

- recursive definition
 - \rightarrow point-to-point and multi-access: internetwork
 - \rightarrow composition of one or more internetworks

Additional complications to deal with:

- addressing necessary
 - \rightarrow LAN addresses may suffice
 - \rightarrow additional addressing structure: e.g., IP
- protocol translation: internetworking

 \rightarrow e.g., Ethernet and WLAN speak different languages

- path selection between sender/receiver: routing \rightarrow within and across organizations
- how fast to send: congestion control

 \rightarrow not-too-fast, not-too-slow

• location management: e.g., Mobile IP

LAN (local area network) vs. WAN (wide area network) distinction:

- LAN: point-to-point, multi-access
- WAN: internetwork
 - \longrightarrow geographical distinction is secondary
 - \longrightarrow often go hand-in-hand
 - \longrightarrow counter example?

Myriad of different LAN technologies co-existing in a WAN. For example:

- Fast Ethernet (100 Mbps)
- Gigabit Ethernet (1000 Mbps); 10 and 100 GigE
 - \rightarrow Purdue CS backbone: 10 Gbps
 - \rightarrow AT&T (tier-1 provider): 10+ Gbps
- WLAN (11, 54, 300 Mbps)
- \bullet 4G cellular (100 Mbps mobile, 1 Gbps stationary)
 - \rightarrow today: pre-4G
 - \rightarrow ITU-R
- WiMAX (tens of Mbps up to 1 Gbps)
 - \rightarrow wider area: several miles
- modem/DSL (cable and dial-up)
 - \rightarrow 12 Mbps (down)/2 Mbps (up), 50/10, higher

- Note: WAN is a collection of LANs
- \rightarrow ultimately: everything happens at LANs

Each LAN, in general, speaks a different language

- \rightarrow message format (syntactic)
- \rightarrow behavioral (semantic)

Internetworking handles this problem by translating everything to IP (Internet Protocol)

- \rightarrow technical definition of Internet
- \rightarrow collection of interconnected LANs speaking IP

But:

- \rightarrow IP injects overhead
- \rightarrow packet forwarding example: switches may choose not to speak IP

Hence:

- \rightarrow IP (layer 3) is not necessary
- \rightarrow large systems of layer 2 (LAN) switches
- \rightarrow size limit: heterogeneity and management headache
- \rightarrow today: L2 + L3
 - \longrightarrow common attitude: avoid IP if possible
 - \longrightarrow most devices speak IP in case needed
 - \longrightarrow IP provides management benefit: naming

- IP provides naming flexibility:
- \rightarrow IP: v4 32-bit, v6 128-bit
- \rightarrow in addition to 48-bit LAN addresses are hardwired and unique address per NIC
- \rightarrow IP provides additional configurability

Common practice: assign similar addresses to network devices belonging to same organization

- \rightarrow ARIN in the U.S.
- \rightarrow blocks of contiguous addresses: makes routing easier
- \rightarrow e.g.: Purdue 128.10.*.*, 128.210.*.*
- \rightarrow LWSN B158: sslab01.cs.purdue.edu 128.10.25.101
- \rightarrow CS web server: www.cs.purdue.edu 128.10.19.20
- \rightarrow router bottleneck: table look-up speed

Another configurability benefit:

- \rightarrow private addresses
- \rightarrow e.g., 10.*.*.*, 192.168.*.*
- \rightarrow laptop WLAN IP address in LWSN: 10.184.43.63
- \rightarrow no one outside Purdue can reach laptop using 10.184.43.63
- \rightarrow how is it solved?

Communicating entities are *processes* running on host/router operating systems (Linux, Windows, IOS, etc.)

- \rightarrow IP only specifies host/server/router
- \rightarrow more accurately: one of the NICs attached to a device
- \rightarrow host with multiple NICs: multiple IP addresses
- \rightarrow multi-homed

Hence:

A name/address must also identify which process a message is destined for on a host

- \rightarrow OS/network convention: port number abstraction
- \rightarrow 16-bit
- \rightarrow address: pair (host IP, port number)
- \rightarrow well-known server port numbers (e.g., 80 for HTTP)
- \rightarrow is client app's port number important?

Network Performance

- In computer networks, speed is at a premium
- \rightarrow if slow, typically not used in practice
- \rightarrow e.g., cryptographic protocols tend to be not turned on at routers
- \rightarrow emphasis on lightweight network core
- \rightarrow push heavyweight stuff toward the edge (i.e., host/server)
- \rightarrow called end-to-end paradigm
- \rightarrow has guided Internet design and evolution

Three yardsticks of performance:

- bandwidth: bps (bits-per-second)
 - \rightarrow throughput: includes software processing overhead
 - \rightarrow e.g., 802.11b WLAN: nominal bandwidth 11 Mbps, throughput around 6 Mbps
- latency: msec (millisecond)
 - \rightarrow signal propagation speed
 - \rightarrow approximately: speed of light
 - \rightarrow delay: includes software processing overhead and waiting time at routers (queueing)
 - \rightarrow delay at high speed routers: very small (μ sec)
 - \rightarrow delay at WLAN AP: up to hundreds of millisecond
- jitter: delay variation
 - \rightarrow not good for real-time content (video, audio, voice)

Bandwidth vs. throughput:

bandwidth—maximum data transmission rate achievable at the hardware level; determined by signalling rate of physical link and NIC

throughput—maximum data transmission rate achievable at the software level; overhead of network protocols inside/outside OS is accounted for

reliable throughput—maximum reliable data transmission rate achievable at the software level; effect of recovery from transmission errors and packet loss accounted for

 \longrightarrow networks tend to be "leaky"

Meaning of "high-speed" networks:

• signal propagation speed is bounded by SOL (speed-of-light)

 $\rightarrow \sim \! 300 \mathrm{K} \; \mathrm{km/s}$ or $\sim \! 186 \mathrm{K} \; \mathrm{miles/s}$

 \rightarrow optical fiber, copper: nearly same

- Ex.: latency: Purdue to West Coast
 - \rightarrow around 2000 miles: $\sim 10 \text{ msec} (= 2000/186000)$
 - \rightarrow lower bound
- \bullet Ex.: geostationary satellites: ${\sim}22.2 {\rm K}$ miles
 - \rightarrow latency: ~ 120 msec
 - \rightarrow end-to-end (one-way): \sim 240 msec
 - \rightarrow round-trip (two-way): ~480 msec
 - \rightarrow typically: \sim 500 msec

- thus: a single bit cannot go faster
 - \rightarrow can only increase "bandwidth"
 - \rightarrow analogous to widening highway, i.e., more lanes
 - \rightarrow simulatenous transmission of multiple bits
 - \rightarrow hence "broadband" is a more accurate term
- interpretation: "high-speed" \Leftrightarrow "many lanes"
 - \rightarrow what does it buy?
 - \rightarrow completion time of large files faster
 - \rightarrow in this sense, "higher" speed

Some units:

Tbps, Gbps, Mbps, Kbps:

 10^{12} , 10^9 , 10^6 , 10^3 bits per second; indicates data transmission rate; influenced by clock rate (MHz/GHz) of signaling hardware

 \longrightarrow communication rate: factors of 1000

 $\longrightarrow~$ data size: 1 KB means 1024 bytes

Purdue's backbone network: ITaP

Level3 backbone network: www.level3.com

 \rightarrow 10 Gbps backbone (green): same speed as Purdue \rightarrow outdated pic: faster backbone speeds now

What is traveling on the wires?

Mixture of:

- bulk data (data, image, video, audio files), voice, streaming video/audio, real-time interactive data (e.g., games), etc.
- \rightarrow around 90% of Internet traffic is TCP file traffic
- \rightarrow HTTP web and P2P

Multimedia (video/audio) streaming: on the rise

- \rightarrow a minority but share is increasing
- \rightarrow non-real-time: e.g., youtube, netflix
- \rightarrow real-time: e.g., VoIP, video conferencing, games

Internet traffic is "bursty": MPEG compressed real-time video

Reason:

- video compression
 - \rightarrow utilize inter-frame compression
- across scenes, significant scenary changes
 - \rightarrow e.g., action movies
- within scenes, few changes

Burstiness is not good for networks: why?

Main source of traffic burstiness:

- \rightarrow skewed file size
 - \bullet 90/10 rule
 - \bullet 90% of files are small, 10% are very large
 - \rightarrow "many mice, few elephants"
 - \rightarrow the few elephants make up 90% of total traffic
 - \rightarrow same for disk space

Real-world is inherently skewed ...

How to make sense of all this?

Study of networks has three aspects:

- architecture
 - \rightarrow system design, real-world manifestation
- algorithms
 - \rightarrow how do the components work
- implementation
 - \rightarrow how are the algorithms implemented
- Key concern: performance
- \rightarrow speed
- \rightarrow increasingly important: security and reliability