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Overview

We assume basic familiarity with linear algebra and will skip much
of the preliminary material in this first set of slides.

@ Notation

So that we (at least try and) use the same name for the same
thing...
Almost everything is real (at least in my lectures...)

@ Matrix operations

Matrix multiplication is the hardest

© Basic Matrix Decompositions

Main purpose: Linear system solution

©@ Determinants

© Exercises

)
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Notation



Vectors

@ R Set of real numbers (scalars)
e R Space of column vectors with 17 real elements

X1

@ Vectors with all zeros and all ones
0 1
0=1: 1=|:
0 1
x =0 All elements of x are zero
x # 0 At least one element of x is non-zero
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Matrices

e R™*5  Space of 7 x 5 matrices with real elements

ailr -+ adis
A= :
ar1 -+ ars
o Identity matrix
1 00
b=(0 1 0| =(e1 e &)
0 01
Canonical vectors
1 0 0
e = 0 € = 1 €3 = 0

o
o
—_

5/41



Matrix Operations



Transpose

@ Transpose of column vector gives row vector

1 T

2] =(1 2 3)
3

@ Transpose of matrix: Columns turn into rows

-
¢
(a1 o C3)T: ol

2
C3

o Transposing twice gives back the original (AT)T = A

o A c R™"is symmetric if AT =A
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Scalar Multiplication

@ Every matrix element multiplied by same scalar
4 (911 a2 a3 _ 4ain 4an 4az
an ax ax bdax “4axp 4ax

@ Two different zeros
If A € R75 then 0-A=0745

@ Subtraction: —A d:ef(—l)A



Exercises

@ Forxec R" and a € R show

ax=20 <— a=0 or x=0

@ For A e R™" and X\ € R show

(AA)T = AAT
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Matrix Addition
@ Elements in corresponding positions are added
111 2 11
2 2 2|+1z=1[2 3 2
333 3 3 4

@ Adding zero changes nothing
If A€ R then A+ 0745 =A

o Distributivity can save work

AA+AB=)(A+B)
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Exercises

© For A,BcR™"show (A+B)T =AT +BT

@ For A € R"™" show that A+ AT is symmetric
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Inner Product

@ Row times column (with same # elements) gives scalar
If x,y € R" then

n
xTy =xay1+ -+ Xnyn = Y _ XY
j=1

@ Commutative (for real vectors)

XTy = yTX

@ Vectors x,y € R" are orthogonal if x"y =0
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Exercises

@ Sum = inner product with all ones vector
If x € R” then

n
ZXJ’ =x"1=1Tx
Jj=1

@ Given integer n > 1, represent n(n+ 1)/2 as an inner product

© Test for zero vector

For x € R" show xI'x=0 <= x=0
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Matrix Vector Product

@ Matrix times column vector gives column vector

-
r

Ac R3X4 A= I’2T = (Cl Cr C3 C4)

2
r3

x € R* (# vector elements = # matrix columns)
@ Column vector of inner products
T
ry X
Ax = [rIx
T
I’3 X

@ Linear combination of columns

Ax = c1x1 + Coxo + C3X3 + CaxXa
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Exercises

@ Show that Ae;j is column j of matrix A
@ Given A € R™" and 1 € R", what does Al do?

© For A,B € R™*" show

A=B = Ax = Bx forall x € R”
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Matrix Multiplication

# columns of A = # rows of B
Ais2x4andBis4x3 = ABis2x3

Rows of A and columns of B

T
A= T B = (Cl Co C3)

ra

Matrix of inner products

I’lT C1 rlT Co I’ir C3
AB = T T T
r2 C]_ r2 C2 I’2 C3
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Other Views of Matrix Multiplication

A:(al a» a3 a4) B = b3T :(c1 Co C3)

@ Row of matrix vector products

ABZ(ACl AC2 AC3)

@ Sum of outer products

AB :alb1T+agb2T+a3b3T+a4b4T
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Properties

Multiplication by the identity changes nothing

A c R8*1 IsA=A=Al;

Associativity A (BC) = (AB)C
Distributivity ~A(B+ D) =AB+ AD
No commutativity AB#BA

Transpose of product (AB)T =BT AT
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Exercises

More distributivity
For A,B € R™" CecR™k show (A+B)C=AC+BC

Understanding why matrix multiplication is not commutative

Find simple examples where AB # BA

Understanding the transposition of a product
Find simple examples where (AB)7 # ATBT

For A € R™*" show that AAT and ATA are symmetric
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Matrix Powers

For A € R™" with A #0

A = |,
Ak = A A = AKIA = AAKT k>1

——
k
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Matrix Powers

For A € R™" with A #0

A = 1,
Ak = A A= ATA = AR
k
A €R™"is

@ idempotent (projector) A% =A

e nilpotent Ak =0 for some integer k > 1

Forany o« € R

k>1

L« is idempotent 0 « is nilpotent
00 P 00 P
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Exercises

@ Which matrix is idempotent and nilpotent?

Q If A e R™" is idempotent then |, — A is idempotent
and A(l,—A)=0

© If A and B are idempotent and AB = BA then
A B is idempotent
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Outer Product

@ Column vector times row vector gives matrix

X1
xy = 2 (n y)=

X4

e Columns of xy ' are multiples of x

@ Rows of xy ' are multiples of y'

X1y1
X2y1
X3y1
X4y1

X1Y2
X2Y2
X3Y2
Xay2
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Gram Matrix Multiplication

For A= (a; --- ap) € R™"

@ Matrix of inner products

T T
al al e al an
ATA = [ : € R™"
T T
a,air -+ apan

@ Sum of outer products

AAT = alalT—l—--‘—ka,,a,,T e RmMxm
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Exercises

Write the matrix as an outer product

4 5
8 10
12 15

Identity matrix is sum of outer products of canonical vectors

Show |, = elei’- 4+ 4 ene,7,—
Associativity can save work

For x € R® and y, z € R* compute both sides of
(y")z=x(y2)

For x,y € R" compute (xy')3

multiplication only

x with inner products and scalar
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Inverse

e A € R™" is nonsingular (invertible), if exists A~1 with

AAl=1,=A"1A

@ Inverse and transposition interchangeable
A—T d:ef (AT)—I — (A_l) T
@ Inverse of product
For A,B € R™" nonsingular (AB)"1 =B~1A~!

@ Test
If x € R" with x # 0 and Ax = 0, then A is singular
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Exercises

@ If A € R™" with A + A2 = |,, then A is nonsingular
@ The inverse of a symmetric matrix is symmetric

© Sherman-Morrison-Woodbury Formula

For A € R™" nonsingular, and U,V € R™*" show:
If 1+ VA~IUT nonsingular then

—1 -1
(A 4 UTV) —Al_aA1yT (l i VA—1UT> VAL
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Orthogonal Matrices

A € R™" is orthogonal matrix if A=t = AT

ATA =1, = AAT

The meaning of orthogonality depends on who you are

e Two vectors x,y € R" are orthogonal if x"y = 0

@ Nonsingular matrix A is orthogonal if A=t = AT

Columns/rows of orthogonal matrix are orthogonal vectors
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Examples of Orthogonal Matrices

o Identity I,

@ Permutation matrices (Identity with columns or rows permuted)
0 01 0 01 010
010 1 00 0 01
100 010 100

@ 2 x 2 rotations

<C S) for ?2+s°=1
—-s ¢
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© ©6 6 0 ¢

Exercises

If A € R™" is orthogonal then AT is orthogonal

If A,B € R™" are orthogonal then AB is orthogonal

If x € R with x"x = 1 then I, — 2xx" is orthogonal
For A € R™*" and permutation P € R"*", describe AP.

Let A = (Al A2) € R™" where A; € R"™%k
If A orthogonal then

ATAL =1 AlAs=1,_0 AJA =0

If ATA = BTB for A, B nonsingular then exists orthogonal
matrix Q so that B = QA
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Triangular Matrices

Upper triangular matrix N

T =

e N matrix T nonsingular if and only if all ¢; # 0
o Diagonal elements of inverse (T71); = 1/t;

Lower triangular matrix D\

L =

/nl T /nn

e Transpose: LT is N
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Special Triangular Matrices

@ Unit triangular: Ones on the diagonal

1 *x % 1 00

0 1 = * 1 0

0 01 * % 1
@ Strictly triangular: Zeros on the diagonal

0 * = 000

0 0 = * 0 0

0 0O * * 0
@ Diagonal: N and I\

d11
= dlag (dll dnn)
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Exercises

@ Sum of N matrices is N
If A,BcR™is N then A+ Bis N

@ Product of N matrices is N

If A,B € R™"is\ then AB is \
with diagonal elements (AB);; = ajibj for 1 <j <n

© Diagonal matrices commute

If A,B € R"™" is diagonal then AB = BA is diagonal

Q Let A=1, - aejej for some 1 </, j < n and scalar a.
When is A NI? When is A nonsingular?

@ If D € R™" is diagonal and D = (I + A)~!A for some A
then A is diagonal
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Basic Matrix Decompositions



Gaussian Elimination (LU) with partial pivoting

If A€ R" " nonsingular then
PA=LU

P is permutation, L is unit I\, Uis N

Linear system solution Ax =b

@ Factor PA=LU {Expensive part: O(n?) flops}
@ Solve Ly=Pb {B system}
© Solve Ux=y {V system}
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QR Decomposition

If A€ R" " nonsingular then
A =QR

Q is orthogonal matrix, Ris N

Linear system solution Ax = b

©® Factor A=QR {Expensive part: O(n?) flops}
@ Multiply c= QT b {O(n2) flops}
© Solve Rx=c {ﬂ system}
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Cholesky Decomposition

Symmetric A € R"™" is positive definite (spd) if

xTAx>0 for all x # 0

If AcR™"spdthen A =LL" where Lis I\

Linear system solution Ax = b

@ Factor A=L LT {Expensive part: O(n3) flops}
@ Solve Ly=b {N system}
@ Solve LTx=y {N system}
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Determinants



A Simple Characterization

QO If TeR™is N or I\ then
det(T) =[] t;
j=1
@ If A,B € R"™" then

det(AB) = det(A) det(B)

Let A € R"™"
o Transpose: det(AT) = det(A)
e Singularity: det(A) #0 <= A nonsingular
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Laplace Expansions

Assume A € R™"

Ajjis (n—1) x (n — 1) submatrix of A
obtained by deleting row i and column j of A

@ Expansion is along row i

n

det(A) = Z (—1)™ a; det(A)
k=1
@ Expansion along column j

n

det(A) = Z (—1)*" a4 det(Ay))
k=1

IN
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Computation

If A € R™" nonsingular

@ Factor PA=LU
Qo det(A) ==+ det(U) =4 U1 Upn
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Exercises

Assume: A, B € R™"

© ©

Triangular matrices
If Ais unit N or I\ then det(A) =1
If A is strictly N or I\ then det(A) =0

If A,B € R™" then det(AB) = det(BA)
Scalar multiplication

det(awA) = " det(A) for any o € R

If A nonsingular then det(A~1) = 1/det(A)
If A € R™" is orthogonal then |det(A)| =1
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