INTRODUCTION

What is a computer network?

Components of a computer network:

- host devices (PCs, servers, laptops, handhelds)
- routers & switches (IP router, Ethernet switch, WiFi routers)
- links (wired, wireless, quantum)
- protocols (IP, TCP, CSMA/CD or CA, BGP)
- applications (SMTP, DNS, HTTP, SNMP)
- humans and bots (spam, DoS, worm)

Hosts, routers & links form the *hardware* side.

Protocols & applications form the *software* side.

Protocols can be viewed as the "glue" that binds everything else together. Protocol example: low- to high-layer

- NIC (network interface card): hardware
 - \rightarrow e.g., Ethernet card, WLAN card, CDMA or TDMA air interface (cell phones)
 - \rightarrow what about USB and FireWire?
- NIC firmware: software side of NIC

 \rightarrow mainly ROM code

• device driver: part of OS

 \rightarrow fast and slow interrupt handlers

- ARP, RARP: OS
 - \rightarrow NICs have two names (48 vs. 32 bits): translation
- IP: OS
 - \rightarrow defining software glue of global Internet
 - \rightarrow hosts, routers, cell phones

- OSPF, RIP, BGP: protocols above IP running at routers
 - \rightarrow OFPF, RIP: within organizations (intra-domain)
 - \rightarrow BGP: global Internet (inter-domain)
- TCP, UDP: OS
 - \rightarrow TCP: files (text, image, video)
 - \rightarrow UDP: multimedia streaming
 - \rightarrow hybrids and exceptions to the rule
 - \rightarrow transport protocols: host OS
- DNS, HTTP, SMTP, SNMP: application layer
- ssh, web browser, php, P2P (BitTorrent), YouTube, Facebook, Twitter: application layer
- humans, bots (web crawlers, network monitors)

- 1970s: lower layers and hardware
- 1980s: both lower and higher layers
- 1990s: higher layers
- 21st century: both lower and higher layers, and hardware
 - \rightarrow driving force: wireless networks
 - \rightarrow boundary between telephony and data networks: (almost) gone

Fast moving environment

Example: Digital TV and freed-up UHF spectra

- \rightarrow 300–700 MHz frequency may be used for data networking
- \rightarrow e.g., super WiFi

Example: Short-distance communication services

- \rightarrow RFID for inventory control, electronic payments
- \rightarrow getting rid of wires: e.g., wireless USB

Sound technical grounding in wireless: critical for adapting to future changes

 \rightarrow not just for network/IT industry

Computer Networks: enable communication

Simplest instance of communication problem:

Two hosts A, B are connected by some network N. Transmit information between A and B.

Network N can take many forms

- \rightarrow single wire: point-to-point link
- \rightarrow global Internet

Necessary capabilities of A, B, and N

 \rightarrow functional requirements

- 1. Information abstraction
 - representation as objects (e.g., text files, binary executables, audio, video, voice)

 \rightarrow high-level representation

- bytes & bits
 - \rightarrow digital representation
 - \rightarrow low-level representation
- signals over physical media
 - \rightarrow electromagnetic waves
 - \rightarrow analog (sine) or digital (square)
 - \rightarrow dominant today: analog transmission

Minimal tasks performed by A, B

- encode information
- decode information
 - \rightarrow data representation & translation
 - \rightarrow convention A and B agree upon
 - \rightarrow preparation step before actual physical (wired or wireless) transmission

Example:

- \bullet little endian vs. big endian
 - \rightarrow mundane but necessary
- length of message
 - \rightarrow fixed or variable length
 - \rightarrow fixed: header; variable: payload
 - \rightarrow maximum length cap imposed (\neq enforced)

Additional tasks A and B may perform (depends on network environment):

- information corruption: bits flip
 - \rightarrow called bit error rate (BER)
 - $\rightarrow 10^{-9}$ for fiber optic cable
 - $\rightarrow 10^{-6}$ or higher for wireless
- information loss: packet drop at routers and hosts \rightarrow buffers are full
- information delay: queueing at buffers, processing delay
 - \rightarrow bad for voice, real-time video, games
- information security
 - \rightarrow protect against eaves dropping: confidentiality
 - \rightarrow protect against ID theft: authentication
 - \rightarrow protect against tampering: integrity

Network N connecting two or more hosts can be of three types:

- point-to-point link
- multi-access link
- internetwork

Network medium may be

- wired
- wireless

Host (e.g., node, station, device, router) may be

- stationary
- mobile

- NIC at A, NIC at B
- physical wire between the two NICs
- various wired cables
 - \rightarrow copper and fiber of different quality/grade
- wireless medium
 - \rightarrow line of sight
 - \rightarrow directional antennas
 - \rightarrow e.g., roof-top building-to-building, infrared TV remote
- no addressing (i.e., names) necessary
 - \rightarrow but special case

Multi-access link

- bus (e.g., old Ethernet)
- wireless media

 \rightarrow omni-directional antennas (e.g., wireless LANs)

- broadcast: everyone connected or within range can hear everything
- addressing (i.e., naming) necessary
 - \rightarrow "From" and "To"
 - \rightarrow single destination: unicasting
 - \rightarrow multiple destinations: multicasting

- multi-user communication or access control: who gets to use link when
 - \rightarrow multi-access link: shared resource
 - \rightarrow myriad of LAN technologies and protocols
 - \rightarrow computer mother board: bus arbitration