||A|l2 = ||Az||2 for some z € R" with ||z]]2 =1

Reduce to vector norm

IAl3 = [1Az]3 = (Az)T(Az) =2 ATAz = 2" (ATAZ>
~—

vector

Cauchy-Schwartz inequality and submultiplicativity imply

27 (ATAzZ) < |z]l2 | ATAz]l2 < AT 2 |IAll2

Thus [[A3 < [IAT]l2[|All2 and [|A]> < [[AT])2

Reversing roles of A and AT gives |AT > < ||Al]
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Matrix Two Norm

A c RmMxn

@ Orthonormal matrices do not change anything
If Uc RF*™ with UTU = I, V € R with VTV =1,

IUAVTl2 = [|A]-2

@ Gram matrices
For A € RmM*n

IAT Al = [|AllZ = [AAT]

@ Outer products
Forx e R™, y e R"

lIxy "ll2 = lixll2 llyll2
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Proof: Norm of Gram Matrix

@ Submultiplicativity and transpose
IATAll2 < [|All2 IAT]l2 = [IAll2 [All2 = A3
Thus [ATAl> < [|A[3

o Let ||Al|2 = ||Az]|2 for some z € R" with [|z]2 =1

o Cauchy-Schwartz inequality and submultiplicativity imply

IAIZ = [IAz]3 = (Az)" (Az) =2" (ATAZ>
S——

vector

< lzll2 [ATAz]2 < [IATAl2

Thus [[A[ < [ATA]2
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Exercises

@ Infinity norm of outer products

For x € R™ and y € R", show ||xyTHC>C> = [|x[|oo [IY|l1

@ If A € R™" with A # 0 is idempotent then
(i) Al >1
(i) ||All2=1 if A also symmetric

@ Given A € R™"n

Among all symmetric matrices, (A +AT) is a (the?) matrix
that is closest to A in the two norm

19/49



Frobenius Norm

The true mass of a matrix

For A=(a; --- an) e R™"

def 7
IAllF < Z]a,ﬂz = y/trace(ATA)

n
> il =
j=1
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Frobenius Norm

The true mass of a matrix

For A=(a; --- an) e R™"

def

|AllF = |lajj|> = y/trace(ATA)

1

n
> il =
j=1

n m

Jj=1i

e Vector If x € R" then |x||r = |X]|2
o Transpose ||AT|lr = ||AllF

o Identity |[lxllr =+/n
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More Frobenius Norm Properties

A € R™*n

@ Orthonormal invariance
If U e RF*M with UTU =1,,, V € R/*" with VTV =1,

IUAVT|r = ||AllF
@ Relation to two norm
[All2 < [[Allr < V/rank(A) [[All2 < v/min{m, n} [[All2
@ Submultiplicativity

IABIlF < [All2 Bl < [|AllF Bl
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Exercises

@ Show the orthonormal invariance of the Frobenius norm
@ Show the submultiplicativity of the Frobenius norm

© Frobenius norm of outer products
For x € R™ and y € R" show

by "lle = Ixll2 llyll2
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Singular Value Decomposition (SVD)



Full SVD

Given: A ¢ Rmxn

e Tall and skinny: m>n

% o
A:U<O>VT where ¥ = >0
On
@ Short and fat: m<n
01
A=U(X 0)V'  where T= >0
Om

U e R™™ and V € R™" are orthogonal matrices

24 /49



Names and Conventions
A € R™" with SVD

b
A:U(O)VT oo  A=U(X o)V’

Singular values (svalues): Diagonal elements o of ¥

Left singular vector matrix: U

Right singular vector matrix: V

@ Svalue ordering o1 > 09> ... 2> Tmin{m, n} = 0

Svalues of matrices B, C: ¢;(B), 0;(C)
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SVD Properties

A€ R™*"

Number of svalues equal to small dimension

A € R™" has min{m, n} singular values o; > 0

Orthogonal invariance
If P € R™™ and Q € R™" are orthogonal matrices
then P AQ has same svalues as A

Gram Product
Nonzero svalues (= eigenvalues) of ATA
are squares of svalues of A

Inverse
A € R™" nonsingular <= 0; >0 for1<j<n
If A=UXVT then A1 =VXI-1UT SVD of inverse

26
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Exercises

Transpose AT has same singular values as A

Orthogonal matrices
All singular values of A € R™" are equal to 1

<= A is orthogonal matrix

If A € R™" is symmetric and idempotent then

all singular values are 0 and/or 1

For A € R™*" and a > 0 express svalues of
(ATA4+ )1 AT in terms of a and svalues of A

: . I
If A € R™*" with m > n then singular values of ( ") are

A
equalto,/l—i-ajzforlgjgn
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Singular Values

A € R™*" with svalues 01 > --- >0, p=min{m, n}

e Two norm ||All2 =01

e Frobenius norm |Allg = /0% +---+ o2

@ Well conditioned in absolute sense
loj(A) —oi(B)| <[[A=BJ2  1<j<p
@ Product

oi(AB) < oi(A)oj(B) 1<j<p
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Matrix Schatten Norms
A € R™*" with singular values o1 > --- >0, >0, and integer p > 0,
the family of the Schatten p-norms is defined as

P 1/p
def
Al = (Z‘ﬁ) :

i=1

Different than the vector-induced matrix p-norms?.

@ Schatten zero norm?: equal to the matrix rank.

@ Schatten one norm: the sum of the singular values of the matrix,
also called the nuclear norm.

@ Schatten two norm: the Frobenius norm.
@ Schatten infinity norm: the spectral (or two) norm.

@ Schatten p-norms are unitarily invariant, submultiplicative, satisfy
Holder's inequality, etc.

!Notation is, unfortunately, confusing.

2Not really a norm...
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Exercises

@ Norm of inverse
If A € R™" nonsingular with svalues o1 > --- > o,
then |[A7Y2 =1/0,

© Appending a column to a tall and skinny matrix
IfAcR™"withm>n zeR™ B= (A z) then

ont1(B) <on(A)  01(B) = 01(A)

© Appending a row to a tall and skinny matrix
If A€ R™" with m>n, ze R", BT = (AT z) then

on(B) = on(A)  01(A) < 01(B) < \/o1(A)* + |23
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Rank

rank(A) = number of nonzero (positive) svalues of A

@ Zero matrix rank(0) =0

@ Rank bounded by small dimension
If A € R™*" then rank(A) < min{m, n}

Transpose rank(AT) = rank(A)

Gram product rank(ATA) = rank(A) = rank(AAT)

General product rank(AB) < min{rank(A), rank(B)}

e If A nonsingular then rank(AB) = rank(B)
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SVDs of Full Rank Matrices
All svalues of A € R™*" are nonzero

@ Full column-rank rank(A) =n  {Linearly independent columns}

A=U <§> v’ Y € R™" nonsingular

@ Full row-rank rank(A) =m {Linearly independent rows}

A=U(Z 0) v’ Y € R™*™ nonsingular

e Nonsingular rank(A) =n=m  {Lin. indep. rows & columns}

A=UxVvT Y € R™" nonsingular
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Exercises

Rank of outer product
If x € R™ and y € R" then rank(xy”) <1

If A € R™" nonsingular then (A B) has full row-rank
for any B € Rk

Orthonormal matrices
If A € R™*" has orthonormal columns then rank(A) = n

and all svalues of A are equal to 1

Gram products For A € R™*"

(i) rank(A) =n <= ATA nonsingular
(i) rank(A) = m <= AAT nonsingular
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Thin SVD

¥

A e R™"  with A:U<0

)vT oo A=U(Z o)V’

Singular values 01 > --- >0, >0, p=min{m, n}

Singular vectors U = (ul Um) V = (V1 Vn)
If rank(A) = r then thin (reduced) SVvD {only non zero svalues}
" Ty
] R | o,
or v J=1
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Optimality of SVD

o Given A € R™", rank(A) = r, thin SVD 77, oju; vJ-T

@ Approximation from k dominant svalues

k
AkEZUjUjVJT 1<k<r
j=1
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Optimality of SVD

o Given A € R™", rank(A) = r, thin SVD 77, oju; vJ-T

@ Approximation from k dominant svalues

AkEZUjUjVJT 1<k<r

@ Absolute distance of A to set of rank-k matrices
min_ _JA=Bl2=IA=Adl2 = ois1
rank(B)

min A =Bl = A~ Adlr
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Exercises

@ Find an example to illustrate that a closest matrix of rank k

is not unique in the two norm
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Moore Penrose Inverse

e Given A e R"™*" with rank(A) =r >1 and SVD

A=U ( > g oju;v J
@ Moore Penrose inverse

-1
t def i 0 T _ 1. T
A —V(O 0 u' = E ajVJ”j

@ Zero matrix O],Lnx,, = 0nxm
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Special Cases of Moore Penrose Inverse

e Nonsingular
If A€ R™" with rank(A) = n then AT =A-1
Inverse AT1A=1,=AA"1

@ Full column rank
If A € R™" with rank(A) = n then AT = (ATA)7IAT
Left inverse ATA =1,

@ Full row rank
If A € R™" with rank(A) = m then AT = AT(AAT)™!
Right inverse AAT =1,

38/49



Necessary and Sufficient Conditions

At is Moore Penrose inverse of A <= AT satisfies
Q@ AATA=A
Q@ ATAAT = AT
Q@ (AANT =AAT  {symmetric}

Q (AT A)T = AT A {symmetric}
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©

Exercises

If x € R™and y € R" with y # 0 then
bxytll2 = lixli2/llyll2
For A € R™*" the following matrices are idempotent:
AAT ATA 1, —AAT 1, - ATA
If A€ R™" and A # 0 then [|AAT|, = [|ATA|, =1
If A€ R™*" then
(Um—AADNA=0pmxn Al —ATA) = 0xn
If A € R™" with rank(A) = n then |[(AT A)~|]2 = ||AT||3

O If A=BC where B € R™*" has rank(B) = n and

C € R™" is nonsingular then AT = C~1Bf
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Matrix Spaces and Singular Vectors: A

A€ R™

@ Column space
range(A) = {b: b= Ax for some x € R"} C R"™
@ Null space (kernel)
null(A) = {x: Ax=0} CR"

If rank(A) =r>1
¥, 0 2

range(A) = range(U,) null(A) = range(Vp—/)
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Matrix Spaces and Singular Vectors: AT

A€ R™

@ Row space
range(AT) ={d: d=ATy for somey € R™} C R"
@ Left null space
null(AT)={y: ATy=0} CR™

If rank(A) =r>1
¥, 0 VI
am 0 (5 0) (V7))

range(AT) = range(V,) null(AT) = range(Upm_,)
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Fundamental Theorem of Linear Algebra

A€ R™*"

range(A) @ null(AT) = R™
implies
o m=rank(A) +dimnull(AT)
o range(A) L null(AT)

range(AT) @ null(A) = R”
implies
e n = rank(A) + dimnull(A)
o range(AT) L null(A)
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Spaces of the Moore Penrose Inverse

{Need this for least squares}
@ Column space

range(AT) = range(AT A) = range(AT)
L null(A)

@ Null space

null(AT) = null(AAT) =null(AT)
1 range(A)
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Least Squares (LS) Problems



General LS Problems

Given A € R™*" and b € R"”
min ||Ax — b||2
o General LS solution y = ATb+q for any q € null(A)

@ All solutions have same LS residual r=b — Ay

{Ay=AAtb since g€ null(A)}
@ LS residual orthogonal to column space ATr=0
@ LS solution of minimal two norm y = Atb

e Computation: SVD
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Exercises

Use properties of Moore Penrose inverses to show that

the LS residual is orthogonal to the column space of A

Determine the minimal norm solution for miny ||Ax — b||2
|f A - Oan

If y is the minimal norm solution to miny ||Ax — b||2

and AT b = 0, then what can you say about y?

Determine the minimal norm solution for miny ||Ax — b||2
if A=cd” where c € R™ and d € R"?
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Full Column Rank LS Problems

Given A € R™*" with rank(A) = n and b € R"™

min [|Ax — b||2
X

@ Unique LS solution y = Afb

e Computation: QR decomposition

© Factor A=QR where Q7TQ=1, and Ris N
@ Multiply c=Q"b
© Solve Ry=c

@ Do NOT solve ATAy=ATb
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Exercises

@ If A € R™" with rank(A) = n has thin QR factorization
A= QR where Q’Q =1, and Ris N then

AT — R—]. QT
@ If A € R™*" has orthonormal columns then AT = AT

@ If A € R™*" has rank(A) = n then

[lm — AAT||2 = min{l,m — n}
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