
CS 422 (Park) Assignment V Due: Apr.11 (Wed.), 2006

Submission instructions: Please type your answers and submit electronic copies using turnin by 5pm on the due date.
You may use any number of word processing software (e.g., Framemaker, Word, LATEX), but the final output must be
in pdf or ps format that uses standard fonts (a practical test is to check if the pdf/ps file prints on a CS Department
printer without problem). For experiments and programming assignments that involve output to terminal, please use
script to record the output and submit the output file. Use gnuplot to plot graphs. Use ps2gif to convert a eps/ps
plot to gif format (e.g., for inclusion in Word) if there is a need.

PROBLEM 1

Read Chapters 13, 16–21, 24 and 26 from Comer.

PROBLEM 2 (25 pts)

As a continuation of Problem 4, Assignment IV, use tcpdump to log two client/server sessions: the TCP-based
client/server interaction (you can use the log from Assignment IV) and the UDP-based client/server interaction.
Your trace should capture all the packets involved in the TCP-based client/server application, and similarly for the
UDP-based application. In the TCP trace, do a hexadecimal dump of the IP and TCP headers (you need to check if
IP or TCP are invoking any optional header fields) of the first three Ethernet packets leaving the PC where tcpdump
is run, and the same goes for the first three Ethernet frames arriving at the PC. Decode all the IP and TCP header
fields of the captured packets. Is fragmentation going on in the captured packets? Is the TOS field value meaningful?
How big is the TTL value? How big are the IP and TCP header sizes of the captured packets? What is the first
sequence number used in the TCP header field? Does it start from 0? Do the ACK numbers in the TCP header
field match any of the sequence numbers in TCP packets traveling in the opposite direction? What is the initial
window size used by TCP? (Varies between operating systems.) How many Ethernet packets, in total, are involved
in carrying out the TCP-based client/server interaction? How many are involved in the UDP-based client/server
interaction? How do they compare with respect to overhead?

PROBLEM 3 (60 pts)

Under ∼park/pub/cs422, you will find talk client and talk server, which are simplified implementations of talk,
the precursor of today’s messenger applications. From a programming technique perspective, the main feature of
interest in talk is that you be able to see (i.e., read) what the other party is writing to you in the midst of your
own write. This means that when you write—i.e., the code reads the characters you type on the keyboard—packets
arriving from the other party carrying messages must be handled asynchronously and displayed on the terminal.
Hence, a solution where write followed by read is repeated in an infinite loop is inadequate. To achieve asynchronous
I/O, a SIGIO (or SIGPOLL) signal handler must be written and registered with the kernel, which is a callback
function that the kernel invokes whenever a new packet arrives. When working with signals, it is good practice to
test that a signal handler is working properly in isolation (e.g., by sending 10 packets and checking that the signal
handler at the receiving machine is invoked 10 times) before the signal handling component is integrated into the
rest of the system.

The client/server talk example is incomplete in several respects. First, the syntax for turning a file descriptor into
asynchronous mode uses System V UNIX (e.g., Solaris) convention, which must be modified to match the syntax
suited for Linux. This is one of the OS dependent aspects of network programming that must be carefully handled
when porting code across different UNIX platforms (e.g., also different for BSD UNIX). Second, the SIGIO handler
is missing. Writing a SIGIO handler is straightforward but more important is an application design decision: how
to display a newly arriving message on the same terminal so that what you are writing is not scrambled with what
you are receiving. Using the curses library, one can split the terminal in two so that what you write appears on
the top half and what you read appears on the bottom. By using X-windows, the same can be accomplished by
demuxing write/read across two windows. Third, talk is by its very nature a peer-to-peer application where there
is no separation of client from server. They are one and the same.



Complete the provided code and get it to work by solving these three problems. When registering your SIGIO
handler, use sigaction in place of signal. Do not use curses nor separate X-windows primitives or widgets to
separate input/output. (We are not practicing GUI programming, nor are we concerned with pretty output. But
we are concerned about legible output.) Invent a rudimentary but working solution using stdio. For example, if in
the middle of typing a response a new message arrives, you may display the new message on a new line, and on
the following line, refresh the interrupted message so that one can continue typing where one left off. Remove any
client/server dependencies in the code so that the same code, call it my talk, is used at both parties. The convention
for using my talk should be

% my talk port-number IP-address

where IP-address and port-number are the coordinates of the party you wish to talk to. Test your talk application
on two hosts—open two shells, one of them remote—and record the interaction using script. In this instance, you
are talking to yourself. At the start, make sure that my talk is running on both hosts before initiating actual text
messaging. This is to prevent potential system crash resulting from the other party not being online when you type
a message. These and other clean-up issues must be dealt with separately.

BONUS PROBLEM (40 pts)

A variant of Problem 5(a), Assignment II, implement the simplified iterative TCP-based client/server application so
that it runs on Windows XP. This means that the code has to be ported so that it uses WinSock, Microsoft’s system
call implementation of UNIX BSD socket calls. Most features remain the same, with some modifications stemming
from Windows idiosyncrasies (not specific to XP). You only need port the server application. For development, you
may use your laptop (if it runs Windows) or any of the Windows machines available in CS Windows labs (use your
CS Windows account). Visual C++ is a popular programming environment. For benchmarking, use a command-line
window in Windows XP (do not run the server from Visual C++ directly during benchmarking) to run the server
process. Use secure shell to open a remote window to the Linux lab. Run the client process on a Linux machine (since
they talk TCP/IP, it doesn’t matter from which OS the client and server processes are run). Use screen capture to
record the interaction and output in the two windows. Submit the code and output.


