CS 422 (Park) Assignment IIT Due: Oct. 5 (Fri.), 2007

Submission instructions: Please type your answers and submit electronic copies using turnin by 5pm on the due date.
You may use any number of word processing software (e.g., Framemaker, Word, BTEX), but the final output must be
in pdf or ps format that uses standard fonts (a practical test is to check if the pdf/ps file prints on a CS Department
printer without problem). For experiments and programming assignments that involve output to terminal, please use
script to record the output and submit the output file. Use gnuplot to plot graphs. Use ps2gif to convert a eps/ps
plot to gif format (e.g., for inclusion in Word) if there is a need.

PROBLEM 1 (20 pts)

(a) The stop-and-wait protocol, a special case of ARQ, only sends the next data frame after the current frame has
been acknowledged by the receiver. Despite this “one frame at a time” feature, why is it necessary to have a 1-bit
sequence number as part of the frame header? As part of your answer, describe an example scenario that shows what
can go wrong if no sequence numbers are used.

(b) Stop-and-wait’s throughput has a particularly simple formula, frame size =~ RTT, which holds true when all
frames—data and ACK—are correctly received. How does the throughput formula change if a data frame is not
correctly transmitted with probability p? You may assume independence, that is, the probability that two successive
data transmissions fail is p?, three successive failures is p3, and so forth. You may assume that ACK frames are
always correctly transmitted. What happens to the throughput formula if ACK frames also fail transmission with
independent probability s? Note that communication errors on the Internet are not symmetric.

PROBLEM 2 (25 pts)

Perform a traceroute experiment to www.ucla.edu to determine the approximate RTT from our lab at Purdue.
Assuming a bandwidth of 10 Mbps from UCLA to Purdue, if a server (i.e., sender) at UCLA were to use stop-and-
wait with frame size 1500 bytes (you may ignore overhead introduced by header bytes) to transmit a 10 MB file, how
long would it take to complete the transfer assuming no frame transmission failures? How long is the expected file
transfer completion time if a data frame transmission from UCLA to Purdue fails with probability p = 0.01 (i.e., 1%
failure rate). What if p = 0.0017 Download a large file from www.ucla.edu (do some browsing on their web site) and
time the approximate completion time using a watch. How does the actual file transfer completion time compare to
that of stop-and-wait (without errors)? Repeat the performance evaluation for www.umich.edu.

PROBLEM 3 (50 pts)

As a continuation of Problem 5, Assignment I, modify the server side such the server’s child process, before calling
exec(), sleeps for 7 seconds. Modify the client side so that when no response is forthcoming from the server within
S seconds after the request has been sent, a duplicate request is retransmitted. This retransmission is repeated
every S seconds until the server’s response is received or the number of attempts has exceeded 5. To implement
request retransmission at client side, use the signal SIGALRM that is set using alarm() with S as argument. The
alarm should be set right after transmitted a request. Register a signal handler, my retransmit_req(), using the
sigaction() system call. my retransmit_req() is a callback function that you are registering with the kernel such
that it is invoked when SIGALRM is triggered (i.e., “raised” in UNIX jargon). Your signal handler should retransmit
the request, check that the number of attempts has not exceeded 5 (don’t hardcore the constants in your code but
use constant definitions in the program header for modularity), then call alarm() to set a new alarm. Test your
client/server application with S = 10, 5, 2, and 1. Use script the record the interaction and output.

PROBLEM 4 (50 pts)

Modify the concurrent client/server application in Problem 5, Assignment II, so that the server becomes a file server.
That is, the client sends the name of a file, file-name, instead of a command, which the server searches for in its
current directory. If the file does not exist, an error status (the string “file-name not found”) is returned. Simplify



the server so that it becomes an iterative server, i.e., it does not fork a child process to handle the actual request
after parsing but processes the request itself (the server is unithreaded). The client/server application uses stop-
and-wait to transmit the contents of the requested file. That is, the server process sends a packet of X bytes to
the client process (except for the last packet which could be less than X bytes) through a separate FIFO that is
used to transmit payload from server to client (use a similar naming convention as in the original request FIFO
when setting up the data FIFO). You may assume reliable channels so that retransmission (for now) using timeout
does not need to be implemented. Nonetheless, because it is a stop-and-wait protocol, the client must send an ACK
packet through the request FIFO. The server waits for the ACK of the data frame it has sent before transmitting
the next data frame. Note that if a data or ACK frame were ever to be lost, the client/server application would
hang forever. The parameter X should be specified as a command-line argument when the server process is run.
The client should print out the file transfer completion time at the end of run by taking a time stamp (using
getttimeofday()) after sending the request, taking a time stamp after receiving a special end-of-file signaling frame
(use an empty frame), and outputting their difference (in units of seconds). Benchmark your application with the
file /u/u9/park/pub/cs422/test-shannon.txt for X = 1024, 2048, and 8192 bytes.



