
Assignment 4
Randomization in Numerical Linear Algebra (PCMI)

1. We will prove a structural inequality that can be used as a starting point in many RandNLA algorithms.
More specifically, we will prove the following lemma.

Lemma 1 Given A ∈ Rm×n, let Vk ∈ Rn×k the matrix of the top k right singular vectors of A. Let
Z ∈ Rn×r (r ≥ k) be any matrix such that VT

kZ has full rank. Then, for any unitarily invariant norm ξ, we
have that ∥∥A− (AZ)(AZ)†A

∥∥
ξ
≤ ‖A−Ak‖ξ +

∥∥∥(A−Ak) Z(VT
kZ)†

∥∥∥
ξ
. (1)

Recall that Ak = UkΣkV
T
k denotes the best rank-k approximation to A, where Uk ∈ Rm×k is the matrix

of the top k left singular vectors of A and Σk ∈ Rk×k is the diagonal matrix of the top k singular values of
A.

We will actually only prove the above lemma for the special case where ξ = 2 and ξ = F ; all the following
problems should be proven only for ξ = 2 and ξ = F .

1. Prove that
(AZ)†A = arg min

X∈Rr×n
‖A− (AZ) X‖ξ .

2. Use the above result to prove that∥∥A− (AZ)(AZ)†A
∥∥
ξ
≤

∥∥∥A−AZ (AkZ)
†
Ak

∥∥∥
ξ
.

3. Use the triangle inequality to prove that∥∥A− (AZ)(AZ)†A
∥∥
ξ
≤ ‖A−Ak‖ξ +

∥∥Ak −AkZ(AkZ)†Ak

∥∥
ξ

+
∥∥(A−Ak) Z(AkZ)†Ak

∥∥
ξ
.

4. Prove that VT
kZ

(
VT
kZ

)†
= Ik.

5. Prove that (AkZ)
†

=
(
VT
kZ

)†
Σ−1k UT

k .

6. Prove that
∥∥Ak −AkZ(AkZ)†Ak

∥∥
ξ

= 0.

7. Combine all the above to prove eqn (1).

2. We will now leverage the structural inequality of Lemma 1 to prove that the algorithm of slides 104-106
achieves a constant factor approximation for the CX decomposition.

1. Let Z (the matrix of Lemma 1) be a sampling-and-rescaling matrix S indicating the columns of A
that were sampled using the algorithm of slides 104-105 with the sampling probabilities of slide 106
(basically, the column leverage scores). Prove that the matrix VT

k S has full rank, with constant
probability.

2. Prove that for any two matrices X and Y of appropriate dimensions, ‖XY‖F ≤ ‖X‖F ‖Y‖2 (similarly,
‖XY‖F ≤ ‖X‖2 ‖Y‖F ). This property is known as strong submultiplicativity.
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3. Apply the above property and eqn. (1) to get:∥∥A− (AS)(AS)†A
∥∥
F
≤ ‖A−Ak‖F + ‖(A−Ak) S‖F

∥∥∥(VT
k S)†

∥∥∥
2
.

4. Prove a lower bound for the smallest singular value of the matrix VT
k S (this is similar to part 1 of this

problem); the bound will hold with constant probability. What does that imply for the spectral norm
of (VT

k S)†?

5. Prove that the expectation of ‖(A−Ak) S‖2F is equal to ‖A−Ak‖2F . Combine this with Markov’s
inequality to get a bound (with constant probability) for ‖(A−Ak) S‖F .

6. Combine all the above to prove that the algorithm of slide 104-105 with the sampling probabilities of
slide 106 returns a CX decomposition that achieves a constant factor approximation.

Notice that we constructed a CX decomposition that rescales the columns of A that are included in the
matrix C. However, it is easy to prove that∥∥A− (AS)(AS)†A

∥∥
F

=
∥∥A− (AS′)(AS′)†A

∥∥
F
,

where S′ is simply S without the rescaling (e.g., the entries of S′ are either zero or one, go to slide 16,
Remark 2).

Finally, we note that we can also get a relative error approximation that holds with very high probability
for the same algorithm with a more careful, albeit somewhat longer, analysis.
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