Assignment 1 Randomization in Numerical Linear Algebra (PCMI)

1. Sherman-Morrison-Woodbury Formula

For $A \in \mathbb{R}^{n \times n}$ nonsingular, and $U, V \in \mathbb{R}^{m \times n}$ show: If $I + VA^{-1}U^T$ is nonsingular then

$$(A + U^T V)^{-1} = A^{-1} - A^{-1} U^T (I + V A^{-1} U^T)^{-1} V A^{-1}.$$

2. More Exercises

(a) (Frobenius norm of outer products) For $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$ show $||xy^T||_F = ||x||_2 ||y||_2$.

(b) (Orthogonal matrices) Show that all singlular values of $A \in \mathbb{R}^{n \times n}$ are equal to 1 if and only if A is orthogonal matrix.

(c) (Appending a row to a tall and skinny matrix) Show that if $A \in \mathbb{R}^{m \times n}$ with $m \ge n$, $z \in \mathbb{R}^n$, $B^T = (A^T \ z) \in \mathbb{R}^{n \times (m+1)}$, then

$$\sigma_n(B) \ge \sigma_n(A), \quad \sigma_1(A) \le \sigma_1(B) \le \sqrt{\sigma_1^2(A) + \|z\|_2^2}.$$

(d) Show that if $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A) = n$ then $\|(A^T A)^{-1}\|_2 = \|A^{\dagger}\|_2^2$.

(e) Show that if A = BC where $B \in \mathbb{R}^{m \times n}$ has $\operatorname{rank}(B) = n$ and $C \in \mathbb{R}^{n \times n}$ is nonsingular then $A^{\dagger} = C^{-1}B^{\dagger}$.

(f) Suppose $y \in \mathbb{R}^n$ is the minimal ℓ_2 norm solution to $\min_x ||Ax - b||_2$, where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ and $A^T b = \mathbf{0}$, then what can you say about y?