Assignment 4

Randomization in Numerical Linear Algebra (PCMI)

1. We will prove a structural inequality that can be used as a starting point in many RandNLA algorithms. More specifically, we will prove the following lemma.

Lemma 1 Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, let $\mathbf{V}_{k} \in \mathbb{R}^{n \times k}$ the matrix of the top k right singular vectors of \mathbf{A}. Let $\mathbf{Z} \in \mathbb{R}^{n \times r}(r \geq k)$ be any matrix such that $\mathbf{V}_{k}^{T} \mathbf{Z}$ has full rank. Then, for any unitarily invariant norm ξ, we have that

$$
\begin{equation*}
\left\|\mathbf{A}-(\mathbf{A} \mathbf{Z})(\mathbf{A Z})^{\dagger} \mathbf{A}\right\|_{\xi} \leq\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{\xi}+\left\|\left(\mathbf{A}-\mathbf{A}_{k}\right) \mathbf{Z}\left(\mathbf{V}_{k}^{T} \mathbf{Z}\right)^{\dagger}\right\|_{\xi} \tag{1}
\end{equation*}
$$

Recall that $\mathbf{A}_{k}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}$ denotes the best rank- k approximation to \mathbf{A}, where $\mathbf{U}_{k} \in \mathbb{R}^{m \times k}$ is the matrix of the top k left singular vectors of \mathbf{A} and $\boldsymbol{\Sigma}_{k} \in \mathbb{R}^{k \times k}$ is the diagonal matrix of the top k singular values of A.

We will actually only prove the above lemma for the special case where $\xi=2$ and $\xi=F$; all the following problems should be proven only for $\xi=2$ and $\xi=F$.

1. Prove that

$$
(\mathbf{A Z})^{\dagger} \mathbf{A}=\arg \min _{\mathbf{X} \in \mathbb{R}^{r \times n}}\|\mathbf{A}-(\mathbf{A} \mathbf{Z}) \mathbf{X}\|_{\xi}
$$

2. Use the above result to prove that

$$
\left\|\mathbf{A}-(\mathbf{A Z})(\mathbf{A Z})^{\dagger} \mathbf{A}\right\|_{\xi} \leq\left\|\mathbf{A}-\mathbf{A Z}\left(\mathbf{A}_{k} \mathbf{Z}\right)^{\dagger} \mathbf{A}_{k}\right\|_{\xi}
$$

3. Use the triangle inequality to prove that

$$
\begin{aligned}
\left\|\mathbf{A}-(\mathbf{A Z})(\mathbf{A} \mathbf{Z})^{\dagger} \mathbf{A}\right\|_{\xi} & \leq\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{\xi}+\left\|\mathbf{A}_{k}-\mathbf{A}_{k} \mathbf{Z}\left(\mathbf{A}_{k} \mathbf{Z}\right)^{\dagger} \mathbf{A}_{k}\right\|_{\xi} \\
& +\left\|\left(\mathbf{A}-\mathbf{A}_{k}\right) \mathbf{Z}\left(\mathbf{A}_{k} \mathbf{Z}\right)^{\dagger} \mathbf{A}_{k}\right\|_{\xi}
\end{aligned}
$$

4. Prove that $\mathbf{V}_{k}^{T} \mathbf{Z}\left(\mathbf{V}_{k}^{T} \mathbf{Z}\right)^{\dagger}=\mathbf{I}_{k}$.
5. Prove that $\left(\mathbf{A}_{k} \mathbf{Z}\right)^{\dagger}=\left(\mathbf{V}_{k}^{T} \mathbf{Z}\right)^{\dagger} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{U}_{k}^{T}$.
6. Prove that $\left\|\mathbf{A}_{k}-\mathbf{A}_{k} \mathbf{Z}\left(\mathbf{A}_{k} \mathbf{Z}\right)^{\dagger} \mathbf{A}_{k}\right\|_{\xi}=0$.
7. Combine all the above to prove eqn (1).
8. We will now leverage the structural inequality of Lemma 1 to prove that the algorithm of slides 104-106 achieves a constant factor approximation for the CX decomposition.
9. Let \mathbf{Z} (the matrix of Lemma 1) be a sampling-and-rescaling matrix \mathbf{S} indicating the columns of \mathbf{A} that were sampled using the algorithm of slides 104-105 with the sampling probabilities of slide 106 (basically, the column leverage scores). Prove that the matrix $\mathbf{V}_{k}^{T} \mathbf{S}$ has full rank, with constant probability.
10. Prove that for any two matrices \mathbf{X} and \mathbf{Y} of appropriate dimensions, $\|\mathbf{X Y}\|_{F} \leq\|\mathbf{X}\|_{F}\|\mathbf{Y}\|_{2}$ (similarly, $\left.\|\mathbf{X Y}\|_{F} \leq\|\mathbf{X}\|_{2}\|\mathbf{Y}\|_{F}\right)$. This property is known as strong submultiplicativity.
11. Apply the above property and eqn. (1) to get:

$$
\left\|\mathbf{A}-(\mathbf{A S})(\mathbf{A S})^{\dagger} \mathbf{A}\right\|_{F} \leq\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}+\left\|\left(\mathbf{A}-\mathbf{A}_{k}\right) \mathbf{S}\right\|_{F}\left\|\left(\mathbf{V}_{k}^{T} \mathbf{S}\right)^{\dagger}\right\|_{2}
$$

4. Prove a lower bound for the smallest singular value of the matrix $\mathbf{V}_{k}^{T} \mathbf{S}$ (this is similar to part 1 of this problem); the bound will hold with constant probability. What does that imply for the spectral norm of $\left(\mathbf{V}_{k}^{T} \mathbf{S}\right)^{\dagger}$?
5. Prove that the expectation of $\left\|\left(\mathbf{A}-\mathbf{A}_{k}\right) \mathbf{S}\right\|_{F}^{2}$ is equal to $\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}^{2}$. Combine this with Markov's inequality to get a bound (with constant probability) for $\left\|\left(\mathbf{A}-\mathbf{A}_{k}\right) \mathbf{S}\right\|_{F}$.
6. Combine all the above to prove that the algorithm of slide 104-105 with the sampling probabilities of slide 106 returns a CX decomposition that achieves a constant factor approximation.

Notice that we constructed a CX decomposition that rescales the columns of \mathbf{A} that are included in the matrix C. However, it is easy to prove that

$$
\left\|\mathbf{A}-(\mathbf{A S})(\mathbf{A S})^{\dagger} \mathbf{A}\right\|_{F}=\left\|\mathbf{A}-\left(\mathbf{A} \mathbf{S}^{\prime}\right)\left(\mathbf{A} \mathbf{S}^{\prime}\right)^{\dagger} \mathbf{A}\right\|_{F}
$$

where \mathbf{S}^{\prime} is simply \mathbf{S} without the rescaling (e.g., the entries of \mathbf{S}^{\prime} are either zero or one, go to slide 16, Remark 2).

Finally, we note that we can also get a relative error approximation that holds with very high probability for the same algorithm with a more careful, albeit somewhat longer, analysis.

