
CS 422 (Park) Assignment VI Due: April 29 (Fri.), 2011

Submission instructions: Please type your answers and submit electronic copies using turnin by 4pm on the due
date. You may use any number of word processing software (e.g., Framemaker, Word, LATEX), but the final output
must be in pdf format that uses standard fonts (a practical test is to check if the pdf file prints on a CS Department
printer). For experiments and programming assignments that involve output to terminal, please use script to record
the output and submit the output file. Use gnuplot to plot graphs.

PROBLEM 1

For students who have the 5th edition: Read chapters 27–32. For students who have the 4th edition: Read chapters
27, 31, 33, 35, 39–40.

PROBLEM 2 (50 + 50 + 80 pts)

(a) Identify the vulnerabilities of your my talk messaging app of Assignment V, Problem 3(a), that may be exploited
by a network-based attack. Network-based means that one or more packets are sent to the UDP port used by the
messaging app with the aim of causing significant disruption to the application including disabling, crashing, or
hijacking the app. After describing the vulnerabilities, implement attack programs that exploit the vulnerability
and demonstrate that they work through tests that you set up. The tests must be repeatable (if meaningful provide
scripts) so that the TAs can evaluate your attack exploits and their impact on my talk.

(b) Come up with solutions to mitigate the vulnerabilities identified and tested in part (a). Discuss how well your
solutions address the attack exploits. Implement the solutions by modifying your my talk app. Using the tests of
part (b), demonstrate how the attacks are mitigated: in the best case, the attack no longer works, in other cases the
negative impact may reduced.

(c) Repeat parts (a) and (b) for the TCP-based remote command server code—vulnerabilities on the client side are
ignored—of Problem 3, Assignment IV.

PROBLEM 3 (200 pts)

Design, implement and benchmark a UDP-based peer-to-peer (P2P) pseudo real-time audio streaming application.
The sender transmits packets containing audio payload at rate λ. The rate may change over time when congestion
control actions are undertaken upon receiving feedback control packets from the receiver. From a programming
perspective, the application is an exercise in asynchronous signal handling where the sender’s transmission of audio
packets is paced by SIGALRM (e.g., by invoking usleep() between successive transmission of packets with sleep
parameter 1/λ). The receiver is more interesting in that it needs to invoke two signal handlers. One for SIGPOLL
(or SIGIO) that is triggered when an audio packet from the sender arrives which is written into the application’s
audio buffer. Another for SIGALRM which is triggered periodically at a specified playback rate at which time an
audio sample is taken out from the audio buffer and played back (i.e., written to /dev/audio). Thus at the receiver,
SIGPOLL drives the producer side of the audio buffer whereas SIGALRM drives the consumer side. Use a binary
semaphore so that mutual exclusion is assured, i.e., the audio buffer data structured is not corrupted by concurrent
access by producer/consumer.

The sender, my audio send, takes as command-line arguments

% my audio send dest-IP dest-port audio-file payload-size packet-spacing mode

where audio-file is a stored audio file that will be streamed to the receiver—unless otherwise indicated, assume the
file format is binary—payload-size (in bytes) is the size of the UDP payload (excluding a 4-byte sequence number
inscribed at the start of the payload) at which unit the audio file will be segmented and transported, packet-spacing
(msec) is the initial packet spacing used in the transmission of the audio file, and mode specifies the congestion
control mode: 0 (method A), 1 (method B), 2 (method C), and 3 (method D) discussed in class. Also, devise your
own method, selected by mode 4 (method E). Include a half-page write-up that explains what your congestion control



is aiming to do that is different from methods A–D.

The receiver, my audio rcv, has command-line arguments

% my audio rcv port-number log-file payload-size pb-del pb-sp buf-sz target-buf

where pb-del is the initial playback delay (sec)—time delay from the arrival of the first audio packet—pb-sp (msec)
is the time interval at which buffered audio is written to /dev/audio for playback (triggered by SIGALRM), buf-sz
is the total allocated buffer space (bytes), and target-buf (bytes) is the target buffer level (i.e., Q∗). In the receiver’s
code structure, attention needs to be paid to the shared audio buffer—the SIGPOLL handler will write to the buffer
when audio packets arrives whereas the SIGALRM handler will read from the buffer for audio playback—so that it
does not get corrupted due to concurrent access. When audio packets, upon arriving, find the audio buffer full, they
are dropped.

To monitor how well the system is performing (we are not entirely relying on the ears and the stuff that sits
between them), the sender logs the current sending rate λ (= 1 / packet-spacing), along with the time stamp from
gettimeofday(), whenever a packet is transmitted. The receiver, upon receiving an audio packet from the sender
(SIGPOLL handler) or dequeueing an audio packet at playback (SIGALRM handler), logs the current time stamp
and buffer occupancy Q(t) for off-line diagnosis. Measurement logs should be written to memory and flushed to disk
at the end of the run to avoid overhead/slow-down stemming from disk I/O. To affect congestion control, the receiver
transmits a feedback packet containing Q(t), Q∗ (i.e., target-buf ), and γ (in terms of time interval pb-sp, not rate)
to the sender. Depending on the mode value, the sender will utilize the received information to institute the selected
congestion control method.

Benchmark the application between two machines where a .au audio-file is provided (see TA notes), payload size is
260 B, initial packet-spacing at the sender side is 100 msec, pb-del is 4 seconds, pb-sp is 40 msec, buf-sz is 30 KB, and
target-buf is 15 KB. Perform two benchmark runs per congestion control method. Plot the time series measurement
logs using gnuplot at the sender, λ(t) against time t, and packet rate (pps) as a function of time at granularity
1 sec; at the receiver, the queue length time series that plots Q(t) against t, and the received packet rate (pps) at
1 sec time granularity. Discuss your results and findings. Compare the audio quality perception (you need to use
a headphone) with the numeric performance findings. Note that there is some degree of freedom in the selection of
the congestion control parameters. Determine parameter settings for each method that you find work well. The top
3 performing method D congestion controls, as determined by the TA based on actual audio sound and performance
logs, will be given 30 bonus points. The top 3 method E congestion controls will be given 50 bonus points. Before
running the receiver, make sure to set the audio controls using audioctl (see TA notes for instructions on how to
use the command) so that audio can be output through a headphone jack in the PC.

Use scp to time (approximately) how long it takes to transfer the entire audio file using TCP and how the transmission
profile (the rate at which TCP transfers the bits in the file changes over time) looks like. To do that, run tcpdump at
the receiver. From the logs, determine how long it would have taken scp to reach Q∗. From the logs, plot the data
rate (pps) at 1 sec granularity. Compare scp’s data rate with that of the UDP sender’s logged data rate. Discuss
your findings.

BONUS PROBLEM (150 pts)

The bonus problem provides extra points for the homework component of the course. It only counts if Problems 2
and 3 of Assignment VI are completed.

Design, implement, and test a UDP-based reliable file transfer protocol that uses negative ACK to achieve reliability
above the UDP transport layer. The server (i.e., sender), call it my ftps, waits for requests on a designated port,
and given a client request (call the client my ftpc) that specifies a full pathname or a file name that is searched in
the current directory of the server process transmits the content of the file using a form of ARQ that uses negative
acknowledgments. There is a lot of degree of freedom in the form of ARQ implemented, the only requirement being
that it uses negative ACKs to trigger retransmissions when a packet is deemed lost by the server and that the protocol
is correct. When testing, first demonstrate that the file transfer application works correctly. Second, compare the
performance of your app against that of scp that uses TCP. Since scp incurs additional overhead due to encryption,
your application has an advantage. Measure the file transfer completion time using the time command. For scp,
subtract the approximate time taken to input your password by using a timer/watch. Focus on large files in the
performance comparison which should yield more robust performance averages. If your application has parameters
that impact its performance, explain how you chose them to optimize performance.


