
CS 536 (Park) Assignment VIII Due: Nov. 23 (Mon.), 1998

PROBLEM 1

Read \Congestion avoidance and control" by Van Jacobson (Proc. ACM SIGCOMM '88, pp. 314{329, 1988). Give
a 1-page summary/critique of the paper. Comment on the main pros/cons of the paper from your perspective.

PROBLEM 2

(a) Implement an end-to-end sender/receiver application pair using UDP where the sender process udp-send on
the source host transmits a sequence of UDP packets to the receiver process udp-receive on the destination host.
udp-send takes on two command-line arguments

% udp-send interarrival-time session-duration

where interarrival-time is the mean (i.e., 1=�) of an exponential interarrival time distribution with rate � (measured
in milliseconds) and session-duration is the total session or 
ow duration (i.e., after session-duration seconds from
start-up, udp-send is to terminate), measured in seconds. The receiver, udp-receive, takes on a single command-line
argument service-time which is the mean (i.e., 1=�) of an exponentially distributed service time distribution.

The receiver works by responding to two signals|SIGPOLL and SIGALRM|in an asynchronous manner using
signal handlers. When a SIGPOLL interrupt occurs, the receiver's SIGPOLL signal handler fetches the newly arrived
UDP packet(s) from the kernel's bu�er space and enqueues the packet into its own (i.e., user space) bu�er, a FIFO
queue. For tracing purposes, the SIGPOLL handler also takes a time stamp and records both the time stamp and
the current queue length (excluding the newly arrived packet) into a LOG �le for queue length called log-queue for
later examination. If the user space bu�er, at the time of packet arrival, is full, then the UDP packet is dropped
or discarded. This event is then also recorded using a time stamp into a separate LOG �le for packet drops called
log-drops.

When a SIGALRM interrupt occurs (signalling that a packet should be serviced), the receiver's SIGALRM
signal handler dequeues a UDP packet from its FIFO queue. Before exiting the handler, the exponential distribution
function|exponential dist (see the accompanying function code in the course homepage)|is called with parameter
� to determine when to wake up next.

Note: An important programming consideration here is the management of the two interrupts such that they do

not get in \each other's way." For example, while the SIGALRM signal handler is active, the SIGPOLL signal

should not be able to interrupt the SIGALRM signal handler|and vice versa|as this can lead to a corrupted state

of the user space bu�er which is manipulated by both. As part of the hand-in, explain in half a page of write-up how

your program manages the orderly access to the user space FIFO queue by the two signal handlers.
Test your application using the following set-up. Use a �xed MTU (for UDP packet payload) size of 1kB

(containing any bit pattern) and a user space bu�er capacity of 500 MTUs (i.e., 500kB). For mean service time
1=� = 200ms, run six experiments with 1=� = 300ms, 260ms, 220ms, 200ms, 180ms, 160ms, for a �xed session
duration of 30s. For each run, plot the time series for the queue length and packet drops and compute their mean.
Give your interpretation of the queueing behavior as � is increased.

(b) As a continuation of part (a), how does the queueing behavior seen in part (a) for the regime when 1=� = 300ms,
260ms, 220ms (and, perhaps, 200ms) compare to the steady-state queue length formula predicted by M/M/1 queueing
analysis? Does the latter �t|and can you make it �t with some adjustment (plot their respective graphs)|to the
actual observed queueing bahavior? What are some of the intrinsic factors that make the quantitative prediction
given by the M/M/1 formula deviate or di�er from actual measurements?

Repeat the experiments of part (a), now, with bu�er capacities 20kB, 15kB, 10kB, 5kB, and 1kB. Plot the packet
drop rate, one, as a function of bu�er capacity, and two, as a function of interarrival time for the �ve bu�er capacities
(put the �ve graphs into a single plot). Give your interpretation of the packet drop behavior under Poisson tra�c
for the given system con�gurations.

Repeat the experiments of part (a), now, with a �xed deterministic service time of 1=�. Compare the time series
plots for queue length and packet drops with the case when the service time was exponentially distributed. What
di�erences do you observe? Give an interpretation of the observed results.



PROBLEM 3

Derive the steady-state queue length distribution Xn(1) for the �nite queue length (or bu�er capacity) case of N ,
n � N . Can you relate the �nite queue length formulae to the in�nite queue length formulae (in particular, when
do they approach each other)?

Comparing the results (queue length and packet drops) predicted by the M/M/1/N queueing analysis and the
measured performance results obtained from part (b) of Problem 2 for bu�er capacities 20kB, 15kB, 10kB, 5kB, and
1kB, how accurate or valid are the quantitative values predicted by analysis? How about the qualitative (i.e., shape
of the plots) behavior predicted by analysis? Justify your conclusions.

PROBLEM 4

Implement a \greedy" �le transport protocol called ftp-greedy which achieves fast (or not-so-fast), reliable �le
transport on top of UDP using a form of selective ARQ. Given a �le F of size jF j bytes to be transferred, ftp-greedy
segments F into djF j=Me blocks of size M < jF j (except for possibly the last block which can be of size less than
M ), sending each block encapsulated in an UDP packet. Before encapulation, each block is assigned a header where
a sequence number i identifying the block is enscribed. The sequence number is represented using a single byte, thus
giving a range of 0{255. If more than 255 blocks are needed, i mod 255 is used to achieve wrap-around. ftp-greedy,
on the sender side, is to be used as

% ftp-greedy �lename IP-address

where �lename is the name of the �le to be transferred and IP-address is the IP address in dotted decimal form.
On the receiver side, ftp-greedy is executed without command-line arguments. This puts ftp-greedy in \receive
mode." When the transfer of a �le is complete, ftp-greedy (on the receiver side) prints out a message to stdout

saying that the �le in question has been (reliably) received after which it terminates. For example,

% ftp-greedy

�lename received (X bytes)

%

might be the interaction seen on the terminal. For the receiver to know the �lename in which to store the received
�le, the sender, in block 0, sends the �lename. To indicate that no more blocks are to come (i.e., the last block i has
been sent), the sender sends an empty block with sequence number i+ 1 mod 255 at the very end.

Two parameters (e.g., hardcoded using #de�ne) in
uence the sender's behavior, M and S. M is the block size
and S is the sender's interpacket waiting time (in msec). That is, S measures the number of milliseconds the sender
waits between successive sending of packets (an event triggered by SIGALRM). The smaller S, the more \greedier"
ftp-greedy.

The receiver uses negative ACKs to achieve reliable communication using retransmission. As soon as the receiver
sees a \jump," i.e., a hole in its received packet sequence,

� � � i� 2, i� 1, i, i+ 2

it transmits a NACK packet to the sender demanding that packet i+1 be retransmitted. At the same time, it starts
a timer to expire after T msec. If the missing packet is received prior to the timer expiration, the timer is cancelled.
If not, a NACK is sent again. Set T initially to 3 msec; each time a NACK is sent again because of timer expiration,
increment T by 2 msec. Each time a retransmitted packet arrives before timer expiration, decrement T by 1 msec.
T should never be allowed to go below 3 msec or above 15 msec.

The receiver can maintain a bu�er size of K packets to hold packets arriving while the missing i + 1 packet is
being processed. You can maintain the bu�er anyway you want, but it can never exceed the K packet bound.

Test your application by creating a jF j = 100 KB dummy �le containing the ASCII characters `0', `1', `2', : : :,
`9', `0', `1', : : :. Measure the �le transmission completion time (wall time) at the receiver from the moment that
the �rst packet is received to the moment that the last packet is received. The last packet may be marked by
sending a termination packet with empty payload. Perform the measurements for S = 10; 30; 50; 70; 100; 200 msec
withM = 1000 B. Draw the performance curve (completion time) as a function of S. For the S corresponding to the
smallest completion time, call it S�, test your application for M = 500; 1500; 2500 B. Draw the performance curve
as a function of M . Give a 1/2-page written interpretation of your results. Hand in the source code, scripts, and
your summarized results.


