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Abstract

This paper studies the quality of service (QoS) provision problem in noncooperative networks
where applications or users are selfish and routers implement a general class of packet scheduling
disciplines which includes weighted fair queueing.

First, we formulate a model of QoS provision in noncooperative networks where users are given
the freedom to choose both the service classes and traffic volume allocated, and heterogenous QoS
preferences are captured by individual utility functions. We present the first comprehensive analysis
of the noncooperative multi-class QoS provision game, giving a complete characterization of Nash
equilibria and their existence criteria, and we show under what conditions they are Pareto and
system optimal. We show that, in general, Nash equilibria need not exist, and when they do exist,
they need not be Pareto nor system optimal. Our conclusions stand in contrast to previous works on
noncooperative network games including congestion control and routing games that depict an overly
optimistic picture of the world stemming from restrictive assumptions and special case analysis.
However, we show that for certain “resource-plentiful” systems, the world indeed can be “nice” with
Nash equilibria, Pareto optima, and system optima collapsing into a single class.

Second, we study the problem of facilitating effective quality of service provision in systems with
multi-dimensional QoS vectors containing both mean- and burstiness-related QoS measures. We
extend the game-theoretic analysis to multi-dimensional QoS vector games and show under what
conditions the aforementioned results carry over. Motivated by the same context, we study the
impact of burstiness under multiple QoS measures on the properties of the induced QoS levels ren-
dered by the service classes in the system. We show that under bursty traffic conditions, it is; in
many cases, impossible for a service class to deliver quality of service superior in both mean- and
burstiness-related QoS measures (e.g., packet loss rate and jitter) when weighted fair queueing is
employed at routers. This somewhat surprising result, although general in its scope, has implications
to what application QoS requirements can be effectively met in the noncooperative QoS provision ar-
chitecture, and how routers should configure their services such that a broad spectrum of application
QoS requirements can be satisfied.

Note: This manuscript includes an Appendix (of proofs) for the reader’s reference.
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1 Introduction

1.1 Background

With the increased deployment of high-speed local- and wide-area networks carrying a multitude of information
from e-mail to bulk data to voice, audio, and video, provisioning adequate quality of service (QoS) to the
diverse application base has become an important problem [3, 11, 26, 32]. This paper describes a QoS provision
architecture suited for best-effort environments, based on ideas from microeconomics and noncooperative game
theory.

We construct a noncooperative multi-class QoS provision model where users are assumed to be selfish, and
packets are routed over switches where, as a function of their enscribed priority, differentiated service is delivered.
The diverse spectrum of application QoS requirements is modeled using individual utility functions. Users or

! can choose both the service classes and the traffic volumes assigned to them. The interaction of

applications
users behaving selfishly in accordance with their QoS preferences leads to a noncooperative game whose dynamic
properties we seek to understand.

The traditional approach to QoS provision uses resource reservations along a route to be followed by a traffic
stream so that the stream’s mean data rate and burstiness can be suitably accommodated. Although research
abounds [6, 7, 10, 11, 16, 27, 32, 34, 35, 8], analytic tools for computing QoS guarantees rely on shaping of input
traffic to preserve well-behavedness across switches which implement some form of packet scheduling discipline
such as generalized processor sharing (GPS), also known as weighted fair queueing [9, 34]. Real-time constraints
of multimedia traffic and the scale-invariant burstiness associated with self-similar network traffic [29, 39, 50, 36]
limit the shapability of input traffic while at the same time reserving bandwidth that is significantly smaller than
the peak transmission rate. Thus QoS and utilization stand in a trade-off relationship with each other [37, 36]
and transporting application traffic over reserved channels, in general, incurs a high cost.

This makes it important to organize today’s best-effort bandwidth, as examplified by the Internet, into
stratified services with graded QoS properties such that the QoS requirements of a compendium of applica-
tions can be effectively met. This is particularly useful for applications that possess diverse but—to varying
degrees—flexible QoS requirements. It would be overkill to transport such traffic over reserved channels. On
the other hand, relying on homogenous best-effort service, characteristic of today’s Internet, would be equally
unsatisfactory. A dual architecture capable of supporing reserved and stratified best-effort service is needed
which, in turn, helps amortize the cost of inefficiencies stemming from overprovisioned resources for guaranteed
traffic through the filling-in effect [24].

Recently, microeconomic/game-theoretic approaches to resource allocation have received significant interest
with application domains spanning a number of different contexts [5, 13, 14, 18, 20, 23, 25, 30, 33, 38, 43,
44, 47, 48]. The overall goal of this area is to formulate a resource allocation problem in the framework
of microeconomics and game theory, and show that under certain conditions, the system achieves “desirable”
allocations from stabilibity, fairness, and optimality points-of-view. The latter are important in making stratified
best-effort bandwidth practically usable by QoS-sensitive applications: predictable service, both in terms of
dynamic stability and the rendering of appropriate QoS, are crucial prerequisites to feasibly realizing such an
architecture.

The models and approaches proposed in the literature differ along several dimensions, some of the important
ones being whether applications or users are assumed to be cooperative or selfish, whether pricing is used or
not, and how much computing responsibility is delegated to the user. Several papers have addressed the issue of
multi-class QoS provision in high-speed networks [5, 21, 31, 44, 43, 38]. Some of the works employ a cooperative
framework or place significant computing responsibilities on the part of the user [31, 43], some investigate

the effect of pricing incentives [5], and others represent flow/congestion control and routing models that only

TWe will use the terms users, applications, and sometimes, players, interchangeably.



partially address the quality of service problem [21, 33, 44].

Our approach differs from previous works in two significant ways. We devote significant effort to explicating
the differences in the modeling assumptions and their relevance to network QoS provision, casting our new results
in this light. First, we give a comprehensive noncooperative resource allocation model specifically formulated to
model multi-class QoS provision where users are endowed with heterogenous QoS preferences, they are allowed
to choose both the service classes and traffic volumes assigned to them, and the properties associated with utility
functions are grounded in networking reality. The latter is worth emphasizing given that some models make
concavity (convexity) assumptions that turn out to be contradictory in the network QoS provision context. Such
assumptions allow overly optimistic conclusions to be drawn about the noncooperative QoS provision problem,
depicting a “rosy” picture of the world that is unwarranted.

Second, we study the quality of service provision problem when QoS requirements are generalized to multiple
QoS measures such as packet loss rate, mean delay, and their variances (i.e., jitter). The extension of the game-
theoretic analysis to multi-dimensional QoS vector games is accompanied by a study of the effect of burstiness
on the QoS rendered at different service classes. Burstiness, it turns out, can make it intrinsically difficult to
deliver superior quality of service in both mean- and variance-related QoS measures (e.g., packet loss rate and
mean delay vs. jitter) in one service class over another when weighted fair queueing is employed at routers.
In other words, the set of realizable QoS vectors over service classes forms a partial order, and it need not
possess a top. This somewhat surprising result carries implications to what application QoS requirements can
be effectively met in the noncooperative QoS provision architecture, and how routers should configure their

services such that a broad spectrum of application QoS requirements can be effectively satisfied.

1.2 Basic Notations and Modeling Assumptions

Our results rely on a set of elementary assumptions which are described next. The formal network QoS provision
game is defined in Section 2. We are given n applications or users and m service classes where each user i € [1, n]
has a traffic demand given by its mean data rate A;. Each user can choose where and how much of its traffic
to apportion to the m service classes given by its allocation vector A; = (A1, Asa, . .. ,/\im)T where A;; > 0 and
E]» )\ij = A;.

The QoS achieved in service class j € [1,m] is determined by a QoS function ¢; (e.g., packet loss rate),
and ¢; is monotone in ¢; where ¢; = >, A;j. The generalization to multi-dimensional QoS vectors is shown in
Section 4.1. We also make the further assumption that ¢; = ¢;(g;) which captures a form of isolatedness? (also
called insularity or firewall property). Each user is endowed with a utility function U;(A;, ¢;) which indicates
the satisfaction received by user ¢+ when sending volume JA;; of traffic receiving QoS level ¢; through service class
J. We assume that U; is monotone in A5, ¢;.

The above assumptions are fairly natural given that all that we have said is that the QoS associated with
a service class deteriorates when more traffic is pumped into it, users deprove of bad service quality, and users
don’t mind sending more if the “cost” is the same. Two simple observations follow from the above. First,
since c¢; is a function of the allocation vectors Aj, Aa, ..., Ay, by function composition, U; is a function of the
allocation vectors and the latter constitute the only independent variables. Second, by composition of monotone

functions, U; remains monotone in A;;. These implied facts will become relevant later.

1.3 Summary of New Results

Our contributions are twofold, one concerning game-theoretic matters, and the other concerning network perfor-

mance related matters in the context of the noncooperative multi-class QoS provision game. Before we state the

2This relation is only approximate for work conserving switches. The precise modeling of nonlinearities arising from work

conservation, although interesting in its own right, is a general issue not specific to our context.



results, three notions are of import to their understanding (defined formally in Section 2.3): Nash equilibrium,
Pareto optimum, and system optimum.

Roughly speaking, a configuration is a Nash equilibrium if each player cannot improve its individual lot
through unilateral actions affecting its traffic allocations. Thus if every player finds herself in such a “local
optimum,” then from the noncooperative perspective, the system is at an impasse—i.e., stable rest point. A
configuration is a Pareto optimum if in order to improve the lot of any player, the lot of others must be sacrificed.

A configuration is system optimal if the sum of the individual lots is maximized.

1.3.1 Game-Theoretic

From a game-theoretic perspective, we formulate a model of multi-class QoS provision in noncooperative network

environments and analyze the structure of the system with respect to its equilibria and optima.

¢ Nash Equilibria and Existence Conditions We give a complete characterization of Nash equilibria and
their existence conditions. We show that Nash equilibria need not exist and we show that this is attributable
to the assumptions that U; is monotone in ¢; and ¢; is monotone in A;; (see Section 1.2). Since it is difficult to
imagine network systems where this does not hold, existence of Nash equilibria is the exception rather than the
norm. Works that show existence using the concavity assumption on U; must be interpreted with this caveat in
mind. Specifically, the monotonicity conditions, unless concocted, do not give rise to U; that are quasi-concave3

(much less concave).

¢ Relationship to Pareto and System Optimality We analyze the conditions under which Nash equilibria
(if they exist) are Pareto and system optimal. The latter is shown to be related to the Pareto optimality of a
certain normal form configuration derived from Nash equilibria. We also show that there are Nash equilibria
that are Pareto but not system optimal, and that there exist Nash equilibria that are not Pareto optimal and

vice versa.

¢ Resource-Plentiful Systems We show that for certain “resource-plentiful” systems, Nash equilibria,
Pareto optima, and system optimal all conincide collapsing into a single class. This item is interesting from the
perspective that it gives a sufficient condition under which Nash equilibria are guaranteed to be desirable in
the optimality sense. However, this is not too surprising given that it is for systems where resource contentions
can arise that control algorithms are needed. We also show that for resource-plentiful systems a certain self-

optimization procedure leads to quick, robust convergence to globally optimal Nash equilibria.

The previous results point to the need to shift away some of the focus of future research from traditional
game-theoretic questions to distributed control and performance evaluation questions since, unless one is dealing
with toy-like environments, little may be garnered from answering purely game-theoretic questions, be they in
the positive or negative.

We also note that this is the first comprehensive analysis of a noncooperative multi-class QoS provision
system where the utility function depends on both the player i as well as the particular service class j where
traffic has been assigned. Orda et al. [33] study the only other equally comprehensive QoS provision model
formulated in the routing context (actually isomorphic to the present model under a certain transformation).
However, the results they prove—when utility depends on both ¢ and j—are existence and uniqueness results
for Nash equilibria and they crucially depend on the utility function being concave (convex in the case of their
cost function). As mentioned above (and shown more rigorously in Sections 1.4 and 2.3), in the networking

context, this assumption is problematic.

3Recall that a (vector) function f(z) is quasi-concave (quasi-conver) iff for all € the set {z : f(z) > ¢} ({z : f(z) < €}) is

convex.



1.3.2 Multi-Dimensional QoS Vectors and Burstiness

We investigate the problem of effectively facilitating quality of service in systems with multi-dimensional QoS

vectors containing both mean- and burstiness-related QoS measures (e.g., packet loss rate, delay, and jitter).

¢ Extension of Game-Theoretic Analysis We extend the game-theoretic analysis to multi-dimensional QoS
vector games containing s > 1 different QoS measures. The monotonicity assumptions described in Section 1.2
are generalized to the s-dimensional QoS vector case. We show that the main results carry over if a uniformity

assumption is placed either on application preference or on QoS vector functions.

¢ Effect of Burstiness on QoS We study the impact of multiple QoS measures—sometimes with conflicting
requirements imposed by heterogeneous user needs—on the characteristics of QoS rendered by the service classes.
We show that under bursty traffic conditions, it is impossible for a service class to deliver superior QoS in both
mean- and burstiness-related QoS measures (e.g., mean delay vs. jitter) vis-a-vis some other service class if
weighted fair queueing is employed at routers. In particular, considering the four QoS measures packet loss
rate, packet loss variance, mean delay, and delay variance, if service class j achieves a lower packet loss rate and
mean delay than some other service class j/, then j must exhibit either a higher packet loss variance or a higher
delay variance vis-a-vis service class j'. In the case when only one jitter variable—say, packet loss variance—is
considered, then a total ordering among service classes is possible, however, via the degenerate situation where

the superior service class attains zero or near-zero packet loss.

The service class ordering results for multi-dimensional QoS vector systems, under bursty traffic conditions,
show the existence of intrinsic limitations to achieving targeted differentiated service when using weighted fair
queueing. The particular ordering achieved depends on the degree of resource contention present in the system,
and we demonstrate this in the context of self-similar traffic with varying degrees of scale-invariant burstiness.

Since one of the goals of the multi-class QoS provision architecture is to provide service classes with stable
QoS properties that match the diverse QoS requirements of heterogenous applications comprising the current
network state, it is important to understand what QoS demands can be jointly satisfied by the same service

class and which are conflicting. Our results show that these relations are nontrivial.

1.4 Related Work

Microeconomic Approaches to Resource Allocation In recent years, there has been a surge of work in
“microeconomic approaches to resource allocation” where ideas and tools from microeconomics and game theory
have been applied in the formulation and solution of problems arising in flow control, routing, file allocation,
load balancing, multi-commodity flow, and quality of service provision, among others [13, 44, 21, 20, 33, 23, 25,
14, 47, 48, 30, 5, 43, 38]. A collection of papers covering a broad range of topics can be found in [4]. A brief
survey of some of the literature is provided in [12]. Some standard references to game theory and microeconomics
include [1, 15, 41, 45, 46].

Many of the earlier papers including some recent ones [14, 13, 25, 31, 43] have espounded a cooperative
game theory framework to model user interactions and derive results based on Pareto optimality. Although
fruitful to investigate due to the powerful tools available in cooperative game theory, a potential drawback of
this approach is the assumption that users or applications behave cooperatively in networking contexts. For the
long-term establishment of virtual circuits or the leasing of telephone lines, the cooperative user model may
indeed be viable*. However, for best-effort applications that comprise much of today’s Internet traffic, users are

largely anonymous with respect to thousands of other users who concurrently share network resources at any

41t is also possible that intermediaries perform long-term leasing of network resources which are then packaged and made available

as high-level services to the user. Aspects of such activities may be modeled as coalition behavior.



given time, and a noncooperative framework where each user is assumed to optimize individual performance
based on his or her limited available information about the network state is better suited.

The noncooperative framework can be traced as far back as '81 to a paper by Yemini [51] who has since
been more strongly associated with the cooperative approach. The noncooperative network resource allocation
approach has been actively pursued by Lazar and his co-workers beginning in the late ’80s [19, 2] with more
recent work carried out jointly with Korilis and Orda [20, 21, 22, 23, 33]. Their main work has revolved around
an optimal flow control problem, and the development of techniques needed to show the existence of Nash
equilibria [21]. Korilis et al. [22, 23] have also looked at the problem of using interventions by an impartial
external entity—the network manager—to steer a system toward Nash equilibria that are system optimal. Of
special interest is Orda et al.’s work on routing games [33] which is intimately related to the multi-class QoS
provision model studied in this paper. This is further explicated below.

Another significant thrust in noncooperative network games is due to recent work by Shenker [44] where it
is shown how choosing a packet scheduling discipline can influence the nature of the Nash equilibria attained.
In the context of a congestion control model, it is shown that for a large class of packet scheduling disciplines,
a configuration being Nash need not imply that it is Pareto optimal. A packet scheduling discipline called Fair
Share is described and it is shown to lead to Nash equilibria with desirable properties including uniqueness and
reachability by a class of self-optimization procedures.

On the implementation side, the work of Waldspurger et al. [47] deserves attention since it is one of the
few works that have built a nontrivial working system—CPU allocation and load balancing in workstation
networks—and demonstrated that a system based on microeconomic principles can indeed work in practice.

Other implementations worth noting include Wellman’s work on multicommodity flow problems [48, 49].

QoS-Related Network Games Several papers have addressed the specific issue of multi-class QoS provision
in high-speed networks using microeconomic models [5, 31, 43, 18]. In [31, 43], utility functions are defined
with link bandwidth and switch buffers acting as substitutable resources. Pareto-optimal allocation of resources
among service classes is affected either by the network exercising admission control [43] or by users performing
purchasing decisions [31]. In both approaches; it is assumed that QoS guarantees are computable, given specific
resource reservations. As stated earlier, an important goal of our approach is to shield the user from having to
make complex computations to estimate service quality.

In [5], a general framework for investigating pricing in networks is proposed, with service discipline and
pricing policy acting as design variables. Simulation results are shown that depict the existence of “desirable”
price ranges related to system optimality. The simulations were carried out using a 2-service class packet
scheduling algorithm where a shared FIFO queue was partitioned into two segments with high priority packets
being queued at the front and low priority packets being queued at the back. Four types of applications with
different QoS requirements were tested with priority settings set either to 1 or 2.

Our model is an n-application, m-service class, s-dimensional QoS vector quality service provision model, and
emphasizes a different set of questions from that of [5] where the effect of pricing incentives are paramount. We
apply noncooperative game-theoretic analysis to the multi-dimensional QoS vector model to understand under
what conditions Nash equilibria exist and how they are related to Pareto and system optimality. We also inves-
tigate the problem of facilitating service classes with induced QoS levels that match application requirements

under bursty traffic conditions.

Comparison with Congestion Control Models by Korilis et al. and Shenker The flow or congestion
control models of Korilis et al. [21] and Shenker [44] represent a form of quality of service provision and it is im-
portant to explicate the differences between our model and theirs, given that all three follow the noncooperative
framework. The main difference between the models by Korilis et al. and Shenker, and the model studied in the

paper is that, indeed, theirs is a flow/congestion control model. Phrased in the language of the QoS provision



model defined in Section 1.2 (a formal definition is given in Section 2.3), both [21] and [44] correspond to the
situation where n = m, each player ¢ is permanently assigned to the fized service class ¢, and either A;; > 0 [44]
or 0 < Ay < A; [21], but in both cases, A;; = 0 for ¢ # j. That is, a player, being tied to a fixed service class,
has the option of controlling how much traffic [44]—or using what time schedule [21]—to send his traffic but not
where. Since delay or any other performance measure will deteriorate with increased traffic volume, but volume
itself, keeping other things fixed, will generally increase utility, there is an optimum volume assignment—i.e.,
optimal flow or congestion control—that maximizes player ¢’s utility.

In our model, there is no a priori fixed 1-1 correspondence of players to service classes. Indeed, the very
essence of the QoS provision problem is to give each player i € [1,n] the freedom to choose where she wants to
send her traffic, from service class 1 all the way to service class m. Hence, our QoS provision model is fundamen-
tally different from the flow control models, being more complex and producing equilibria structures that are
different from [21], [44]. Secondly, our model incorporates multi-dimensional QoS vectors whose consequences

are then analyzed in both game-theoretic and network performance terms.

Comparison with Orda et al.’s Routing Model In [33], Orda et al. present a noncooperative routing
game where a set of users with fixed throughput demands have a choice of assigning their flow to a set of
parallel links or routes. Although motivated by different contexts, assuming independence between the parallel
links—i.e., the performance characteristics (e.g., queueing delay) on some link or route depends only on the
aggregate traffic volume assigned to it—a 1-1 correspondence can be established between Orda et al.’s routing
model and the QoS provision model studied here.

Phrased in our language, the set of parallel links correspond to the service classes j € [1,m], and a user i’s av-
erage throughput demand J; is assigned to the m routes given by the assignment vector A; = (A;1, Az, .-, Aim)-
Orda et al. then define a cost function J; which corresponds to our utility function U;(Asj,¢;j). Both depend
on the player i as well as the service class (or route) j. Since J; 1s interpreted as a cost function, their’s is a
minimization problem. The similarities, however, end here.

Orda et al. study the routing game under three successively more restrictive assumptions on the cost function
J; (called type-A, type-B, and type-C). In type-B and type-C, the cost function J; takes on the form A;jc;(g;)
thus losing its dependence on 7 except for the weighting term A;;. As is formally defined in Section 2.3, in our QoS
provision game, the utility function has the form A;;U;(c;(g;)); thus the utility’s dependence on heterogenous
user preferences is preserved. Hence the results proved in [33] for type-B and type-C functions correspond to a
population of users with homogenous preferences, and thus do not carry over to the more general and complex
QoS provision game studied here.

As for type-A games where dependence on individual preferences is preserved, the assumption is made that
J]Z: is convex (concave in our context) in A;;. However, as has been explicated in Section 1.2, the two monotonicity
assumptions—c; is increasing in ¢; and U; is decreasing in ¢;—which are basic postulates applicable to most
networking contexts of interest, are incompatible with the assumption that J; is convex is A;;. In fact, a simple
consequence of the monotonicity assumption is that J; is quasi-conver in A;;. This is so since the composition
of the two monotone functions again relates U; monotonically (decreasing) to A;;, and monotone functions are
trivially quasi-convex. Convexity and quasi-convexity, in the QoS provision context, lead to consequences worlds
apart.

More specifically, the assumption that J; is convex in A;; is needed in [33] to invoke Rosen’s theorem [40],
a common tool for exhibiting the existence of Nash equilibria. Rosen’s theorem, in turn, uses Kakutani’s fixed
point theorem to establish existence. To apply Kakutani’s fixed point theorem, a certain set arising from a
point-set map must be convex, and this can be shown to hold if J; is convex in Az. If J]Z: is quasi-convex,
however, all bets are off (this is formally discussed in Section 2.3). The non-applicability of Rosen’s theorem, of
course, does not imply that Nash equilibria do not exist; after all, existence may be shown by some other means.

We settle the question by proving directly that for a large family of noncooperative multi-class QoS provision



games, no Nash equilibria exist. From a technical perspective, our game-theoretic contributions constitute the
first results that give a comprehensive analysis of the structure of the noncooperative multi-class QoS provision
game where users possess heterogenous QoS preferences and they are allowed to choose both the service classes

and traffic volumes assigned to them.

The rest of the paper is organized as follows. In Section 2, we describe the overall set-up and formulate
the network QoS provision model. In particular, Section 2.3 discusses the differences between our model and
the model of Orda et al. [33]. This is followed by Section 3 which gives a game-theoretic analysis of the QoS
provision game structure. Section 4.1 extends the game-theoretic analysis to multi-dimensional QoS vectors and
Section 4.2 studies the effect of burstiness on the characteristics of rendered QoS. We conclude with a discussion

of our results and future work.

2 Noncooperative Network Game

2.1 Network Model

The network model is depicted in Figure 2.1. A switch or router is shared by two traffic classes—reserved
and nonreserved (or best-effort)—where the former constitutes background or cross traffic and the latter is
the aggregate application traffic. That is, AN% = >, A where A1, Aa,..., A, are the mean arrival rates
of n application traffic sources. The service rate of the system is given by g and we will assume that the
switch implements a form of weighted fair queueing (WFQ) with service weights a1, as, ..., @, where a; > 0,
J €[1,m], and E}n:l a; = 1. Here, m denotes the number of service classes. The total service rate p is split
between the two traffic classes u = p® 4+ u™%. Service class j of the nonreserved traffic class thus receives a

service rate of a;ulV®.

Reserved )\R “
Traffic \
Non-reserved /
Traffic )\NR

Figure 2.1: Dual traffic classification at output-buffered switch with shared priority queue implementing weighted

fair queueing.

In keeping with the ATM framework, we assume fixed-size packets (i.e., cells) and we employ output-
buffered switches. We implement a generic form of weighted fair queueing achieving perfect isolatedness and
conservation of work. The latter come into effect when performing simulations. We ignore effient implementation
considerations of WFQ), treating the processing cost at switches as fixed. The assumption of fixed-size packets

simplifies the faithful rendering of service rates commensurate with the weights aq, ..., .

2.2 Application Model

Utility Function Given a generic network model where packets are tagged by priority labels receiving
differentiated service at switches, we need a framework and control mechanism which is able to exploit this
feature to provide service to applications with diverse QoS needs such that the collective good of the whole
system is maximized. A utility function is a map U : R®* — R4, s > 1, from QoS vectors to the nonnegative
reals indicating the level of satisfaction or utility a certain quality of service brings to an application or user. It

is a purely theoretical tool to reason about application behavior assuming certain qualitative shapes about its



preferences. Figure 2.2 shows two candidate utility functions, on the left, for “nonurgent” e-mail, and on the

right, for a real-time video application. The packet loss rates have been exaggerated for illustrative purposes.

E - mail Video Application

Relative Relative
Utility Utility

Cell Loss Rate Cell Loss Rate

Figure 2.2: Utility functions. E-mail application (left) and video application (right).

The shapes of the utility functions indicate that non-urgent e-mail is much more tolerant to high packet loss,
and unless the loss rate is “exceedingly” high, the e-mail application is almost equally satisfied whether the loss
rate is 0 or somewhat higher. The video application, on the other hand, can only tolerate much smaller loss

rates, and its utility is concentrated toward 0.

Selfishness Selfishness, in our context, will mean that each application i € [1, n] will try to take actions so as
to maximize its individual utility U;. The forms for U; as well as user i’s decision variables for the multi-class

QoS provision problem are defined in the next section.

2.3 Definition of Network QoS Provision Game

QoS Provision Problem Assume we are given m service classes and n applications or players represented by
their mean arrival rates A1, ..., A, and utility functions Uy, ... ,U,. We arrive at a resource allocation problem

in the following way. Let A;; > 0, ¢ € [1,n], j € [1,m], denote the traffic volume of the :’th application assigned
to service class j. Thus, A; = E;n:l Aij. That is, application ¢ is given the freedom to choose which service
classes to assign her traffic to and how much. We also consider the special case when traffic assignments are
restricted to be “all in one bag,” i.e., A;; € {A;,0}, for all j € [1,m].

Let A = (As; : ,j) denote the resource assignment matrix, and let ¢1, ¢, ..., cm be the packet loss rates of

the m service classes. Each packet loss rate is a function of A,
¢j = ¢;(A), JE L, m].

Assuming isolatedness (cf. Section 1.2), we have ¢; = ¢j(g;) where ¢; = > i, A;j is the total traffic volume
assigned to class j. We will also make the assumption that ¢; is monotone in ¢;, i.e., dc¢j/dg; > 0, a property
satisfied by virtually all service disciplines of interest®. Isolatedness and monotonicity will be the only two
properties needed of a packet scheduling discipline. We will also make the assumption that dU;/de < 0. That
is, making the packet loss rate smaller® can never decrease the utility experienced by player i.

The model can be extended to the case when application QoS requirements are represented by multi-
dimensional QoS vectors x € R*, s > 1. For example, in addition to packet loss rate, x may specify delay
requirements as well as restrictions on their fluctuations such as jitter. It turns out that the analysis of the
multi-dimensional case reduces to the scalar case under certain conditions, and we will proceed with packet loss

rate ¢ as the sole QoS indicator.

5We sometimes use continuous notation for expositional purposes. Our results do not depend on c; and U; being smooth.
6 An analogous assumption is made in the multi-dimensional QoS vector case (Section 4.1).



The weighted utility of application 7, given assignment A, is defined as
UZ(A) = Z/\ZJUZ(C])
ji=1
Note that the utility function used in Section 1.2, U;(Asj,¢;), corresponds to A;;Ui(cj). Subject to the above

constraints, the static optimization problem can be formulated as
n
max U(A) = E Ui(A). (2.1)
i=1
This is a nonlinear programming problem with equality constraints.

Nash Equilibria, Pareto Optima, and System Optima Any A* that satisfies (2.1) is called system
optimal. Thus system optimality corresponds to optimizing the usual resource allocation objective function.

An assignment A* is Pareto optimal if for all A,
Vi: Uy(A*) < U;(A) = Vi: Uj(A*) = Ui(A).

That is, Pareto optimality states that total utility U/ can only be improved at the expense of one or more
individual utility U;. In general, Pareto optimality does not imply system optimality. But, clearly, A being
system optimal implies A is Pareto optimal.

The formulation of Nash equilibrium needs a further definition. Given A, let A; = (A;1, Aiz2, ..., Aim) denote

the ¢’th player’s assignment vector. A; is also called the strategy of player ¢. Let
Li(A)={AN : A, =Ap, k#14, and [|[A}]1 = A }

where ||z]); = E;n:l |z;]. That is, £;(A) is the set of all unilateral strategies for player i.
An assignment A* is a Nash equilibrium if Vi € [1,n], VA € £;(A*),

Ui(A) < U;(A%).

That is, in a Nash equilibrium, player i cannot improve its individual utility U; by unilaterally changing its
strategy.

In general, a system optimal assignment need not be a Nash equilibrium and little can be said about the
relation between system optimality, Pareto optimality, and Nash equilibria. In the context of the noncooperative
network environment where every player acts selfishly, we are interested in characterizing assignments that
are Nash since they represent stable fixed points of the system—i.e., equilibria. From a resource allocation

perspective, we would also like to know under what conditions Nash equilibria are Pareto and system optimal”.

Simplifying Assumption To make the analysis tractable, we will work with (unit) step wutility functions

where for each player i € [1, n],

Ui(e) 1, ife<é;,
ilc) = .
0, otherwise.

Here 6; > 0 is a threshold that represents the :’th application’s preference. Since ¢; = ¢j(g;), j € [1, m], there
exist b;; > 0 such that

1 ifq]' Sbij;

0, otherwise.

bl

Ui(ej(gi)) = {

“We note that in the ordinal (vs. cardinal) approach to modeling with utility functions, one refrains assigning values to utilities
for the simple reason that doing so may be meaningless. Pareto optimality, then, becomes the central point of interest when

considering optimality properties of Nash equilibria.



With a slight abuse of notation, we will sometimes write U;(g;) for the composite function when the distinction
is clear from the context.

The simplification is reasonable from two perspectives. First, from the technical side, we do not lose
very much by sacrificing continuity of the utility function since Lemma 3.5—which shows the existence of
2-application/2-service class games with no Nash equilibria—can be shown to hold even when U; is continuous
and quasi-concave (but not concave) in each A;;. This also holds for Theorem 3.6 which generalizes Lemma 3.5
to n-application/m-service class games. The crucial factor in proving non-existence is the quasi-concavity prop-
erty which allows U; to be concave and convex over local segments and thus produce “holes” when forming
convex combinations. In particular, even though U; is quasi-concave in each A;j, U; = E]' AijU; need not be
quasi-concave.

AU
AUp + AU Az

0 b, A, 0 by Ay 0 b, 2b, 3b, Ay,
Figure 2.3: Left: U; as a function of A;; (via ¢;). Middle: A;;U; as a function of A;;. Right: Ui = A Ui + Xi2U;

as a function of A;1, Ass.

Since the understanding of this point is important—this is where the heterogeneity of application QoS
preference exerts its influence—let us illustrate it with a simple example. Assume we are given a 2-application/2-
service class system where player ¢’s utility function satisfies U;(¢;) = 1 if ¢; < b;; (j = 1,2), and 0, otherwise.
Furthermore, assume b;; = b;z (i.e., there is not even a need to make U; depend on the service class j), and
Ai = Ain + Ai2 = 3b;;. Figure 2.3 (left) and (middle) show the functions U;, A;;U;: clearly, both functions are
quasi-concave in A;;. The total individual utility U; = X\1Us; + AiaU;, however, while still being quasi-concave
in each variable JA;;, is itself not quasi-concave. This is depicted in Figure 2.3 (right) which shows U; over the
feasible region £ = {(As1, Ai2) © Aix + Aiz = 3b;;}. Even though £ is convex, the set {(As1, Ai2) : Ui > b;1/2} is
not convex: the projection onto £ yields two separated line segments. This disables the application of Rosen’s
theorem [40], which in our case—due to Lemma 3.5—is synonymous with non-existence of Nash equilibria.
Relating back to Orda et al.’s routing game [33], this is also the rigorous underpinning of the discussion given
in Section 1.4 which showed why it is problematic to assume concavity (i.e., convexity for minimization in [33])
in their routing model.

It is not difficult to see that discontinuity, caused by the step function assumption of U;, did not play an
essential role in the previous argument. Even if we “round off ” U; near ¢; and make it smooth (say in C1),
unless we concoct it to be concave—a necessary condition (unless U; is constant) is to extend the support of U;
over at least [0, A;] and make it dome-shaped—concavity will not be achieved. Indeed, constructing a concave
utility function which captures the QoS requirement of a generic real-time application that states that only a
small packet loss rate can be tolerated seems intrinsically difficult. Finally, even if for some application its utility
U; were concave, after composing it with the packet loss function ¢; (or some other performance function in the
multi-dimensional QoS vector case), U; need not be concave anymore. Monotonicity (of ¢;) does not preserve
concavity under function composition.

Second, threshold or step utility functions have been implicitly applied in practical and analytical settings
to model and encode/convey QoS preferences. For example, hard real-time systems, as defined in the real-

time systems literature, have this “all or nothing” property. Furthermore, irrespective of whether the user
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of an application possesses a step utility preference or not, when interacting with a network system through
an application, the user must ultimately code and convey her preference to the underlying system. Bounds
on packet loss rate, delay, jitter, and other QoS measures have been used to encode application traffic QoS

requirements in different contexts including one where they are used to compute resource reservations.

3 Properties of Noncooperative QoS Provision Game

3.1 Nash Equilibria and Existence Conditions

This section investigates the structure of Nash equilibria giving a complete characterization of Nash equilibria
in the noncooperative multi-class QoS provision game as well as their existence conditions. First, let us impose

a total order on the n players given by
i< =0, <.

Unless otherwise stated, we will assume such a fixed order in the rest of the paper. Following is a simple but
often used fact on the induced ordering of the traffic volume thresholds b;;. It is a consequence of the total

ordering of ; and the monotonicity of c;.
Proposition 3.1 Vi€ [1,n—1], Vj € [1,m], b;; < bit1;.

Next, we define certain subsets of service classes—parameterized by user i—that come into play when
characterizing Nash equilibria. Let I = {j € [L,m]: ¢; > by, Aij > 0}, I[7 = {j €[l,m]: ¢; < b;; }, and
P ={j€[l,m]: ¢ = b }. Thatis, I} denotes the set of service class indices where player i has assigned a
positive flow and the total traffic volume allocated exceeds player ¢’s threshold. Thus user ¢ attains 0 utility in
these service classes. Conversely for I and I, however, it is not required that user i have a nonzero assignment
in these classes. Let q;» = Zk# Arj. That is, q;: is the traffic volume assigned to service class j not counting
player i’s contribution (if any). Hence ¢; = Ai; + g;.

Let J;t = {j €[l,m]: gt > bij }and J; = {j € [l,m]: ¢} <b;;}. Hence Ji is the set of service classes
where, irrespective of player i’s actions, player i cannot garner any utility. Let J* = {j € [1,m] : b;; — g =
minkEJi_ bir — ¢}, }. J; is the subset of service classes of J~ where the positive utility achievable by user 7 is
minimal.

The next two results give uniform upper bounds on the individual utility of a fixed player where uniformity
is with respect to all unilateral strategy changes by the player. Recall that the latter is denoted by £;(A) where

A is any configuration.
Proposition 3.2 Given A, i € [1,n], let v; = Zjel,_ bi; — q; Then
YA € L;(A), U;(A') < ;.
Proposition 3.3 Given A, i € [1,n], let A\; > v; and J¥ = 0. Then 35 € J such that

VA" € Li(A), Ui(A') < vi — (bije — gf).

The two propositions are used in the proof of the following theorem which gives a complete characterization

of Nash equilibria.

Theorem 3.4 (Nash Characterization) A is a Nash equilibrium iff Vi € [1,n] either
(a) IF =0, or
(b) Iz'_ = Q), Jz'+ 7£ 0’ Ji_ < Iz'of or
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(¢) I7 =0, J;F =0,35* € J} such that J7 \ {j*} C I?.

In words, for each player i, one of three conditions must hold: a user either achieves full individual utility
Ai (part (a)), or partial utility v; = EjEJ,_ bij — qj» “dumping” the excess traffic A\; — v; into one or more service
classes belonging to J (part (b)), or partial utility v; — (b;j+ — q;»*) with excess traffic being assigned to one of
the service classes in J} (part (c)). Service classes belonging to JZ»+ form the most natural dumping ground for
channeling excess traffic since player i cannot derive utility from j € JZ»+ no matter what. If JZ»+ =0, JF takes
on a surrogate role.

The next lemma gives a simple sufficiency condition for 2-application/2-service class games in which Nash

equilibria do not exist.

Lemma 3.5 Consider the family of 2-application/2-service class systems such that the thresholds b;; on the
total traffic volume of the service classes satisfy bij < by, j = 1,2 (i.e., the ordering of Proposition 3.1 is

strict). Furthermore, assume the following inequalities hold:
(a) Ao < byy + b1o,

(b) Az 4+ A1 > bag + bas > by1 + byo,

(¢) Az > max{bi1, b1a}.

Then, for such choices of A;, b;;, no Nash equilibrium exists.

Games satisfying the above conditions are easy to construct, and the reason that there are no Nash equilibria
is because the game leads to a limit cycle. This type of behavior has also been observed in simulation studies.
Next we generalize the “Nash Non-Existence condition” to n-application/m-service class games. The proof of

Theorem 3.6 can be reduced to Lemma 3.5 and is a straightforward consequence.

Theorem 3.6 (Nash Non-Existence) Consider a n-application/m-service class game where the ordering
implied by Proposition 3.1 is strict. If there are players i’ and i* with i* > i’ satisfying
(@) > A <) by,
i£i j
(b) 2 Ai >3 biry,
i J
(C) E A+ E A < mjnbi*]',
i<i! i>i* J

then no Nash equilibrium exists.

Whereas Lemma 3.5 and Theorem 3.6 constituted simple, easily constructable conditions for Nash non-
existence, the next theorem gives a complete characterization of n-application/m-service class games for which

Nash equilibria do exist.

Theorem 3.7 (Nash Existence) Consider a n-application/m-service class game where the ordering implied
by Proposition 3.1 is strict. Then a Nash equilibrium exists if and only if at least one of the following holds:
(a) Each player is “domitable;” i.e., Yi, > Ayr > > byj.
i'#i J
(b) Let i* = min{i : J7 # 0}. There is a configuration A such that Vi > i*, I = 0, and one of the three
conditions of Theorem 3.4 holds for player *.

The above characterization has several interesting features. First, the theorem states that if any Nash
equilibrium exists at all, then, in fact, a Nash equilibrium exists (possibly different) satisfying conditions that

are much more restrictive than those of Theorem 3.4. Second, removing the ezistential quantifier in part (b)
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of the theorem is not possible® without replacing it by another existential quantifier of similar scope. This is
due to the fact that the problem of checking if a Nash equilibrium exists—given the parameters of a game—is
NP-complete®. The proof of hardness relies on the the hardness of checking whether there is a configuration
satisfying constraint (b) in the theorem. The latter, in turn, is proved using a reduction from minimum cost
multicommodity network flow with step cost functions.

The relevance of these remarks is that, even though it is possible to completely characterize QoS provision
games for which a Nash equilibrium exists, it is not possible to give an effective characterization in the sense of
feasible computability. Thus control algorithms, even if privy to information about the network state, cannot,
in general, accurately determine whether a network system with given resources and user demands is prone to
instability in the Nash sense.

Let us consider a retricted QoS provision game where each user must channel his entire traffic into a single
service class. That is, traffic is unsplittable. When viewed in the routing context, this would correspond to
a circuit-switched system where a connection, once assigned a route, must follow the path during the entire
lifetime of the connection. In our model, this corresponds to placing the further restriction that A;; € {0, A;}
for all users ¢ and service classes j. Interestingly, for this restricted game, we can show that a Nash equilibrium

always exists.
Theorem 3.8 (Unsplittable Games) Any unsplittable game has a Nash equilibrium.

Relating back to the issue of concavity and Nash existence, for unsplittable games, the problem of having to
consider function values over convex combinations when utility is quasi-concave does not arise since the domain
is discrete. Existence, however, does not mean that a Nash equilibrium is always reached starting from any
initial configuration. In Section 3.3, Theorem 3.15, we show that for certain “resource-plentiful” systems, there

is robust convergence to Nash equilibria from any initial state.

3.2 Relationship to Pareto and System Optimality

In this section, we characterize the relationship between Nash equilibria, Pareto optimal, and system optima for
the multi-class QoS provision game. First, we state a useful lemma that can be used to relate Pareto optimality
of a configuration to system optimality.

For a configuration A, an equivalent assignment A’ can be found with the same total utility so that the
players are partitioned into two sets around a unique, dividing player i5/. The first set consists of players with
indices larger than iy, with respect to the ordering induced by Proposition 3.1, with all players having full
utility. The second set consists of players with smaller indices than ¢4, all of them having zero utility. The
third set is the singleton set {ix:} consisting of the dividing player who has partial utility. We will call such an
assignment A’ a normal form of A.

Lemma 3.9 (Normal Form) Let A be a configuration with U(A) < 3" A;. Let in = max{i: U;(A) < A;}.
Then IA" with U(A') = U(A) such that

(a) Vi <ip, Uy(A') =0, and

(b) Vi > ipr, Ui(AN) = A

The usefulness of the normal form of a configuration (including Nash) comes into play when checking for
system optimality of a Nash assignment. This is so since, as we shall see, it is sufficient to check Pareto optimality
of the normal form to establish system optimality of the original configuration. Moreover, a normal form is
easy to obtain from the original Nash configuration (construction in the proof of Lemma 3.9) and checking for

Pareto optimality is generally easier than checking for system optimality.

8More precisely, “highly unlikely” since our argument depends on the P # NP conjecture.
9This result, and the machinery to prove it, have been omitted due to space constraints.
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Theorem 3.10 (Pareto & System Optimal) Given a configuration A, let A’ be its normal form. Then A
is system optimal iff A’ is Pareto optimal.

An immediate corollary of the theorem is that a Nash equilibrium is system optimal iff its normal form is
Pareto optimal. Although Theorem 3.10 gives an interesting relationship between Pareto optimality and system
optimality and is useful for reasoning about Nash equilibria in other contexts, it falls short of further exploiting
potential structure specific to Nash equilibria. It is an open question whether there is some “independence”
relation between Nash equilibria and system optima for the general multi-class QoS provision game.

Given the form of Theorem 3.10, one may wonder whether all assignments that are Nash and Pareto optimal
are also system optimal. The next result gives a counterexample which shows that Theorem 3.10 is “tight” in
the sense that, when conditioned with Nash equilibria, there are assignments that are both Nash and Pareto

but not system optimal.
Proposition 3.11 There exist Nash equilibria that are Pareto optimal but not system optimal.

Next, we characterize those Nash equilibria that are Pareto optimal. First, consider a modified game,
parameterized by some assignment A, defined as follows. The thresholds for the players remain the same as in
the original game. However, for each player ¢, the mean arrival rates are taken to be v; = UZ(A) Moreover,
there is an additional player 0 whose thresholds bg; are all 0, but whose traffic demand is v = EZ Ai — El Vi
Note that the configurations A’ in the original game for which Vi : U;(A’) > U;(A) correspond (many-to-one)
to system optimal configurations M for the modified game. Let 4; := min;xo{y;; > 0}.

Theorem 3.12 (Nash-Pareto Characterization) Let A be a Nash equilibrium and let i* be the player such
that Vi > 1, UZ(A) = Ai; t.e., ©° s the largest player with incomplete utility. Then A is a Pareto optimum if
and only if the following hold:

(a) Vi <i*, IT C{j:qj >bij}
(b) Vj [gj < bisj = Vi j & IF]. Notice since A is Nash, it follows from the hypothesis above and Theorem 3.4
that q; = bi*]'.
(¢) The two sets of players Sy = {i >i* : Jj A; >0, ' < j€IF} and So = {i > 1 Fj Aij >0, ¢j < bixj }
are disjoint.
(d) For any system optimum configuration M of the modified game, i.e., U(M) > 3.7, v;, one of the following
holds for each service class j:
n
(d1) 3~ 7ij = bi;; when i; is defined,
=0
(d2) > 7ij 2 bivj,
iZ£0
(d3) 7o > bsj — > i+ D2 biyi — 22 > vij-
i#0 i"Fi ey

Note that in part (c¢) of Theorem 3.12, an even stronger statement is true: Consider the directed graph G
whose vertices are the players ¢ > i* and whose edges are defined as follows. An edge (i1, i2) exists in G if and
only if {j : Ajyj > 0, Ajy; > 0} # 0 or 351,42 with As;, > 0, Aiy;, > 0, and ¢j, < b;,j,. Then there is no path
from any vertex in S to any vertex in S; in the graph G. In other words, for all players i > ¢*, there is a path
from Ss to 7, or from 7 to S, or neither, but not both.

There are several interesting points to note in the above characterization. First, parts (a) and (b) depend
on the combination of facts that A is both Nash and Pareto. Parts (¢) and (d), however, depend only on
the fact that A is Pareto. Second, removing the universal quantifier in (d) (“For any configuration M ...”)
is impossible for reasons similar to removing the existential quantifier in the statement of Theorem 3.7. The

problem of deciding whether a configuration is not Pareto is NP-complete as long as the thresholds of each
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player are allowed to vary arbitrarily across the classes. Third, the optimization problems that correspond to
the above decision problems possess convex feasible regions but the objective functions are highly nonlinear and
even discontinuous. On the other hand, the feasible region can be naturally partitioned into convex subregions
over each of which the objective function is, in fact, linear. In each such region, the traffic volume ¢; of each
class lies between an adjacent pair of threshold values b;,; and b;,41;. The properties (a) to (¢) in the above
theorem, and, in fact, most of the structural results in this paper, rely on the behavior of objective functions
whose level sets are convex within the subregions where they are linear. However, as encountered earlier in
the context of inapplicability of Kakutani’s fixed point theorem, the level sets of these objective functions are
nonconvex and consist of an intractably large number of disconnected components once we move outside the
boundaries of these subregions. Therefore, searches for optima across boundaries of these subregions rapidly
result in combinatorial explosion. The monotonicity properties of Proposition 3.1 do not seem to control this
explosion.

In general, a simple consequence of the above discussion is that many Nash equilibria exist which are not
Pareto optimal. In fact, the normal form of a Nash assignment A obtained from the construction in the proof of
Lemma 3.9 is typically itself Nash, and can be used to exhibit assignments that are Nash but not Pareto optimal.
Thus, in general, gaps exist in all the important relations between configurations that are Nash equilibria, Pareto

optimal, or system optimal.

3.3 Resource-Plentiful Systems and Dynamical Behavior

In this section, we show that for certain “resource-plentiful” systems Nash equilibria always exist, and further-
more, they are always Pareto and system optimal. We also show that starting from any initial configuration
robust convergence to a Nash equilibrium is achieved.

We define a dynamic game via the dynamic update process P as follows. We assume that the players move
asynchronously, and at each step ¢, a single player #; unilaterally and selfishly reassigns its A;, so that the new
assignment A; maximizes its individual utility U, (A). We further assume that no player moves unnecessarily—
i.e., a player only makes changes to its assignment if it thereby strictly increases its individual utility. Moreover,
for each user i there is an infinite sequence of time steps ¢} < t5 < --- where i is allowed to perform an update

(including a “no move” update).

Theorem 3.13 (Resource-Plentiful System) For all i € [1,n], let

m

RS (5.11)
j=1 ji=1
Then A is a Nash equilibrium if and only if A is a system optimum if and only if A s a Pareto optimum.
Moreover the optimum value achieved is U(A) =3 q; = > ;.

j i

First, note that A = E]' q;. Resource plentifulness manifests itself via E;'n:1 b;j. Since b;; = cj_l(ﬁi) where ¢;
is the packet loss function and 6; is user ¢’s utility threshold (cf. Proposition 3.1), the more resources there are
available in the system (e.g., bandwidth), the less pronounced ¢; will be and the larger b;; (keeping 6; fixed).
Condition (3.14) then states that there are sufficient resources available to potentially accommodate each user’s
requirements, and Theorem 3.13 shows that this is indeed the case even when users are selfish. The next theorem
shows that such desirable configurations can be realized in a noncooperative manner starting from any initial

configuration.

Theorem 3.15 (Convergence) Assume the supposition of Theorem 3.13 holds. Then, starting from any
wnitial configuration Ay, the dynamic update process P converges to a Nash equilibrium A. Moreover, A is

attained as soon as the sequence of players (i.e., moves) in the process P includes the subsequence n,n—1,... 1.
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4 Multi-Dimensional QoS Vectors

This section generalizes the QoS provision model to non-scalar QoS vectors. We seek to answer two questions
which arise as a result of the extension. First, do the game theoretic results of Section 3 carry over in the
multi-dimensional QoS vector case? Second, what is the effect of system variability—caused by fluctuating
background and source traffic—on the rendered QoS of the service classes when multiple QoS measures are

present?

4.1 Extension of Game-Theoretic Analysis

In Section 2, we formulated a noncooperative QoS provision game based on singleton QoS vectors, x = (¢),
where ¢ was a bound on packet loss rate. Here, we will extend the model to multi-dimensional QoS vectors
x € R* s > 1, and show that the singleton vector analysis carries over unchanged.

Let x = (z1,%a,...,25)7, and let x/ = (szl, mé, ..., 23)T denote the quality of service rendered to service
class j € [1,m]. As before, we make the monotonicity assumption dzi/dg; > 0, r € [1,s], j € [1,m], which is
satisfied by most packet scheduling policies of interest including weighted fair queueing. Each player’s utility
function U;(x), ¢ € [1, n], has the form

Ui (x) 1, ifvrell,s], =, <0,
i\X) = .
0, otherwise,

where 6° = (61,65, ...,00)T > 0 is the multi-dimensional threshold vector that represents the i’th application’s
preference.

In order to deal with the multi-dimensional QoS vectors and thresholds uniformly, we henceforth make one
of two uniformity assumptions: either assume that the thresholds ¢ can be ordered such that the ordering is

uniform over r, i.e.,
Vre[l,s],Vie [1,n]: 0. <0t (4.1)
or we we assume that the functional forms #J are uniform over r for each j, i.e.,

Vie[l,m]: ot =2l = =2l (4.2)

k]

By isolatedness, zJ = 2i(q;), r € [1,s], j € [1,m], and just as in Proposition 3.1, the condition zi(g;) < 0% can

now be stated as g; < bj; using the definition

by = ()7 (0)).

Let b;; be the minimum over r, i.e., b;; = min,¢[1 4 bfj.

We can now rephrase U;(x7) as

‘ 0, otherwise.

Moreover, under the assumption that the functional forms zJ are uniform over r for each j where 2l satisfies
Yj € [1,m], Vr € [1,s], i = 2, and using the monotonicity of z%, it can be observed that the following identity
holds:

bij = min (+1)7(01) = (+2)71( min 07). (43)
s re(l,s

That is, the min operator commutes with (J:i)_l

Now we are ready to state a total ordering on b;; for fixed j corresponding to its counterpart Proposition 3.1.
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Proposition 4.4 For the multi-dimensional QoS vector model with assumption (4.1) or (4.2), there exists an
ordering of the players i € [1,n] such that Vi € [1,n— 1], Vj € [1,m],

bij < biyaj.

Proposition 4.5 The game-theoretic results of Section 3 hold for the multi-dimensional QoS vector model
with assumption (4.1) or (4.2).

The proof structure of our game-theoretic results rely on Proposition 3.1 to order application QoS prefer-
ences. The QoS vectors (i.e., scalar packet loss indicator) and their functions affect the proof only through
Proposition 3.1. Thus, under either of the uniformity assumptions, and with Proposition 4.4 in hand, it is

straightforward to check that the proofs carry over unchanged giving Proposition 4.5.

4.2 Effect of Burstiness on QoS
4.2.1 Problem Statement

A consequence of generalizing the QoS provision model to multi-dimensional QoS vectors without using either
of the uniformity assumptions of the previous section is that there may no longer be a total order on the set of
application QoS requirements. That is, whereas in the scalar QoS case (e.g., take packet loss rate), applications
could be linearly ordered by the bounds on their packet loss rate, 1 < i <= 0; < 0;/, in the vector QoS case, this
is no longer the case and only a partial order can be imposed on the set of QoS requirements © = { 6 ic [1,n]}
where % = (6%,65,...,60)7.

Given that the QoS rendered by a service class j € [1,m] is an induced phenomenon depending on the total
traffic influx ¢; to class j, the question arises how well the induced QoS levels match the needs of the constituent
application QoS requirements. This is assuming that weighted fair queueing is used at a switch with service
weights ordered oy > as > -+ > a,,. As part of the general problem, we are interested in answering a very
basic but fundamental question: If uniformity holds and © is totally ordered, can QoS be rendered at the m
service classes such that the performance QoS vector set X = {x/ : j € [I,m]}, ¥/ = (.7;]1,1‘]2 2T s
also linearly ordered? Of course, to maintain comparability, we will assume that the n input processes are i.i.d.
Somewhat counter-intuitively, we will show that the answer is in the negative.

To fix a reference point, consider a 2-application/2-service class/2-dimensional QoS vector system with
packet loss rate and packet loss variance as the two QoS indicators. We would like to know whether the

following implication holds,
(6%,0}7) < (9?,6(27) — (61,0'1) < (62,0'2), (46)

where 6 = (0¢,0%) is the QoS requirement of user i € {1,2} and x? = (c¢;, 0;) is the QoS rendered at service
class j € {1,2}.

As a second reference point that is more comprehensive, we will be interested in a 2-application/2-service
class/4-dimensional QoS vector system where the two additional QoS measures consist of mean delay and delay
variance. The corresponding implication to check is

(01,0%.,08,00.) < (62,02.,02,0%) = (c1,0%,dv,0%) < (¢3,0%,ds, 0d) (4.7)

[AS] A

where the first two components are as before and the last two components represent mean delay and delay

10

variance™", respectively.

10To avoid further cluttering of notation, we depict the standard deviation of the packet drop and queueing delay processes while

continuing to refer to variances in the text.
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4.2.2 Qualitative Analysis: Ordering due to Packet Loss

First, we give a qualitative analysis of the packet drop mean/variance ordering question, i.e., implication (4.6).
The queueing set-up is the one shown in Figure 2.1 (Section 2.1) with our two applications comprising the
nonreserved (i.e., best-effort) traffic.

Let (£(t))ter, denote the stochastic process corresponding to the reserved cross traffic with mean E(¢) = AR
In the following development, we will assume a zero buffer capacity switch where the degree of contention is

solely determined by the instanteneous packet arrivals. We will model reservedness by assuming £(¢) < u and

n(t) = [n—¢E@)]* (4.8)

where [ -]7 = max{-,0}, and 5 is the available service rate to the nonreserved traffic class—itself a stochastic
process determined by €. Our goal is to ascertain the influence of the cross traffic £(¢) process—both its mean
and variance—on the aforementioned ordering questions. Burstiness may also stem from the application traffic
itself, however, in the present context, we will view £(¢) as the sole control variable.

The packet loss rates of the rendered service class QoS vectors x/ = (¢j,05), j = 1,2, can be expressed as

¢j(t) = [1—ayn(t)/g; 1" (4.9)

Here, we have used the isolatedness property of WFQ. Thus ¢;(¢) is a stochastic process with 0 < ¢;(¢) < 1.
Note that the packet loss rate rendered by service class j is determined by its traffic volume ¢; and therefore its
“relative goodness” vis-a-vis other service classes is determined by the normalized weight w; = o /q;, j =1,2.
As mentioned above, to maintain comparability, we need the input processes ¢q;, g2 to be the same. To further
condense the problem to its essentials—namely dependence of QoS ordering on é&—we set g1 = g3 = ¢* where
q* is constant.

Since, by assumption, ¢; is fixed, we may assume without loss of generality that
Wi Z wWa.

That is, service class 1 is “better” than service class 2, certainly with respect to packet loss rate since ¢;(?) <
e2(t), Vt € R4, which follows from (4.9). This also trivially implies

E(Cl) S E(Cz).

The variance, however, is more tricky. Let V denote the variance operator. Then

Vie) = [ pn(1—wmin - Bl (1.10)

o

7

since for n < 1/wj, ¢; = 1 —w;n. By w1 > ws, the second moment term in (4.10) satisfies

/<L p()(1 —win)’dy < /<L p(n)(1 — wan)*dn

IN

|-

/ P = )y

2

€

Since E(c¢1) < E(ez), the two terms in (4.10) contribute in opposite directions and both V(e1) < V(ez) and
V(e1) > V(cz2) are possible depending on the distribution p(n).

If p(n) is concentrated toward max{l/wy, 1/wa}—i.e., the distribution of ¢ is concentrated toward 0—then
¢1 and c¢g are close to 0 with high probability. Since ¢1(¢) < ¢a(t), in the degenerate case when ¢1(¢) = 0,t € Ry,

it is certainly possible to have

E(Cl) S E(Cz), V(Cl) S V(Cg) (411)
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as desired in (4.6).

Let us consider the case when p(n) is concentrated toward 0, i.e., the distribution of ¢ is concentrated toward
p. Under such conditions of high cross traffic, ¢i(t),e2(t) > 0 with high probability and we will make the
approximation ¢; () = 1 — w;n(t). Since 1 —w;n(t) =1 — w;(p — &(t)), we have

V(¢j) = wiV(E). (4.12)

That is, the variance of the packet loss rate is proportional to the variance of the cross traffic process with
constant of proportionality w]z.
By w1 > wa, we now have V(e1) > V(cz). Assuming strict inequality wy > wg between the two service

classes, we get
E(c1) <E(e2),  V(e1) > V(ea). (4.13)

That is, the apparently “superior” service class 1 has a higher variance than service class 2 although it still
has a smaller mean packet loss rate. Returning back to the original question of whether (4.6) can be achieved
assuming w; > wsy, we conclude that under high cross traffic conditions, ¢; < ¢o but 1 > 04, and x! = (c1,01)

and x% = (¢3, 02) become incomparable.

4.2.3 Numerical Estimation: Ordering of Packet Loss

Although the closed forms of the mean and variance of ¢; are, in general, difficult to obtain, their numerical
approximations are straightforward to compute assuming the distribution of the cross traffic process ¢ is well-
behaved.

Here, we will show the transition behavior, (4.11) — (4.13), as a function of mean cross traffic when the
background traffic process is Poisson with rate Af. Since V(c¢;) = E(CJZ) —E(c;)?, we compute the first moment
using

> e AT AR
E(c;) = Z [1—wj(u—k)]* TR
k=0
and similarly for the second moment E(CJZ)

Figure 4.1 (left) and (middle) plot the estimated mean and variance values as a function of A®. We have
used the parameter set a; = 0.7, as = 0.3, ¢1 = g2 = 450 (thus giving w1 > wsy), g = 900, with A® ranging
from 10 to 500. Since ¢ is Poisson, E(¢) = V(£) = A, Figure 4.1 (left) shows that mean packet loss is ordered
as E(c1) < E(ca) as expected. In Figure 4.1 (middle) we observe that up until A ~ 240 when E(c;) = 0, we
have V(c1) < V(c2), mainly due to the fact that E(c;) = 0 for most of the interval. However, after A > 200,
approximately in tandem with E(c;) becoming positive, V(c;) > 0, and after A® > 250, we have

V(er) > V(ea)

as predicted by the analysis. Notice that the transition is fairly abrupt with V(e;) < V(c2) holding mostly for
the degenerate case when E(c;) =0, i.e., ¢1(¢) = 0.

One drawback of using Poisson cross traffic to discern the burstiness effect is that the mean and variance are
the same (M) and thus cannot be independently varied. For illustrative purposes, we use a white Gaussian noise
background traffic process where the mean and variance of the process can be independently varied. We stress
that this is not meant to be taken as a realistic traffic model (we study the impact of self-similar cross traffic in
Section 4.2.4) but as a generic tool to discern the effect of burstiness on the packet loss ordering relation.

If we vary the mean of the cross traffic process, it turns out to have a “sigmoidal” shape as in Figure 4.1 (mid-

dle) of the Poisson cross traffic case. That is, the overall contention level as determined by the average input
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Figure 4.1: Left: Estimated mean packet loss of 2-service class system as a function of Poisson cross traffic
parameter A®. Middle: Estimated standard deviation of packet loss rate of 2-service class system as a function
A Right: Estimated standard deviation of packet loss rate as a function of standard deviation of white noise

cross traffic.

rate is of import; this is discussed further in Section 4.2.4. If we set the mean at a level where the sigmoidal
transition is just beginning to happen and—keeping the mean fixed—vary the standard deviation of the cross
traffic process, we observe the reordering phenomenon shown in Figure 4.1 (right). That is, as the standard
deviation of the cross traffic process increases, the fluctuation of the packet drop process as experienced by the
“better” service class (class 1) exceeds that of service class 2. Furthermore, the spread in variability experienced

by the two service classes follows approximately the cone shape predicted by (4.12).

4.2.4 Ordering of Packet Loss and Delay: Self-Similar Background Traffic

In this section, we study the ordering problem of the more comprehensive case, implication (4.7), where the
additional QoS measures—mean delay and delay variance (i.e., jitter)—are incorporated. Given the import of
network contention on the ordering relation, we study the impact of network resources on QoS ordering. We also
incorporate more realistic traffic conditions in the form of self-similar background traffic [28, 36] that possess
varying degrees of long-range dependence.

The simulation results of this section were carried out using LBNL’s Network Simulator ns (version 2),
suitably modified to transport application/background traffic using modules running on top of UDP. The routing
modules were changed to implement an idealized form of weighted fair queueing (perfect insularity and work
conservation), operating on fixed size packets where processing overhead and other efficiency issues are ignored.
We implement a topology corresponding to Figure 2.1 with three concurrent connections routed over a bottleneck
link. Traffic flow is one-way, and multiplexing takes place at the bottleneck switch where the input traffic from
the incoming links impinge. Packet drop, queueing delay, and throughput are measured at the bottleneck
switch. Events were recorded at 10 ms granularity, and the traces shown in Figures 4.2 and 4.3 depict 1 sec

time-aggregations.

Impact of Network Contention Figure 4.2 (left) shows the traffic profile of two constant bit rate applications
(service class 1 & 2), a self-similar background traffic process with long-range dependence captured by a Hurst
parameter estimate of 0.75 (service class 0), and their aggregate traffic. Figure 4.2 (middle) shows the packet
drop traces at the router for the two service classes where the weights were set at oy = 0.6, as = 0.4. That is,
service class 1 is the “better” service class. Figure 4.2 (right) shows the packet drop traces for the same set-up
except that the bottleneck link bandwidth was increased from 2.8 Mbps to 3.3 Mbps (keeping the buffer capacity
fixed). As is evident from visual inspection of the plots, service class 1 exhibits a smaller mean packet loss rate
than service class 2—as expected—since it possesses a larger service weight than service class 2. However, in
the case of the variance of the packet drop process, we observe that the opposite is true. That is, in spite of the

higher service weight oy = 0.6 > a3 = 0.4, the variance of the packet drop process in service class 1 is higher
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Figure 4.2: Left: Throughput trace of self-similar background traffic (service class 0) and constant application
input traffic (service class 1 & 2). Middle: Packet drop trace at bottleneck router with link bandwidth 2.8 Mbps.
Right: Packet drop trace at bottleneck router with same set-up except link bandwidth 3.3 Mbps.

than the variance in service class 2 (0.08 vs. 0.05 standard deviation); i.e., E(e1) < E(eg) but V(er) > V(ea).
This is more clearly shown in Figure 4.3 (top-left) which shows the measured standard deviation at the router
for the service classes 1 and 2. Clearly, even in time, the fluctuation experienced by service class 1 dominates

that of service class 2.
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Figure 4.3: Top row: Traces of packet drop standard deviation for bottleneck bandwidth of 2.8 Mbps (left) and
3.3 Mbps (right). Bottom row: Corresponding traces for standard deviation of queueing delay at bottle switch
for link bandwidth 2.8 Mbps (left) and 3.3 Mbps (right).

Figure 4.2 (right) and Figure 4.3 (top-right) show the corresponding traces for the same set-up except
that the bottleneck bandwidth was increased to 3.3 Mbps, decreasing the contention level. The mean standard
deviation of service class 1 is now lower than that of service class 2 (0.04 vs. 0.09), and we have E(¢1) < E(cz) and
V{(e1) < V(cz). Furthermore, this, again, holds true in time (with “high probability”) as seen in Figure 4.3 (top-
right).

The reasons underlying this phenomenon—dependence on bandwidth (more generally, contention level)—can

be traced back to the analysis in Section 4.2.2. Pending on whether the probability distribution of the available
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service rate process n was concentrated toward g or not, the approximate analysis leading to relation (4.13)
could be executed or not. Other things being equal, the more n was concentrated away from p toward 0—i.e.,
smaller available bandwidth—the more likely equation (4.12) (i.e., V(¢;) = w?V(€)) holds true, and “switching”
of the ordering occurs. Hence varying p has a similar influence, as does changing the mean background traffic
intensity or the mean application traffic intensity.

Simply put, the smaller the network resources at a switch relative to the input traffic intensity, the more
faithfully the packet drop process will resemble the input process. Since the service class with the larger service
weight has greater “exposure” to the input process—inclusive its burstiness—the larger weight service class
will also suffer commensurately more under its consequences. Hence the degree of resource contention directly
impacts how faithfully this transfer process takes place. In the region in-between (in parameter space), either
case can occur; however, the shape of the sigmoidal transfer curve (cf. Figure 4.1 (middle)) indicates that the

transition point may be sharp and thus the transition region small.

Delay Ordering The previous reasoning immediately suggests the corollary that mean delay and delay
variance should move in opposite directions from how mean packet loss and packet loss variance are moving.
That is, if V(¢1) > V(c2) then V(dy) < V(dz), and if V(e¢1) < V(ca) then V(d;) > V(dz2). This is so since,
assuming a “nonnegligible” buffer capacity, if resource contention is high such that V(¢1) > V(e2), then buffer
occupancy will be close to saturation, thus suppressing the queueing delay’s variability. On the other hand, if
resources are plentiful and packet drops miniscule, then much of the variability of the input traffic is absorbed
inside the queue, manifesting itself as variability of queueing delay.

Figures 4.3 (bottom-left) and (bottom-right)—which constitute the queueing delay measurements for the
runs described earlier—confirm this conclusion. When network contention is high (left column figures), the
delay variance ordering is given by V(d1) < V(d2), the oppositive of the packet loss variance ordering. When
the contention level is low (right column figures), we observe V(d;) > V(d3) which is, again, opposite of what
is the case for packet loss variance. The domination in time property can be seen to hold for the delay process

as well.

Impact of Self-Similar Burstiness Self-similar traffic with long-range dependence possess a form of “scale-
invariant burstiness” [36]. This roughly means that the variances of the time-aggregated processes do not
dampen out as the time scale is increased. We have conducted experiments with self-similar background traffic
possessing varying degrees of long-range dependence whose Hurst parameter'! values were in the range 0.55—
0.95. With respect to the ordering relations (4.6), (4.7), we observed ordering behavior consistent with the
conclusions advanced above. That is, the scale-invariant burstiness present in self-similar traffic did not have a
marked effect on the relative quality of service rendered at the two service classes.

It is important to note that the sample mean of all the self-similar background traffic used were held constant
to preserve comparability. Otherwise, if dissimilar ordering relations were observed it would not be clear to
which cause to attribute it to: mean traffic intensity or self-similar burstiness. With this normalization in hand,
one may have conjectured to see a switch in the ordering from V(e1) < V(ez) to V(e1) > V(eq) as the degree
of scale-invariant burstiness was increased (as evidenced in Figure 4.1 (right) for a different context). However,
for the resource configurations that we tested, this was not the case. This may be, in part, due to the fact
that statistical differences in the variances of the time-aggregated processes are observable only after about the
1-5 sec mark. That is, if one computes the variance of the different Hurst parameter traffic series at the lowest
time granularity (10 ms), then the variances are indistinguishable. Similarly up to the 1 sec mark. For the
resource configurations that we tested, the correlation structure present at the 1-5 sec time scale and above may
not have been significant vis-a-vis the short-range correlations at smaller time scales in influencing queueing

behavior. This is also consistent with the discussion of time scale and long-range dependence given in [17, 42].

1 The Hurst parameter is one of the ways to measure the long-range correlation structure present in a time series. Its range is

(0.5,1.0), and the closer the Hurst parameteris to 1.0, the more long-range dependent the underlying traffic series.
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4.2.5 QoS Ordering: Simulation of Noncooperative QoS Provision Game

This section presents simulation results of noncooperative multi-class QoS provision games with multi-
dimensional QoS vectors. They confirm the transition behavior and ordering results presented above. Due
to space constraints, we give a cursory description of the set-up including the exact QoS provision architecture.

We implement the network set-up described in Sections 2.1 and 4.2.1 with n applications—grouped into
several application classes each with a different QoS requirement)—m service classes, and background traffic
given by a Poisson process with rate A®. Our simulation model is more comprehensive in that it incorporates
pricing which is used to entice high-QoS applications and low-QoS applications to populate disjoint service
classes such that resources are better match and utilized in both the Pareto and system optimality sense. The
noncooperative multi-class QoS provision game with pricing is more difficult to analyze, and it is one of the
subjects under current study.

We associate prices p1, pa, . .., pm With the service classes, and applications incur a cost of A;;p; for sending
a traffic volume of A;; tagged by service class identifier j € [1,m]. Each application is assigned a one-time
budget B; “sufficient” for the simulation duration. We also assume that assignments are of the type “all in
one bag,” i.e., unsplittable. The selfishness behavior of applications is modeled in the following way. Given
application i’s QoS requirement vector Hi, the application seeks out a cheapest service class j such that all its
QoS requirements are satisfied. That is, x/ < 6" and p; is minimal. Thus, applications are assumed to assign a
nonzero utility to “money.”

If no such service class j exists—i.e., ¥j € [1, m], x/ £ 6'—then i submits its traffic to a service class j/ that
most closely meets its QoS requirements, however, paying a price of p;; + ¢ where 6 > 0 is a bid parameter. The
current price of service classes is continuously computed and updated by the system (realized by a computational
market that monitors these events), with the new price p} set as the maximum of the “bids” submitted in the
previous “round.”

The price decrease mechanism is affected in the following way. Let A; denote the set of applications i € [1, n]

currently assigned to service class j € [1,m]. Let

. 1 .
X == > 6. (4.14)
141 5
J
That is, x/ = (x{, <., x9)Y is the average application QoS requirement vector of applications currently assigned

to class j. If x) —x’ > 0 and ||x/ — x/|| > © where © > 0 is a system parameter, then
P, — max{p; 4,0}

In other words, the system itself exerts a downward pressure on the price of a service class j if the QoS rendered
in the service class—i.e., x/—is significantly better than the QoS required by the constituent applications.
Hence, if the system is underutilized, services are rendered at nominal prices or for free. One may use a number
of different norms || - || (we have used the sup norm) depending on the QoS vector make-up and the objectives
at hand.

The asymmetric price adjustment mechanism stems from our work with many-switch systems (also called
network of switches in [44]) where each user or application makes its QoS requirement known using performance
bounds. The QoS requirement vector is then enscribed in the information carried by a packet stream, and routers
along a path inspect the QoS requirement vector and a per-connection rendered QoS vector (also enscribed in
the packet header), and then computes—on behalf of the application—which service class to assign the packet
to. There are a small set of such managers running at every router whose algorithms are known to the user and
who can be accessed by a demux key also specified in the packet header. The design of such managers and the
dynamics of the many-switch system leads to interesting distributed control problems which will be described

elsewhere.
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Of import, in the present context, is that all the quantities—including (4.14)—can be easily computed

because the information is available in the packet streams.
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Figure 4.4: Same packet loss requirement but different variance requirements. Left: Cell loss trace shows
inverted ordering where service class with least variance has highest cell loss rate. Right: Corresponding traffic

volume trace q1,qs, q3.

Effect of Burstiness Figure 4.4 shows the trace of a 3-application/3-service class/2-dimensional QoS vector
system where the components of the QoS vectors are packet loss rate and its standard deviation. There are
15 applications grouped into three application classes of 5 applications each. The QoS requirements within
an application class are homogenous; however, each application acts independently of the others in the same
class. The QoS requirements associated with the three application classes are given by (0.9,0.02), (0.9,0.036),
and (0.9,0.09). That is, all users have the same packet loss bound 0.9 but different bounds on the standard
deviation. This allows us to discern the effect of the burstiness-related QoS requirement.

A high packet loss bound was used to create exaggerated, nondegenerate (i.e., non-zero) loss behavior in each
of the three classes whose dynamics are easily illustrated. The service weights were set to a; = 0.2, ag = 0.3,
and as = 0.5. The application traffic demands A;,; 2 = 1,2,... 15 were set to 85 x 5, 49 x 5, and 46 x 5. The
service rate was u = 900 and the cross traffic rate was A = 500.

Figure 4.4 shows the time evolution of packet drops in the three service classes for the system described
above. We observe that the applications’ bounds on packet loss rate are all satisfied. However, as predicted
by the analysis, the application with the most stringent QoS requirement—in both cases requiring a standard
deviation bound of 0.02 and 0.021, respectively—ends up receiving the worst actual packet loss rate rendered
although they are still below the required packet loss rate thresholds.

We note that even though for this particular configuration the system settles into a Nash equilibrium after a
transient period, if the packet loss requirement 0.9 is decreased to 0.8 (keeping everything else fixed), selfishness—

as modeled by the decision procedure above—Ileads to cyclic behavior.

Degenerate Assignment Figure 4.5 shows the trace of a 2-application class/2-service class/2-dimensional
QoS vector system with service weights a; = 0.4, as = 0.6. There were a total of 10 applications grouped into
two application classes of 5 applications each, with application class QoS requirements (0.7,0.01), (0.7,0.04).
The traffic volume demands A;; ¢ = 1,2, ... ,10 were 40 x 5 and 140 x 5.

Figure 4.5 (left) shows that service class 1 has both a lower packet loss rate and a lower packet loss standard
deviation than service class 2. However, this is only achieved because the packet loss rate for service class
1 is zero or near zero—the degenerate case. Note that in spite of service class 1 having a service weight of
a1 = 0.4 < ag, due to the smaller traffic volume assigned to class 1, ¢ < g2, the normalized service weight

satisfies wi > wy thus explaining the 0 packet loss rate associated with service class 1.
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Figure 4.5: Degenerate case where QoS delivered obeys the same order as that required by constituent appli-
cations (0.7,0.01) < (0.7,0.04). First component is packet loss rate and second component is variance. Left:
Shows degenerate QoS rendered for service class 1 where packet loss rate and variance are both 0. Right:

Corresponding traffic volume trace.

5 Conclusion and Discussion

We have presented a study of the quality of service provision problem in noncooperative multi-class network
environments where applications or users are assumed to be selfish. Users are endowed with heterogenous QoS
preferences, and they are allowed to choose both where and how much of their traffic to send. Our framework and
its conclusions are best suited—but not exclusively so—for best-effort traffic environments where the network
is not required to provide stringent QoS guarantees which can only be accomplished, currently, by employing
conservative resource reservations. Rather, service classes with differentiated QoS levels matching the needs
of constituent applications are induced by the latter’s selfish interactions, providing reasonably stable and
predictable QoS levels as a function of network state.

We have formulated a noncooperative multi-class QoS provision model and given a comprehensive analysis of
its properties. We have shown that Nash equilibria—which correspond to stable fixed points in noncooperative
games—need not be Pareto nor system optimal; in fact, Nash equilibria need not even exist. We have given
a complete characterization of Nash equilibria and their existence conditions, and we have studied the game-
theoretic structure relating Nash equilibria to Pareto optima and system optima. In general, gaps exist between
the classes at all levels, producing a picture of the world that is nontrivial and complex. Much of this is due to
the presence of applications with diverse QoS requirements, the fact that they are allowed to choose where to
send their traffic, and the basic axioms underlying network systems. For “resource-plentiful” systems, we have
shown that Nash, Pareto, and system optima all coincide, and moreover, convergence is monotone and fast if a
form of asynchronous self-optimization is used.

We have extended the analysis to systems with multi-dimensional QoS vectors containing both mean- and
variance-related QoS measures. We have shown that the game-theoretic results carry over if a uniformity as-
sumption is placed either on application preference thresholds or on QoS vector functions. We have studied
a subtle but important effect introduced by considering multiple QoS measures—namely, the ordering char-
acteristics of QoS rendered at service classes when weighted fair queueing is employed. We have shown that
under bursty traffic conditions, it is intrinsically difficult for a service class to render superior QoS in both
mean- and variance-related QoS measures vis-a-vis some other service class. In particular, considering QoS
vectors comprising of mean packet loss, packet loss variance, mean queueing delay, and queueing delay variance,
independent of whether network contention is high or not, it is impossible for a service class to deliver better
quality of service in each of the QoS measures over some other service class. This has been shown to hold under

self-similar traffic conditions with varying degrees of long-range dependence.
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Many interesting and challenging problems remain, some of a mostly technical nature, and others motivated
by performance evaluation and practical issues arising out of implementation-related considerations. Current
work is directed in two main avenues, one, in the extension of the game-theoretic analysis to arbitrary monotone
utility functions and the incorporation of pricing which requires further development of analytical tools and
techniques, and two, in the study of many-switch systems—a prime target being the realization of such QoS
provision architectures in wide area network environments including the Internet. In the latter, the interaction
among switches or routers introduces couplings that give rise to new complexities and a slew of challenging
distributed control problems. The main motivating factor, however, of this line of research is that the current
structure of the Internet—which provides a single homogeneous clump of best-effort service (not counting
reservation-based services)—must be shaped into an architecture which provides stratified services with desirable
stability, fairness, optimality, and efficiency properties such the enormous burden to be placed on this enabling

infrastructure can be effectively met.
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A Appendix

A.1 Proofs of Section 3.1
Proof of Proposition 3.1. Since §; < 6;41, ¢ € [1,n — 1], by monotonicity of ¢;, j € [1,m],
¢ 1(0:) < ¢ H(0iga).

Noting that b;; = c]»_l(@i) completes the proof. [ |

Proof of Proposition 3.2. Since for all j € J;F, U;(c;(A’)) = 0, the upper bound v; follows immediately. W

Proof of Proposition 3.3 First, J* # ) since J7 # 0. Since A; > v; and J} = ), for at least one j € J,
g;j > b;j. This implies that U;(¢;(A’)) = 0. It is easily checked that

max Ui(A’)
AELI(A)

is achieved by A’ such that A, = bje — ¢¢ if £ # j*, and Alje = A — EZ#J’* A},, where j* is some element in J;.

2

Hence, U;(A") = D ogzjn bie — qp = vi — (bije — qiv). ]

Proof of Theorem 3.4 (< ). Assume I} = () (part (a)). Since Vj, A;j > 0 = ¢; < b;;, we have U;(A) = A,
the trivial upper bound on U;.

Assume (b) holds. By Proposition 3.2, U;(A) < v; where v; = E]’EJ; bij — q; I7 =0 and J© C I? imply
Ui(A) = v;, thus achieving the upper bound which holds for any A’ € £;(A). Notice that J*, J7 do not depend
on the actions of player 1.

Assume part (¢). I7 = 0 and 3j* € J; such that J7 \ {7*} C I? imply that U;(A) > v; — (bij= — qj»*). If
J; = 0, which holds iff J; = 0, then we are done. Assume J; # (). Notice that the case J. C I is covered by
part (b) or (a). Hence, we can assume j* € IZ-+. I7 =0 and j* € IZT" imply that v; < A;. Thus, we can apply
Proposition 3.3 which in conjunction with the lower bound on U;(A) yields U;(A) = v; — (bsj» — q},).

(=). We will prove the contrapositive. That is, assuming 37 € [1, n], given A, such that

H#0 A (I7#0 v Jr=0 v J7 ¢10)
AT #E0 Y IF£D Y YT e IT\TYE L),

we will show that A is not Nash. There are nine clauses to be considered which are grouped into five cases
(i)-(v).

() (IF £ OATT £0), (IF £OATT £OATE = 0), (I £0AL £ OIS € 12), (IF £0ALT £0ATE £0),
(IF £ONIT #£0AY" € J; 2 JT\{j*} € I?). They all have in common the conjunction I} # 0 A I7 # 0.
The latter implies 35, j, j # j', such that A;; > 0, ¢; > b;;, and ¢;/ < bsjr.

We can construct an assignment A’ € £;(A) such that A{, = Ay, £ € [L,m]\ {j,j'}, and A}; = Aij — ¢,
Aijr = Aijr + €, where € = min{A;;, b;j: — ¢;}. This yields

Ui(A/) — UZ(A) > €

from which it follows that A is not a Nash equilibrium. It can be easily checked that the argument applies to
the other four clauses.

(i) (IF #0AJF =0AJF #0) = F. The implication reduces to a tautology.

(i) ([F £0AJ7 CIPANJY £0). J7 ¢ I? implies that J; # 0. For j € J;7 \ I, either g; < b;; or q; > by;.
If ¢; < b;j, then the argument from (i) can be applied. Assume g¢; > b;;. This implies that U;(¢;(A)) = 0. Since
JF# 0, forall j € JF, j' # j and Ui(cj(A)) = 0.
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We can construct A’ € £;(A) such that Af, = A, £ € [L,m]\ {j,5'}, and Aj; = Aij — €, Aljr = Aijr + €, where
€ = ¢; — bj;. We still have U;(c¢;j:(A")) = 0, however,

UZ'(C]'(A/)) = b” — q;» >0

since j € J; and qé» = b;;. Hence A is not Nash.

(v) (IF 20T =0AY* € J;r - J7N\N{G*Y € I0). JF = 0 implies J; # 0, J7 # 0. In fact, |J7| > 2.
This follows from Vj* € JF : J7 \ {j*} € I since J} C J;, and assuming |J; | < 2 would imply J; \ {j*} =0
which would violate J;~ \ {j*} & I.

Let j € J7, j € JF, with j # j'. If ¢; < b;;, then the argument from (i) applies and we are done. Similarly
for j/. Let ¢; > b;;. If |[I1| > 2, then we can choose j € I with j # j” and apply the argument in (iii)
with I in place of J. Assume |I| = 1, ie., I} = {j}. We need only consider the case ¢;; = b;;:. Notice
that J7 \ J; # 0 since, if J7 = J7 then J7 \ {j} C I? by |If| = 1, which would contradict the assumption
Vit e i S\ 2 TP

Construct the assignment A" € £;(A) such that A}, = A, £ € [1,m]\{j, j'}, and A}; = Aij —e, )\;-]», = Ajjr +e,
where € = ¢; — b;;. Now, Ui(c;/(A")) = 0 but Us(c;j(A')) = byj — ¢j. Since j € J; \ J; and j' € J],

(bi]' — q;) — (bij’ — q;/) >0

which implies U;(A") — U;(A) > 0.
(V) (IF #0AT7 CIPAV €T 0 J7\{j*} € I?). In the proof of (iv), J} = 0 was only needed to

establish J;~ # 0 which we can get from J;” ¢ I{. Hence the argument of (iv) carries over unchanged. |

Proof of Lemma 3.5. To the contrary, assume A is a Nash equilibrium for the example described in the
proposition. Due to the first inequality satisfied by the A;’s and the b;;’s, it follows that there is a service class
J1 for which Ag;, = q}l < byj,. Using this observation and applying the Nash characterization from Theorem

3.4 to the player 1, we obtain (without loss of generality, by the choice of j;),
4, < bij,. (Al)

Now, due to the second inequality (b) in the proposition, it follows that service class j» # j; has assigned traffic

volume
gj> > baj,. (A.2)
Furthermore, using (A.1) and the third inequality in the proposition,
Agj, # 0. (A.3)
Moreover, since bi; < bgj, for all j, we know from (A.1) that Ay, < ¢;, < byj, < baj,. Thus we get
Ajy = 45, < baj,. (A.4)
Using (A.2), (A.3), and (A.4), and applying the Nash characterization from Theorem 3.4 to player 2, we get

gj, > baj, which contradicts (A.1) since by; < by;, for all j. [ ]

Proof of Theorem 3.7. (<=). First notice that (a) implies the existence of a Nash equilibrium. This follows
by observing that since each player is domitable—i.e., the n equations Ei,# Air + Zj bi; + a;; are satisfied
(the a; act as positive slack constants)—one can always find a configuration A where each player is dominated
in each class. In other words, there is a choice of the 2nm assignment variables A;; and slack variables s;;
which will satisfy the nm constraints: Vi Vj ZZ»,# Airj = bij + s;; (which is straightforward), which in addition
satisfy the 2n constraints: Vi E]' Aij = Ay and Vi E]' s;j = a;. Next, notice that (b) implies the existence of a
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Nash equilibrium because, if A satisfies the conditions in (b), then each of the players satisfies one of the three

conditions of Theorem 3.4.

(=). Now we show that the negations of (a) and (b) together imply that every configuration A is not Nash.
The negation of (a) implies that for each configuration A, some player is not dominated in some class. This,
together with the negation of (b) implies that for each configuration A there is a smallest player ¢* which is not
dominated in some class, and either there is a player ¢ > ¢* which does not have complete utility in A or none
of the three Nash conditions holds for the player ¢*. In the latter case, clearly A is not Nash. In the former
case (assuming one of the three Nash conditions holds for the player i*), it follows that there is some class j*
where g;« < b;=j=. However, since some player ¢ > i* does not have full utility in A, in order for A to be Nash,
q; > b;j; > b;=; must hold for every class j due to the strict ordering of thresholds imposed by the statement of
the Theorem. Hence it follows that A is not Nash. |

Proof of Theorem 3.8. The proof uses a dynamic update process described in Section 3.3 which turns out
to be a useful reasoning tool in this context. Some of the terminology used here are defined (out of sequence)
in Section 3.3.

Notice that in the unsplittable case, since players do not move unnecessarily, if a player i moves at some
stage in the update process, it attains full utility in a single move (by shifting all of its traffic from one class
to another class). Moreover, by Proposition 3.1, once player ¢ moves (and attains full utility) moves by players
i’ < 1 will not affect the utility of i. In general, once players n,n —1,... n— k have moved—in that order—the
the subsequent moves of the lower players 1,...,n — k — 1 do not affect the (full) utility of the higher players
n,n—1,... ,n—k. Hence the latter players never move again. It follows that a Nash equilibrium A is attained
by this process, starting from any initial assignment, as soon as the sequence of players (i.e., moves) includes

the subsequence n,n —1,...,1. ]

A.2 Proofs of Section 3.2

Proof of Lemma 3.9. Let S;, = {i € [I,n]: i < ix, U;(A) # 0}. By the definition of is, for all i > iz,
UZ(A) = \;, which gives (b). If S;, = (), then we are done.

Assume S;, # . We will construct an assignment A’ from A such that it satisfies property (a) while pre-
serving (b). Notice that by Theorem 3.4 and A;, > U;, (A), ¢; > b;,; for all j € [1,m]. Also, by Proposition 3.1,
biAj > b” for all 7 € SiA- Let

v=>X, —Ui,(A), 7= U(A).

To achieve (a), we will distribute the excess utility @ into service classes j with ¢; > b;,; thus nullifying
their contribution. To avoid otherwise disturbing the utility assignment, we will move a commensurate amount
from v, ezactly filling the gap left by #. That is, ¢; = ¢;, j € [, m], in the modified assignment A’. If v > =,
the reassignment can be achieved in one round. If v < 7, a refined construction is used that iteratively shrinks
the violating player set S;, until it becomes empty. Following is a formal description of the construction.

Case (i). Assume v > m. Let K~ = {j € [l,m]: ¢ =bij, \ij >0,i€ S;, }, Kt ={jel,m]: ¢ >
binj, Aixj > 0}. We construct A’ as follows. Fori € S;,, j € K,

/\;’j =0, /\;A]» = ’\iAj + E )\kj~
k€S,

Forie S;,,je KT,

l _ .. .. I _ . . .
Aij = Aij + €5, Ainj = Ainj — E : €kjs
kES:,
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where ¢; > 0, ZkeS erj < Aiyj, and Elesl”eKﬂL ¢;j = . For all other i and j, Aj; = Ayj.

By construction, q] = ¢; for j € [1,m], and since the excess utility 7 has been transferred into service classes

belonging to Kt, we have U;(A’) = 0 for i € S;,. Hence, ins = i5. Also, notice that

Uiy(A') = Uiy (A) + 7
since player i5’s unutilized traffic volume has been tranferred to service classes in K~ where, by Proposition 3.1,
they now count.

Case (ii). Assume v < m. We will perform a similar switch as in case (i), however, over (possibly) several
rounds each time monotonically shrinking S;, and obtaining a new estimate for 24+ by decrementing the previous
estimate.

In the first round, we transfer a traffic volume of v from players 7 € S;, with assignments in K~ to service
classes belonging to KT. To preserve, q;» = q;, j € [1,m], we transfer an equal amount from player ix’s

assignments in KT to K~. This is possible since v < 7. This yields

UZ'A(AI) = UZA(A)—}—I/ = )‘iA'

Thus, iA/ S iA — 1.

If S;,, = 0 then we are done. If S;,, # 0, we recursively repeat the switching process with ix: in place of
ip until S; , = 0. Since the dividing player’s index monotonically decreases by at least one in each round, the
process terminates in at most i4 — 1 rounds. |

Proof of Theorem 3.10. Let A’ be the normal form constructed in the proof of Lemma 3.9. We will prove
the following statement from which the theorem follows immediately: A’ is not system optimal iff there is a A*

with U(A*) > U(A’) such that
(a) Vi € [1,n], U;(A*) > U;(A’), and
(b) 3i < iy such that U;(A*) > U;(A').

That is, A’ is not Pareto optimal. Note that U(A’) = U(A) by the definition of A’.

The ‘<’ direction of the statement above is trivial. To show the ‘=’ direction, we start with a A with
U(Z\) > U(A’), which exists since A’ is not system optimal. For all i > s, U;(A’) = A;, hence any increase in
the utility U([\) over U(A’) must come from one or more i < iss for which UZ(]\) > U;(A"). Indeed, U;(A") =0
for ¢ < ixs, hence (b) and part of condition (a), i.e., Vi < ips, UZ(/N\) > U;(A'), are already satisfied. We will

construct A* from A such that the remaining part of (a), i.e., Vi > ipr, UZ(INX) > U;(A), is satisfied as well. Let
T ={i<in: U(A)>Ui(A)}, Lt ={i>iy: U (A) < Ui (A)}.
Clearly, L= N Lt = (). Moreover, i5, need not be an element of either L= or L. Let

T = Z Ui(A) — Uz (A",
ieL—
v= Z U;(A) — Ui (A).
ieLt
By U(A) > U(A'), we have 7 — v > 0. We can perform a switch in assignments between players in L~
and L1, similar to the proof of Lemma 3.9, obtaining an assignment A* which preserves 9 =45, J € [1, m],
and which satisfies Vi € LT, U;(A*) = U;(A'), Vi € L™, U;(A*) > U;(A'), and for at least one element i € L™,
Ui (A*) > U;(A).
Pick any two players i_ € L=, iy € LY. Then, 3j_,j4+ € [1,m], j_ # jy, such that

)\i_j_ > 0, bi_]'_ > qj_ and A

ivie >0, bigy <gjg

32



The inequalities follow from Lemma 3.9. j_ # j4 follows from the inequalities and the fact that if j_ = j4,
biij_ > qi- =iy > biggy = by,

which leads to a contradiction due to the threshold ordering implied by Proposition 3.1.

Let ¢ = min{X;_j_,A;,;,}. We can move an ¢ amount of i_’s assignment from j_ to jy, and an equal
amount of i4’s assignment from j; to j_. By Proposition 3.1, player 74 ’s utility strictly increases by € whereas
player i_’s utility strictly decreases by the same amount. The other players’ utilities remain undisturbed since
the total volume assignment to each service class was held invariant.

Since m — v > 0, this reassignment process can be repeated until a total traffic volume of v has been shifted
from players in L~ to players in LT and vice versa. Since Vi > ix/, U;(A’) = A;, by the definition of v, we have
that Vi > iy, U;(A*) = A;, and thus Vi > ipr, U;(A*) > U;(A'). For players i < ixr, U;(A*) > U;(A’) remains
satisfied since UZ'(A') =0.

The only consideration left is player ix/. If ixs ¢ L_ U Ly, then we are done. If ipnr € L_, then after
the switch operation, either UZ'A, (A*) > UZ'A, (A’)—in which case we are done—or UZ-A, (A*) < UZ-A, (A"). In the
latter, we may perform a further switch between player i5: and players ¢ < s until i5/’s utility has been
suffiently increased vis-a-vis UZ'A, (A"). This is possible since # —v > 0. If ipr € L4, and after the switch we still
have UZ'A, (A¥) < UiA/ (A’), then the same process as with ix» € L_ can be done yielding the desired ordering
result. |

Proof of Proposition 3.11. The following describes a counter example consisting of a system of 3 players
and 3 service classes and an assignment A which is Nash and Pareto but not system optimal. As usual, using
Proposition 3.1, for each service class j, we can assume that by; < by; < b3;.

For service class 1, take b1 = bs1, and b3y = b1 + 1. For service class 2, take big = bgy = b3y = € where € 1s
a very small positive quantity. For service class 3, take boz = b33 and b13 = s. Also, let b3y < b3 < bss.

The assignment A is defined as follows. The assignments to service class 1 are: ¢ = A;; = A1 = b1, and
A21 = As1 = 0. The assignments to service class 2 are: ¢z = Ags = Ay = bos + E, where E is a very large
quantity and A2 = Agzo = 0. The assignments to service class 3 are: g3 = Agz = bsz and A1z = Agz = 0. This
assignment A is clearly a Nash equilibrium: As2 = As is unutilized, but player 2 cannot unilaterally reassign its
share to improve its utility. Players 1 and 3 have full utility. Hence the total utility for assignment A is Az + A;.

This assignment A, however, is not system optimal. The total utility can be increased using the following
changes to the assignment: the quantity A; can be moved to service class 2 from service class 1 so that the new
A11 1s now 0, but the new As; is now equal to A;. A part of A; equivalent to the quantity A; + 1 is moved into
service class 3 so that service class 2 now has total volume g5 that is one less than its previous value. Therefore
Az is now partitioned into Azs = A; + 1, with the remainder of A, assigned to As3 while Ay; remains 0. Finally, a
part of A3z equivalent to the quantity A; 4+ 1 is moved to service class 1 so the volume of service class 1 increases
overall by 1 unit, and service class 3 retains the same volume as before. Now A3 is partitioned into Az; = A1 + 1,
with the remainder of A3 assigned to As3 while Az remains 0.

The utility of player 3 remains the same as before, i.e., it has full utility As. The utility of player 1 has
decreased from A; to 0 and the utility of player 2 has increased from 0 to A; + 1. Hence the total utility after
completion of the above reassignment is A; + Az + 1 and hence it has increased by 1 overall which shows that
the assignment A is not system optimal. It is not hard to see that A is, in fact, Pareto optimal; i.e., for any
assignment A’ that has higher total utility, there must be at least one player, in particular, player 1, whose
individual utility in A’ is less than that in A. ]

Proof of Theorem 3.12.  Before we give the proof, we first define a concept that is used often. A k-

ip is a map from one configuration A to another A’, denoted by a sequence (i1,J1,132,72,...,1k,Jr) With
g

min{A;, j, .., Ay e} = v > 0 called the flip value. The map is defined as follows. The new assignments Aj;
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remain the same as A;; except in the following cases: for each [ with 1 <1<k,

: A=A

,J(14+1)  (mod k) )‘il7j(l+1) (mod k) +v, 1,71 -

1,1

Notice that a flip leaves total volumes unchanged in all classes. Also, player i;’s utility does not decrease if it

holds that:

2, < bij, = gy <b

(mod k) — YJ(41) (mod k)"

In fact, player #;’s utility strictly increases if q;, > b;,;,, whereas Dagr) (moa x) < b Notice that

2J(141) (mod k) °
2-flips have already been used extensively in earlier proofs.

(=). To show (a), assume to the contrary, i.e., 3i < i* 3j € I} \{j : ¢j > b;+;}, in particular, j € I\ I. Since
t* has incomplete utility, we know that I{t # 0, and by Theorem 3.4, we know that ¢; = b;+;. Let j* € Il-t.
Now, we obtain A’ from A by performing the 2-flip (4, 7,¢*, j*), which ensures that the individual utilities of
all players except i* remain unchanged and ¢*’s utility increases by the flip value. This contradicts that A is
Pareto.

Now (b) follows from (a) and the fact that A is Nash (the conditions of Theorem 3.4 applied to i*), and
P> = IF=0.

To show (c), assume to the contrary that there is a path from 4 € S; to i, € S; in G.
Case 1: (i, = i = ¢). Consider a class j, € IZT for some ¢’ < ¢*, such that A; j, > 0. The class j, causes i to be
in S;. Consider also a class j; with A;;, > 0 and ¢;, < b;«;, which causes ¢ to be in S».
Case 1 (i): (i’ = i*). That is, j, € I;;. Now, we obtain A’ from A by performing the 2-flip (i, j, i*, j4 ), which,
using the definition of j, and jj, ensures that the individual utilities of all players except ¢* remain unchanged,
and ¢*’s utility increases by the flip value. This contradicts that A is Pareto.
Case 1 (ii): (i’ # i*). We have j, € I}. Pick a class j, € I}, First obtain A” using the 2-flip (¢, j., ', ja),
which ensures (using part (a)) that all players in A” have the same utility as in A, and therefore, A” is Pareto if
A is Pareto. Now, in fact, in A”| it holds that j, € I}, and thus the proof of Case 1 (i) can be directly employed
to contradict the fact that A” is Pareto thereby contradicting the fact that A is Pareto.

Case 2: (iq # 13). Consider the class j, that causes 43 to be in Sy and the class j, that causes i, to be in Sj.
Case 2 (i): (i = i*). That is, j, € I}. Since there is a path from i, to i, in G, say i = i1,4s,..., 0k = ia,
we use the definition of the edges of G to construct a flip sequence as follows. The existence of the edges
(41,4141) for 1 < | < k implies the existence of classes jp = j1,J2,...,Jr = Ja, such that the flip sequence
(iy = i1,Jb = J1,%2,J2, .-+ , ik = %a,Jk = Jja) has non-zero flip value. Moreover, by the definition of the edges of
G, and using the definition of j, and js, we obtain A’ from A by performing this k-flip which ensures that the
individual utilities of all players except #* remain unchanged, and i*’s utility increases by the flip value. This
contradicts the fact that A is Pareto.
Case 2 (ii): (¢' # *). A preprocessing is performed exactly like Case 1 (ii), and thereafter, the proof of Case 2
(1) is applied.

To show (d), assume to the contrary that there is a system optimum configuration M of the modified game
as well as a service class j* for which the negations of (d1), (d2), and (d3) hold:

n —
e > vijr # bi.j» when ij« > 1 is defined; this implies 7,5+ < b; .+ since Ui(M) = ; for i #0.
=0
® E 72]* < bi*j*
iZ£0
® Y0 S binje = 3y X0 bii =3 X Vi
i#0 iE i
We can now create a configuration A’ from A (in fact, from M)—where the utility of no player decreases

and that of ¢* increases—as follows. Beginning with the service class j* and the player ¢*, we assign )\;-*j* =
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Yixjr + min{ Az — yie, bixje — E#O 7ij» }. The remaining unallocated volumes (of all players) are now allocated
to the classes in any manner that satisfies:
(i) YiVj X > 7,
(i) Vi # 75X < b,
(iii) ZA;*J»* < byej.
2

It is clear that such an allocation is always possible since the 7;; and b;,; satisfy the negations of (d1), (d2)
and (d3) listed above. Now, because of (i), (ii) and (iii), it follows that Vj # j*, the amount that each player 4
contributes to its utility Ui(A’) through the class j is at least 7;;, and in fact the player :* contributes strictly
more than 7;«;+ through class j*. Since M was chosen so that Viy; = UZ-(A), we have now exhibited a A’ which

shows that A is not Pareto.

(«). We assume A is not Pareto and derive a contradiction to part (d). If A is not Pareto, without loss of
generality, there is a A’ where the individual utilities of all players are at least as large as in A, and in fact, the
utility of the player i* strictly increases in going from A to A’. But each such configuration A’ corresponds to

a configuration M’ of the modified game (based on A’) with
UM')=> 7= U(A). (A.5)
i=1 B

Clearly, each such configuration M’ embeds a configuration M of the modified game (based on A) with U(M) =
Svi=) UZ(A) By “embed” we mean that
i=1 i

n n
Vit v = v ViViiyg <vf, and 3570 g < Y
i=0 i=0

Now consider the class j* where 7;«j« < ;.. For this j*, clearly (d1) does not hold: otherwise, >, Vij+
exceeds b;,j+, which means that 'yl’»j* > %i;» > 0 would not contribute to the utility of M', contradicting
equation (A.5).

Clearly, (d2) does not hold either: otherwise, 3, 7{;+ > bij«, which means that 7. ;. (> 7;+j+ > 0) would
not contribute to the utility of M’, again contradicting equation (A.5).

Finally, (d3) does not hold: otherwise, since (by the fact that (d2) does not hold) Zi;&o Vijr < bjsje, it would
follow that for some class j', Y7 vi;0 > bi,, j+. But this would result in ’yZ’»j* > 0 not contributing to the utility
of M', again contradicting equation (A.5). |

A.3 Proofs of Section 3.3

Proof of Theorem 3.13. It is sufficient to show that every Nash equilibrium A is system optimal with utility
U(A) = > Ai. The equivalence of Nash, Pareto, and system optima follows immediately.

2
Due to the inequality in (3.14), for an assignment A, each player can always unilaterally reassign its A;;’s

and strictly increase its own utility unless the following holds:

Thus A is a Nash equilibrium (i.e., such a reassignment is impossible) only if (A.6) holds. But (A.6) is equivalent

to
YViVj: g > by = A =0,

which, in turn, implies that A is system optimal.
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Note that if (A.6) holds for A, then clearly no player contributes to any service class where the contribution

would be unutilized—i.e., every player has complete utility and thus U(A) = >_ ;. Hence Nash, Pareto, and

system optima are all equivalent. ]

Proof of Theorem 3.15. To show that the process P converges to a Nash equilibrium starting from any

initial configuration, notice that

(1) When it is player #’s turn to move, if U; < A\i—the player has less than full utility—then it can always
unilaterally reassign its A;;’s and achieve full utility. In other words, it can achieve the status described in

(A.6). Otherwise, if player ¢ has full utility, it does not move at all, i.e., it keeps its current assignment.

(2) Once player i has moved, the subsequent moves of players with indices & < ¢ will not affect #’s (full) utility.
This is due to the inequality in Proposition 3.1, and because of the observation in (1): the move of such a

player k does not newly cause the traffic volume ¢; of any service class to cross the threshold b; < b;;.

Thus, once player n has moved, it achieves full utility, and subsequent moves of the other players does not
affect its utility; hence player n never moves again. In general, once players n,n — 1,... n — k have moved,
in that order, the subsequent moves of the lower players 1,...,n — k — 1 do not affect the (full) utility of the
higher players n,n — 1,... ,n — k, and hence they never move again. It follows that a Nash equilibrium A is
attained by the process P, starting from any initial assignment, as soon as the sequence of players (i.e., moves)

includes the subsequence n,n —1,...,1. ]

A.4 Proofs of Section 4.1

Proof of Proposition 4.4. We will consider both uniformity assumptions on the multi-dimensional QoS
vectors and thresholds simultaneously.

First, we consider the uniformity assumption (4.1) which states that the thresholds 6% can be ordered such
that the ordering is uniform over r € [1,s]. Using this ordering and the monotonicity of zi for each j € [1, m]

and r € [1, s], by the definition of the b};, we can conclude that

VT’E[1,5],V]E[l,m],Vze[l,n—I], bgj Sb:+1]

I

Now for any fixed i, j, let r' satisfy min,ep1 51 b7; and let r” satisfy min,epy ¢)b7,,;. Clearly, bZT]I»I < bg;lj,

Furthermore, beI < bf}l, since b; is minimized at r = r’. Tt therefore follows that the same ordering on i also
satisfies
min b, < min b}, .
refis] 7 el HY
from which the proposition follows immediately.

Next, we consider the uniformity assumption (4.2) which states that the functional forms zi in the QoS
vector &/ are uniform over r € [1,s] for each j € [1,m]. In this case, we can define a natural ordering on i
induced by

min 6 < min 7.
r€[l,s] r€[l,s]
Since the 2.’s are all monotone, and as observed previously, bij = (mi)_l(minre[lys] 0%), this ordering yields the

required
bij < big1j

which holds for all j € [1,m] and i € [1,n — 1]. [ |
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