## INTRODUCTION

## What is a computer network?

Components of a computer network:

- host devices (PCs, servers, laptops, handhelds)
- routers & switches (IP router, Ethernet switch)
- links (wired, wireless)
- protocols (IP, TCP, CSMA/CD, CSMA/CA, RIP, BGP)
- applications (network services)
- humans and bots

Hosts, routers & links form the *hardware* side.

Protocols & applications form the *software* side.

Protocols can be viewed as the "glue" that binds everything else together. Protocol example: low to high layer

- NIC (network interface card): hardware
  - $\rightarrow$  e.g., Ethernet card, WLAN card, CDMA or TDMA air interface
  - $\rightarrow$  what about USB and FireWire?
- NIC firmware: software side of NIC
- device driver: part of OS
  - $\rightarrow$  fast and slow interrupt handlers
- ARP, RARP: OS
  - $\rightarrow$  NICs have two names (48 vs. 32 bits): translation
- IP: OS
  - $\rightarrow$  hosts, routers, cell phones
  - $\rightarrow$  global networking glue

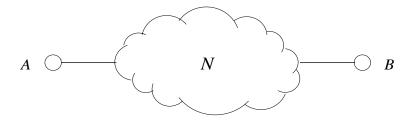
- OSPF, RIP, BGP: IP protocols running at routers
  - $\rightarrow$  OFPF, RIP: within organizations (intra-domain)
  - $\rightarrow$  BGP: global Internet (inter-domain)
- TCP, UDP: OS
  - $\rightarrow$  transport protocols: host OS
- DNS, HTTP, SMTP, SNMP: application layer
- ssh, web browser, P2P (BitTorrent), YouTube, Facebook: application layer
- humans, bots (web crawlers, network monitors, DDoS)
  - $\longrightarrow$  protocols: span many layers—low to high

What layers are important?

- 1970s: lower layers and hardware
- 1980s: lower and higher layers
- 1990s: higher layers
- 21st century: lower and higher layers, and hardware
  - $\rightarrow$  driving force: wireless networks
  - $\rightarrow$  forces us to understand lower layers

Where it's at today:

- handheld, mobile devices
- merging of data, telephone, entertainment, etc.
  - $\rightarrow$  Voice, data, video, GPS, RFID, TV, music, . . .
  - $\rightarrow$  old traditional boundaries fading


- freed-up wireless spectra
  - $\rightarrow$  digital TV and radio (analog gone)
  - $\rightarrow$  UHF frequencies available for networking
  - $\rightarrow$ e.g., super WiFi

Sound technical grounding: ever more important

Computer networks: enable communication

Simplest instance of communication problem:

given two hosts A, B connected by some network N, facilitate transmission of information between A & B.



Network N can take many forms.

What are the necessary capabilities of A, B, and N?

 $\rightarrow$  functional requirements

Information abstraction

- representation as objects (e.g., files, real-time video)  $\rightarrow$  high-level representation
- bytes & bits
  - $\rightarrow$  digital form
  - $\rightarrow$  low-level representation
- $\bullet$  signals over physical media (e.g., electromagnetic waves)
  - $\rightarrow$  analog or digital form
  - $\rightarrow$  dominant today: analog transmission
  - $\rightarrow$  1980s: square waves were in vogue

Minimal functionality required of A, B

- encoding of information
- decoding of information
  - $\rightarrow$  data representation & translation
  - $\rightarrow$  convention A and B agree upon
  - $\rightarrow$  preparation step before physical (wired or wireless) transmission

Example:

- $\bullet$ little endian vs. big endian
  - $\rightarrow$  mundane but necessary
- length of message (if variable-length allowed)
  - $\rightarrow$  fixed-length is less common
  - $\rightarrow$  maximum length cap imposed
  - $\rightarrow$  not necessarily enforced
- payload type: needed for demultiplexing

Additional functionalities may be required depending on properties of network  ${\cal N}$ 

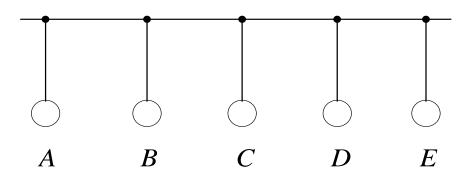
- information corruption: bits flip
  - $\rightarrow$  called bit error rate (BER)
  - $\rightarrow 10^{-9}$  for fiber optic cable
  - $\rightarrow 10^{-6}$  or higher for wireless
- information loss: packet drop at routers and hosts  $\rightarrow$  if buffer full
- information delay: like toll booth, airport
  - $\rightarrow$  bad for voice, real-time video, games
- information security
  - $\rightarrow$  protect against eaves dropping: confidentiality
  - $\rightarrow$  protect against ID theft: authentication
  - $\rightarrow$  protect against tampering: integrity
- etc.

Network N connecting two or more hosts can be of three types:

- point-to-point link
- multi-access link
- internetwork

Network medium may be

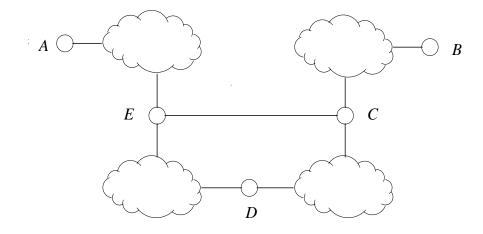
- wired
- wireless


Host (e.g., node, station, router) may be

- stationary
- mobile



- various wired cables
  - $\rightarrow$  copper and fiber of different quality or grade
- wireless medium
  - $\rightarrow$  line of sight
  - $\rightarrow$  directional antennas
  - $\rightarrow$  e.g., building-to-building, infrared TV remote
- $\bullet$  no addressing (i.e., names) necessary
  - $\rightarrow$  special case


Multi-access link



- bus (e.g., old Ethernet)
- wireless media
  - $\rightarrow$  omni-directional antennas
  - $\rightarrow$  wireless LANs
- broadcast: everyone can hear everything
  - $\rightarrow$  for application to hear everything: NIC is set to  $promiscuous \mbox{ mode}$
- addressing (i.e., naming) necessary
  - $\rightarrow$  "From" and "To"

- multi-user access control: who gets to use when
  - $\rightarrow$  multi-access link: shared resource
  - $\rightarrow$  myriad of LAN technologies and protocols
  - $\rightarrow$  computer mother board: bus arbitration
  - $\rightarrow$  Ethernet CSMA/CD, WLAN CSMA/CA
  - $\rightarrow$  cellular TDMA, FDMA, CDMA
  - $\rightarrow$  WLAN/WiMax/cellular SDMA/MIMO

## Internetwork



- recursive definition
  - $\rightarrow$  point-to-point and multi-access: internetwork
  - $\rightarrow$  composition of one or more internetworks
- addressing necessary
- path selection between sender/receiver: routing
- how fast to send: congestion control
- protocol translation: internetworking
- location management: e.g., Mobile IP

LAN (local area network) vs. WAN (wide area network) distinction:

- LAN: point-to-point, multi-access
- WAN: internetwork
  - $\longrightarrow$  geographical distinction is secondary
  - $\longrightarrow$  often go hand-in-hand
  - $\longrightarrow$  counter example?