Assignment 2

 Randomization in Numerical Linear Algebra (PCMI)1. Using the notation of slide 17 , prove that

$$
\mathbf{E}\left[(\mathbf{C R})_{i j}\right]=(\mathbf{A B})_{i j}
$$

2. Using the notation of slide 17 , prove that

$$
\operatorname{Var}\left[(\mathbf{C R})_{i j}\right]=\frac{1}{c} \sum_{k=1}^{n} \frac{\mathbf{A}_{i k}^{2} \mathbf{B}_{k j}^{2}}{p_{k}}-\frac{1}{c}(\mathbf{A B})_{i j}^{2}
$$

3. Using the notation of slide 19 (and the sampling probabilities of slide 13^{1}), prove that

$$
\mathbf{E}\left[\|\mathbf{A B}-\mathbf{C R}\|_{F}^{2}\right] \leq \frac{1}{c}\|\mathbf{A}\|_{F}^{2}\|\mathbf{B}\|_{F}^{2}
$$

Then, apply Markov's inequality to get a bound that holds with probability at least 0.9 .
4. In this problem, we will complete the proof of the spectral norm bound of the error matrix $\mathbf{A} \mathbf{A}^{T}-\mathbf{C} \mathbf{C}^{T}$ (using the assumptions of slide 23). We will use the notation introduced at slides 23-26.

1. First, using the notation of slide 25 , prove

$$
\mathbf{E}\left[\mathbf{y} \mathbf{y}^{T}\right]=\mathbf{A A}^{T} \quad \text { and } \quad \mathbf{C} \mathbf{C}^{T}=\frac{1}{c} \sum_{t=1}^{c} \mathbf{y}^{t}\left(\mathbf{y}^{t}\right)^{T}
$$

2. Second, using the bounds on M and the $\left\|\mathbf{E}\left[\mathbf{y y}^{T}\right]\right\|_{2}$, apply the matrix concentration inequality of slide 26 to prove that

$$
\left\|\mathbf{A} \mathbf{A}^{T}-\mathbf{C C}^{T}\right\|_{2} \leq \varepsilon
$$

with probability at least $1-\delta$ by setting

$$
c=\Omega\left(\frac{\|\mathbf{A}\|_{F}^{2}}{\epsilon^{2}} \ln \left(\frac{\|\mathbf{A}\|_{F}^{2}}{\epsilon^{2} \sqrt{\delta}}\right)\right) .
$$

[^0]
[^0]: ${ }^{1}$ Why were those particular probabilities chosen in the algorithm?

