Assignment 1

Randomization in Numerical Linear Algebra (PCMI)

1. Sherman-Morrison-Woodbury Formula

For $A \in \mathbb{R}^{n \times n}$ nonsingular, and $U, V \in \mathbb{R}^{m \times n}$ show: If $I+V A^{-1} U^{T}$ is nonsingular then

$$
\left(A+U^{T} V\right)^{-1}=A^{-1}-A^{-1} U^{T}\left(I+V A^{-1} U^{T}\right)^{-1} V A^{-1} .
$$

2. More Exercises

(a) (Frobenius norm of outer products) For $x \in \mathbb{R}^{m}$ and $y \in \mathbb{R}^{n}$ show $\left\|x y^{T}\right\|_{F}=\|x\|_{2}\|y\|_{2}$.
(b) (Orthogonal matrices) Show that all singlular values of $A \in \mathbb{R}^{n \times n}$ are equal to 1 if and only if A is orthogonal matrix.
(c) (Appending a row to a tall and skinny matrix) Show that if $A \in \mathbb{R}^{m \times n}$ with $m \geq n$, $z \in \mathbb{R}^{n}, B^{T}=\left(\begin{array}{ll}A^{T} & z\end{array}\right) \in \mathbb{R}^{n \times(m+1)}$, then

$$
\sigma_{n}(B) \geq \sigma_{n}(A), \quad \sigma_{1}(A) \leq \sigma_{1}(B) \leq \sqrt{\sigma_{1}^{2}(A)+\|z\|_{2}^{2}}
$$

(d) Show that if $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A)=n$ then $\left\|\left(A^{T} A\right)^{-1}\right\|_{2}=\left\|A^{\dagger}\right\|_{2}^{2}$.
(e) Show that if $A=B C$ where $B \in \mathbb{R}^{m \times n}$ has $\operatorname{rank}(B)=n$ and $C \in \mathbb{R}^{n \times n}$ is nonsingular then $A^{\dagger}=C^{-1} B^{\dagger}$.
(f) Suppose $y \in \mathbb{R}^{n}$ is the minimal ℓ_{2} norm solution to $\min _{x}\|A x-b\|_{2}$, where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and $A^{T} b=\mathbf{0}$, then what can you say about y ?

