Assignment 5 Randomization in Numerical Linear Algebra (PCMI)

1. Recall the definition of the edge-incidence matrix \mathbf{B} and the weight matrix \mathbf{W} (positive weights only) from slide 151. Recall that the Laplacian matrix of a graph can be expressed as $\mathbf{L}=\mathbf{B}^{T} \mathbf{W B}$, and recall that the effective resistances of the edges of the graph are defined to be the diagonal entries of the matrix $\mathbf{B L}^{\dagger} \mathbf{B}^{T}$. Prove that the effective resistances are equal (up to rescaling) to the row leverage scores of the matrix $\mathbf{W}^{1 / 2} \mathbf{B}$.
2. Let \mathbf{A} and $\tilde{\mathbf{A}}$ be two matrices with the same dimensions. Prove:

$$
\left\|\mathbf{A}-(\tilde{\mathbf{A}})_{k}\right\|_{2} \leq\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2}+2\|\mathbf{A}-\tilde{\mathbf{A}}\|_{2} .
$$

In the above, \mathbf{A}_{k} is the best rank- k approximation to \mathbf{A} (similarly for $\tilde{\mathbf{A}}$).
3. We will prove a bound for the spectral norm of the matrix $\mathbf{A}-\mathcal{S}_{\Omega}(\mathbf{A})$, where $\mathcal{S}_{\Omega}(\mathbf{A})$ is constructed using the element-wise sampling algorithm of slide 165 and the hybrid sampling probabilities of slide 175 .

1. Let $\mathbf{M}_{t}=\frac{\mathbf{A}_{i_{t} j_{t}}}{p_{i_{t} j_{t}}} \mathbf{e}_{i_{t}} \mathbf{e}_{j_{t}}^{T}-\mathbf{A}$. Prove:

$$
\mathbf{A}-\mathcal{S}_{\Omega}(\mathbf{A})=-\frac{1}{s} \sum_{t=1}^{s} \mathbf{M}_{t}
$$

Also compute $\mathbf{E}\left[\mathbf{M}_{t}\right]$.
2. Compute the expectation $\mathbf{E}\left[\mathbf{M}_{t} \mathbf{M}_{t}^{T}\right]$.
3. Use the sampling probabilities of slide 175 to bound $\left\|\mathbf{E}\left[\mathbf{M}_{t} \mathbf{M}_{t}^{T}\right]\right\|_{2}$ and $\max _{i, j}\left\|\frac{\mathbf{A}_{i j}}{p_{i j}} \mathbf{e}_{i} \mathbf{e}_{j}^{T}-\mathbf{A}\right\|_{2}$.
4. Apply the matrix-Bernstein inequality of slide 177 to bound the spectral norm of the matrix $\mathbf{A}-\mathcal{S}_{\Omega}(\mathbf{A})$ with high probability.

