
Mapping parallel iterative algorithms onto workstation networks*

Abdelsalam Heddaya Kihong Park
Computer Science Department

Boston University
Boston, MA 02215

Abstract
For communication-intensive parallel applications, the
max imum degree of concurrency achievable i s limited
by the communication throughput made available by
the network. In previous work [lo], we showed ex-
perimentally that the performance of certain parallel
applications running o n a workstation network can be
improved significantly if a congestion control protocol
i s used t o enhance network performance.

In this paper, we characterize and analyze the com-
munication requirements of a large class of supercom-
puting applications that fall under the category of fixed-
point problems, amenable t o solution by parallel iter-
ative methods. Thi s results in a set of interface and
architectural features su f ic ien t f o r the e f ic ien t imple-
mentation of the applications over a large-scale dis-
tributed system. I n particular, we propose a direct link
between the application and network layer, supporting
congestion control actions at both ends. This in turn
enhances the system's responsiveness t o network con-
gestion, improving performance.

Measurements are given showing the eficacy of our
scheme t o support large-scale parallel computations.

1 Introduction
With the advent of high-speed networks linking to-
gether an ever increasing number of high-performance
workstations via local area (LAN) and wide area net-
works (WAN), harnessing their collective computing
power for parallel computations has become a viable
goal. Supercomputing applications, the prime benifi-
ciaries of such a venture, span a diverse spectrum of
computational problems, ranging from partial differ-
ential equations to global weather simulation models
and molecular sequence analysis. The methods of at-
tack are not always uniform, some requiring only local
interaction among processing elements whereas others
are inherently global in nature.

'This research was supported in part by NSF under grants
IRI-8910195, IRI-9041581 and CDA-8920936.

A large subclass of such applications falls under
the category of fixed point problems, a class that is
amenable to parallel iterative methods, synchronous
or asynchronous [2, 31. These include dynamic pro-
gramming, systems of linear equations, network flow
problems, genetic algorithms, and ordinary differential
equations, just to name a few. This paper deals with
the issue of how to map such applications to large-scale
workstation clusters linked by local or wide area net-
works. In particular, we concentrate on asynchronous
iterative methods that admit non-blocking, unreliable
communication that can can be exploited to yield fast
convergence.

Performance studies on LAN-based [5, 6, 161 and
WAN-based systems [20] have shown the importance
of controlling network delay for improving applica-
tion performance. This is even more pronounced for
parallel iterative algorithms since their communica-
tion/computation ratio tends to be relatively high,
leading to the flooding of network resources if not man-
aged properly. Parallel iterative algorithms possess a
uniform communication pattern (i .e. , everyone needs
to talk to everyone else with high frequency), and the
single most important factor in determining the speed
of convergence is the delay experienced by messages.
For synchronous algorithms, it is obvious why this is
so. For asynchronous algorithms that do not require
waiting among processors, it is the outdatedness of the
message itself which impedes convergence. That is, the
longer the time-lag between the creation of a message
and its reception at the destination, the less valuable
it is in contributing to convergence.

Congestion control in heterogenous, high-speed net-
works is a difficult problem aggravated by the high
propagation delay-bandwidth product and the differ-
ent characteristics of multi-media traffic [l, 7, 8, 171.
One of the advantages of asynchronous iterative al-
gorithms is that they do not require reliable message
transmission. Therefore, they need not have access to
reserved, connection-oriented channels advocated for
delay sensitive ATM traffic [21]. Instead they can use
the variable bit rate channels subject to statistical mul-

0-8186-6395-2194 $4.00 Q 1994 IEEE
211

tiplexing. As such, the actual service rate available to
the application distributed across a LAN/WAN is a
dynamically changing variable, very much like how it
is today. The retransmission cost of this class of traffic
remains negligible due to the tolerance of message loss.

The positive effect of congestion control for solving
systems of linear equations across an Ethernet LAN
has been demonstrated in [lo]. In this paper, we for-
malize and extend the results to an implementation-
independent platform, applicable to both shared-
memory and message passing distributed systems, We
propose a generic design, represented as a set of pro-
tocol requirements, sufficient for the efficient imple-
mentation of parallel iterative algorithms. It is eas-
ily incorporable into existing distributed computing
environments. In the context of B-ISDN systems,
several papers have addressed inefficiencies associated
with the overhead incurred by current network proto-
cols [9, 16, 181. One feature of our design, the condi-
tional send (or c-send), establishes a direct link be-
tween network layer congestion control and applica-
tion layer send, by making information about the net-
work state available to the application. This eliminates
wasteful protocol stack overhead when the network is
congested, improving the performance of the system.

This paper is organized to mirror the structure of
our proposed communication architecture. First, we
give a brief overview of fixed-point problems, the class
of applications that we aim to support. This is followed
by an analysis of the communication costs associated
with a generic parallel iterative algorithm that solves
fixed-point problems. Next, we specify the problem of
congestion, and show how a congestion control proto-
col can operate the communication network near its
capacity, thus increasing the range of useful applica-
tion parallelism. Section 4.2 presents the collection of
application interface and operating system design re-
quirements whose confluence suffices for the efficient
iterative solution of fixed point problems on worksta-
tion networks. We end with a discussion of experimen-
tal results supportive of our conclusions, and describe
work in progress.

2 Fixed-point problems
Many problems in mathematics, science, and engineer-
ing can be formulated as fixed-point problems. As an
example, to solve the scalar equation f (x) = 0, it suf-
fices to find the fixed point of F(x) = x, where F =
f(z) + x . In general, F acts on a multi-dimensional
space, say a"', with a suitable norm 11 . 11, and the
problem can be formulated such that F has a unique
fixed point t* to which F (x) converges in the limit

under discrete iteration,

z* = lim Ft (z) .
t-w

This is usually done by showing that F is a contraction
mapping. Thus F is essentially a discrete dynamical
system, and its iterative process can be expressed as

z i (t) = Fi(xl(t - T,), z z (t - T;), . . . , t , (t - TA)) (1)

for i = 1 , 2 , . . . , m, where xi and Fi are the components
of x and F , respectively. The T'S, themselves function
of time, are delay terms reflecting the communication
delay imposed by the system evaluating F . If, for all
2,

then equation (1) defines a synchronous iterative algo-
rithm. Otherwise, it is said to define an asynchronous
iterative algorithm for solving fixed-point problem F .

The iteration of F behaves differently under syn-
chronous and asynchronous methods. As with classical
iteration methods such as Jacobi and Gauss-Seidel[14],
convergence may not be guaranteed, and when both
converge, the asynchronous iterative method often
converges faster than the synchronous one. For a com-
parative analysis of these two methods, see [2,3]. Nev-
ertheless, a large class of problems have been proven
to be amenable to solution by asynchronous iterative
methods [3].

The importance of asynchronous methods lies in
the elimination of the synchronization penalty which
can be very high in large-scale implementations. This
enables them to execute more iterations, resulting in
faster convergence. It is not always the case that ex-
ecuting more updates based on outdated information
is beneficial to convergence, but under certain condi-
tions, it can be shown that this is indeed the case [3].
The main drawback of asynchronous iterative methods
over their synchronous counterpart lies in the increase
in message transmission rate. For applications with
high communication/computation ratios running on
large-scale workstation clusters with shared network
resources, this can overload the network, resulting in
severe communication delays. Thus the goal lies in
achieving as many iterations as possible without in-
curring a high delay penalty.

The fault-tolerance implied by equation (1) presents
an additional degree of freedom in optimizing the net-
work. This equation, with suitable assumptions on F
and the 7 '8 , can be interpreted to mean that the loss
of messages carrying updated values can be tolerated
without violating the correctness of the computation.
In section 4.1, we exploit this feature to maximize the
advantages of congestion control.

T,(t) = Ti (t) = . . * = TA@),

212

To fix notation and have a reference point to fall
back on, consider the problem of solving a system of
linear equations Ax + b = 0, where A is an (m x m)
matrix. An asynchronous iterative algorithm to solve
the above equation is given by the fixed-point iteration

i - 1 m

With a suitable bound on the spectral radius of A ,
this iteration can be shown to converge when run asyn-
chronously [2, 31. In the implementation, we use this
particular example to demonstrate the efficacy of con-
gestion control.

3 Parallel asynchronous itera-
t ive algorithms

Let m represent the problem size (the actual problem
size may be a function of m as in the linear equation
example), and let n denote the number of nodes. A
straightforward way to partition a problem of m vari-
ables over n nodes is to assign each node k = m / n
variables. A generic parallel iterative algorithm can
be described as follows. At each node i,

Iterative fixed-point algorithm:
repeat
receive X I , 2 2 , . . . , x m
updat 8
send

x i . k , x i . k + l , . . . , Z i . k + k - l

x j . k , x i . k + l , . . . , X i . k + k - l
until termination condition

where send and receive are both asynchronous.

time, is given by
The total cost of an iteration, measured in units of

C = Cr + C u + C,

where C, is the cost of receive, Cu is the cost of
update, and C, is the cost send. The termination con-
dition cost is ignored here. Let M be the total number
of messages produced per iteration a t each node. node.
For any node i, its message generation rate X i = M / C ,
and the total message generation rate for the entire
system is A = xi

The costs, expressed as functions of m , n, depend
on whether point-to-point or broadcast messages are
employed. In the point-to-point case,

C, oc nk = m ;

= n i (assuming fairness).

M oc nk = m; C, oc nk = m.

With broadcast, M and C, change to
m m
n n M o c k = - ; C , o < k = - .

M oc m / n represents the most optimistic case, for ex-
ample, when all the nodes are connected to a single
Ethernet. For general routing networks, M will re-
main proportional to m. For positive constants K1,
Kz , and K 3 , we have

1
Kzn + K3 + nCu/m’

and, Xi oc
1

K I + C U / m ’ X i oc

for the point-to-point and broadcast cases, respec-
tively,
Cu is a function of both the problem size m , and the

number of nodes n. For our purposes, it suffices to no-
tice that the least computation needed for an iteration
at a single node must include inspecting the m values
it receives. Therefore, C,, = R(m). Note, n 5 m, and
the finest granularity is achieved when n = m . Hence,
for the point-to-point case,

C u l m = Q(1) 3 X i =O(1) j X = O (n) ,

and for the broadcast case,

From this analysis, we reach the following conclu-
sions:

One, in the point-to-point case, increasing the num-
ber of nodes in the hope of speeding up the applica-
tion in proportion to 1/n also carries the potential of
inflating the network load proportional to n. When
X exceeds p-the network’s service rate-it triggers
network congestion, resulting in severe message delays
and slowing down the convergence of the algorithm.
When mapping parallel algorithms onto distributed
systems, we consider n to be large, hence we work in
the realm of p < A. Adjusting X such that X NN p
becomes a central goal.

Two, other things being equal, broadcasting is supe-
rior to point-to-point communication with respect to
reducing the likelihood of network congestion. In the
most optimistic situation when M oc mln, increasing
the number of workstations participating in the asyn-
chronous iterative computation does not increase the
input rate to the network. The imbalance created by
the broadcast mechanism on the receive cost forces the
nodes to spend an increased fraction of their time pro-
cessing incoming packets.

Third, the time-complexity of the update cost
Cu determines the communication/computation ra-
tio, and directly influences the rate at which data is
pumped to the network.

In the limited context when the structural aspects
are all favourably aligned, controlling communication

213

may not be a problem. Even then, the issue of
minimizing the context-switch time between receive,
send, and update processes by packing an adequate
number of application messages into a single network
packet looms as a potential variable to be controlled.

In the next section, we discuss the general case
where congestion control is needed, the communica-
tion artchitecture appropriate for it, and measure-
ments in support of our proposed architecture. As a
side-effect, the congestion control procedure also car-
ries the benefit of reducing excessive communication-
induced context-switch cost, made possible by a posi-
tive correlation of the latter with network contention.

4 Controlling communication
4.1 Congestion control
For a fixed problem size m, given the trade-off be-
tween higher parallelism and increase in communica-
tion penalty for parallel iterative algorithms, is it pos-
sible to have the best of both worlds? That is, increase
n without paying a high communication penalty?

The main penalties in the case of p < X stem .from
queueing delays and network congestion, the latter de-
fined as a decrease in effective throughput, i.e., a drop
in p, caused by tying up network resources in an unpro-
ductive way [15, 191. This in turn aggravates queue-
ing delays and triggers a positive feedback loop that
worsens congestion. Congestion manifests itself in a
decrease in CR, hence increasing A; and establishing a
positive feedback loop. That is,

congestion + p 1 + C, 1 3 A t $ congestion t

A congestion control algorithm may be viewed as
trying to achieve two things [17]:

1. Rate matching, defined as A (t) M p(t) , where A (t)
and p (t) are viewed as functions of time.

2 . Load matching, a sufficient condition for long-term
rate matching, where load is defined as the num-
ber of messages in transit. One way to model
congestion is to assume an optimal load, Q', as-
sociated with a network, and view p = p(Q) as
a unimodal function of Q, reaching its maximum
service rate, p* = p(Q*), at Q'. So, the goal-is to
keep Q M Q'.

A distributed, end-to-end congestion control algo-
rithm that captures the above aspects is Warp Con-
trol [17], and it is used in our experiments. The ideal
place for congestion control to reside is at the net-
work layer in the ISO-OS1 reference model, and at the

ATM adaptation layer (AAL) in the B-ISDN protocol
model. This relieves communication-intenstive appli-
cations from having to worry about network issues. In
the absence of operating system support for congestion
control, implementation even at the applications layer
can yield noticeable performance gains [lo]. We argue
that the decision not to send a message on a congested
network should be made as high as possible in the sys-
tem software architecture, i .e. , as close as possible to
the point of an application's request to send.

Under asynchronous, unreliable communication,
congestion control throttles the arrival rate to the net-
work by discarding excess traffic. In essence, this has
the same effect as increasing the unit message cost
C I M . If, for example, messages produced from every
other send are discarded due to heavy traffic, then

since effective generation of accepted traffic is done
only at every other call to send. Unless discarded m e s
sages are ignored without any processing whatsoever,
such messages incur an unnecessary overhead cost C,.
To eliminate this cost, some operating system support
is desirable.

4.2 Design requirements
We have argued that, to harness the full power of
speed-up for fixed-point problems solved by parallel
iterative algorithms, we must apply congestion control
to throttle the arrival rate to the network. Further-
more, such action should be taken at the earliest pos-
sible time, before wasted message processing overhead
is incurred. This section sets forth the architectural
features that suffice for such control to be affected,
and specifies how they can be put together to achieve
early discarding of messages without directly involv-
ing the application. Note, it is not necessary for the
receive and the send to occur once per iteration, and
in bulk, as is shown in section 3; these features serve
only to simplify our presentation. The four design fea-
tures are:

1. Asynchronous send and receive. That is, com-
munication is non-blocking.

2 . Unreliable transmission. (E.g. , UDP.)

3. Congestion control. It must be sophisticated
enough to enable the network to maintain a sus-
tained service rate close to its effective capacity.

4. Conditional send (c-send). In the same spirit as
reducing the distance between application layer
and communication layer [9].

214

Traditional message passing systems often provide
an asynchronous, unreliable communication interface,
and recently shared memory systems have begun sup-
porting similar behavior [111.

We propose a new conditional send communication
primitive which we call c-send. It is a send that has
access to information about the network state, and if
the network is congested, it degenerates into a null op-
eration. In its simplest realization, let b be a Boolean
variable that is true if the network is congested, and
f a l s e , otherwise. Then c s e n d is equivalent to the
following macro:

c-sendi? E if Tb then sendz.

Supporting a data structure such as b may require
involvement of the operating system. The effect of
having c s e n d is twofold. One, under heavy network
traffic, by circumventing the overhead of having to go
through the communication layers to reach congestion
control, the otherwise wasted cost of C, is eliminated
(replaced by a cost of O(1)) for calls that would have
resulted in the discarding of their payload. Two, by
effectively increasing CU/M and Cr/M, faster conver-
gence and more efficient use of network bandwidth is
achieved.

5 Implementation and experi-
ments

In this section, we describe experiments of an im-
plementation on a shared-memory environment called
Mermera [lo , 111. All four design features (non-
blocking s end/r ec e ive , unreliable transmission , con-
gestion control, and conditional send) were incorpo-
rated. The congestion algorithm employed is Warp
Control [17] , and the application being tested was the
linear equation solver described earlier.

5.1 Mermera
Mermera [l l] is a software shared memory system that
provides a general-purpose environment for parallel
computing on workstation networks. Processes com-
prising a parallel program reside on a specified group
of nodes, and they communicate with each other via
shared-memory read/write calls provided by Mermera.
Several types of memory behavior are supported, one
coherent (equivalent to sequential consistency) , and
two non-coherent : Pipelined Random Access Mem-
ory [13] , and Slow Memory [12] . Mermera provides
a read operation and three types of write operations:
co-write, pram-write, and slow-write, the last of

which is the one used by the linear equation solver
during most of its computation. The slow-write and
read operations capture the first two design require-
ments: asynchronous send and receive, and unreli-
able transmission.

There exist two versions of Mermera that incorpo-
rate the beforementioned design features. The first
version is built on top of version 2.2.5 of the Isis
toolkit [4] of multicast protocols that support differ-
ent message ordering properties. That version of Isis
employs point-to-point messages for multicasting. The
second version of Mermera was redesigned to replace
Isis with a communication interface based on UDP.
This was necessitated in part by the need to apply
congestion control at the lowest possible level, circum-
venting the mechanisms employed by Isis itself. It also
enabled us to exploit Ethernet’s hardware broadcast
capability through UDP, thus reducing network con-
tention. The data reported here is based on the first
implementation using Isis, primarily because network
contention can be made more severe due to the lack of
broadcasting.

5.2 Warp Control
Warp Control [17] is a distributed, end-to-end con-
gestion protocol that uses a time-stamp based scheme
to throttle arrival rates for achieving optimal network
utilization. Let N be the network characterized by
two quantities, its service rate p and its load Q. Let
AI, A z , . . . , A, be the message generation rates (i.e. ar-
rival rates) of the n nodes. Let p = Alp be the net-
work’s utilization. The protocol itself, excluding the
control, can be described as follows. Assume at time
t l , node j wants to send a packet mjj to node i . At
node j,

Message encoding protocol (MEP):

1 .

2 .

Let
For

Create a header containing i , j, and time
stamped with t l . Denote the latter operation by
mi, .time-stamp := t l .

Attach the header to the data section of mij and
submit to network N .

t z be the time at which mi, arrives at node i .
all k E { 1 , 2 , . . ., n}\{i} , node i maintains a data

structure hist[k] containing two fields hist[k]. last-in
and hist[k]. last-out. In hist[k].Zast-in is recorded the
time at which the last message from node k arrived at
i , and hist[k].Zast-out records the time at which it was
sent out from k. At time t 2 , the following protocol is
executed at the receiving node i :

215

Message decoding protocol (MDP):

1. w a r p := (t z -h i s t l j] . l a s t - in) / (m i j . t i m e - s t a m p -
his t l j] . fast-out) .

2 . his t [j] . last- in := t2 .

3 . histl j] . last-out := mi, . t ime-stamp.

It can be shown under certain assumptions on N that
the quantity w a r p as used in MDP approximates net-
work utilization p [17] .

Rate matching is achieved by the following control:

- r (1 - warp),
dXi
dt
- -

where c is a parameter that governs the rate of change.
This is called the rate adjustment protocol (RAP).

I t can be shown that the system is asymptotically
stable reaching its maximum utilization p = 1, if 0 <
e < k/?, where 7 is the average network delay, and
k is a positive constant of no concern here. Thus, if
the network delay is high, then the rate constant has
to be small to keep the system stable. For a detailed
analysis and treatment of other related issues such as
load matching and fairness, see [17].

5.3 Experiments
We conducted our measurements on a network of six
dedicated Sun Sparc 1+ workstations and a server,
connected by a private 10 Mbit Ethernet, and run-
ning SunOS version 4.1.1. We ran NetMetrix ver-
sion 3.10, on the server and one of the workstations,
to generate background traffic in order to increase con-
tention for the Ethernet’. Although the communica-
tion/computation ratio of this application is relatively
high, it was found that seven workstations were not
enough to saturate the network. The remaining five
workstations were dedicated to running the parallel
linear equation solver on top of Mermera.

We measured the completion time and the state of
the network when solving a system of linear equations
in 1000 variables (i e . , m = 1000). Figure 1 illustrates
the level of improvement, in overall application perfor-
mance, achieved via dynamic control over static buffer-
ing. The horizontal axis represents the buffer size for
the case in which no congestion control is applied, and
for the case in which only c s e n d is used. For the
case when Warp Control is activated, it represents the
initial buffer size (equivalently, the initial value of A i) .

‘Congestion, in the context of a dedicated Ethernet LAN,
corresponds to the collision rate on the network and buffer
overflow.

Warp Control is implemented by modifying the mes-
sage submission mechanism to interpose a buffer b e
tween Mermera and Isis that is flushed if and only if
its size B > A, Bmor. The quantity Ai is maintained as
an “inverse” of Xi by modifying it in inverse proportion
to the right-hand-side of the above control law. Thus,
the larger the value of A i , the smaller the message gen-
eration rate, and vice versa.

The csend primitive was implemented by provid-
ing a direct link between congestion control and the
Mermera “send” (i e . , slow-write). All Slow Mem-
ory writes by the user are treated as cxend’s, making
this mechanism both high level and transparent to the
application program.

Figure 1: T i m e to solve linear equations in 1000 vari-
ables. Completion t ime improves dramatically when dy-
namic congestion control is applied, in comparison to
static buffering.

We observe in figure 1 that conditional send en-
ables the application to progress considerably faster
on a congested network than it does otherwise, despite
the crudity of our current binary implementation of
c-send. However, further significant improvement is
achieved by applying Warp at a lower level in conjunc-
tion with csend. Although not shown here, Warp
Control, even without c-send, is almost as effective.
Also note that control is critical at smaller buffer sizes,
and as the static buffer size is increased, its detrimen-
tal effect grows only slowly. We believe the sensitivity
will be more pronounced in a workstation environment
with many more nodes.

Figures 2 and 3 offer insight into the network dy-
namics, without (figure 2), and with (figure 3) c-send
and warp control. The former shows how warp changes
over time, represented indirectly via the message num-
ber shown as the horizontal axis. A value of 10 for warp
at a particular message number means that the corre-

B

100

eo -

so -

40 -

20 -
0

0 2000 3000 4000 5000 1000
asLlCE U-

D

0 1000 2000 3000 4000 5000 6000 7000 1000
R S I l C O -

Figure 2: Congestion in the absence of control. Warp versus message number when only the equation solver uses the
network (left), contrasted with the case when high artificial background traffic contends for the network (right). Case
shown is for a static buffer size o f 4 updates per message.

sponding message took 10 times longer to arrive at its
destination, than the previous message from the same
sender. Similarly, a value of one means that there has
been no change in message delay. Figure 2-right indi-
cates the dramatic contention that takes place as a re-
sult of injecting artificial background traffic to contend
for the network with that generated by the application.

Thus, figure 2-right shows the network to be ex-
tremely congested before applying congestion control
(figure 3-top), which squelches the wild fluctuations
in delay. That warp's smoothness and closeness to a
value of 1 causes a reduction in average message delay,
is evidenced by the decrease in the total number of
messages needed by the equation solver to complete:
from 8250 down to 2103. Moreover, the effective net-
work bandwidth in terms of the number of updates
that are successfully transmitted (not shown) increases
from 139 updates/sec to 571 updates/sec.

Figure 3-bottom indirectly traces the changes in
message generation rate effected by warp control. The
graph gives the value of A , which is proportional to
the message size, for consecutive messages transmit-
ted through Isis. Assuming a constant update rate by
the equation solver, A is inversely proportional to the
message generation rate. Thus, a change in A from 0.2
to 0.4, corresponds to the halving of the message gen-
eration rate (with the caveat that the horizontal axis
does not directly represent time, so the rate of change
in the message generation rate cannot be correctly de-
duced from the graph).

6 Conclusion
We have presented a framework for analyzing paral-
lel asynchronous iterative algorithms for solving fixed-
point problems, and its consequent system support
requirements for efficient execution of such applicac
tions across LAN/WAN workstation networks. Exper-
imental data from a seven workstation network con-
nected via a single Ethernet support the efficacy of
our system environment for enhancing application per-
formance under heavy network traffic. The potential
benefit of network control, inclusive csend, can be ex-
trapolated to large-scale workstation clusters involving
hundreds of workstations where the need for control
will be even more pronounced.

We remark in passing that our conclusions, in an
overall sense, apply to other applications that do not
admit nonblocking interfaces and loss of messages. In
this case, the issue of network control should be totally
divorced from the application, leading to control in a
system- wide sense.

Acknowledgements. Arif Bhatti implemented the
UDP version of Mermera, and participated with Su-
laiman Mirdad in its design. A forthcoming techni-
cal report will describe that implemenation. We also
thank Metrix Network Systems, Inc., for free use of
their software.

References
[l] K. Bala, 1. Cidon, and K. Sohraby. Congestion con-

trol for high speed packet switched networks. In Proc.
IEEE INFOCOM '90, pages 520-526, 1990.

217

l i 20

WO

O.* t
0 . 6

0 . 4

0 . 1

I
0 1000 lS00 2000 so0

*ElIIGE "MER

Figure 3: Warp control and c-send squelch congestion.
Warp (top) and corresponding A (bottom) as a func-
tion of message number, under high congestion. A larger
value of A corresponds to a bigger buffer, and a slower
message generation rate A. Initial A corresponds to initial
buffer size of 4 updates per message.

[2] Gerard M. Baudet. Asynchronous iterative methods
for multiprocessors. Journal of the Association of
Computing Machinery, 25(2):226-244, 1978.

[3] Dimitri P. Bertsekas and John N. Tsitsiklis. Paral-
lel and distributed computation: numerical methods.
PrenticeHall, 1989.

[4] Kenneth P. Birman. The process group approach
to reliable distributed computing. Comm. ACM,
36(12):37-53 and 103, Dec. 1993.

[5] Clemens Cap and Volker Strumpen. Efficient parallel
computing in distributed workstation environments.
Parallel Computing, 19:1221-1234, 1993.

[6] Alex Cheung and Anthony Reeves. High performance
computing on a cluster of workstations. In Proc. First
International Symp. on High-Performance Distributed
Computing, pages 152-160, 1992.

[7] R. Dighe, C. J. May, and G. Ramamurthy. Congestion
avoidance strategies in broadband packet networks. In
Proc. IEEE INFOCOM '91, pages 295-303, 1991.

[8] A. E. Eckberg. B-ISDN/ATM traffic and congestion
control. IEEE Network, pages 28-37, September 1992.

[9] Zygmunt Haas. A communication architecture for
high-speed networking. In Proc. IEEE INFOCOM '90,
pages 433-441, 1990.

[lo] A. Heddaya, K. Park, and H. Sinha. Using warp to
control network contention in Mermera. In Proc. 27th
Hawaii International Conference on System Sciences,
Maui, Hawaii, pages 96-105, 1994.

[ll] Abdelsalam Heddaya and Himanshu S. Sinha. An
overview of MERMERA: a system and formalism for
non-coherent distributed parallel memory. In Proc.
26th Hawaii International Conference on System Sci-
ences, Maui, Hawaii, pages 164-173, 1993.

[12] P.W. Hutto and M. Ahamad. Slow memory: weaken-
ing consistency to enhance concurrency in distributed
shared memories. In Proc. 10th IEEE Intl. Conference
on Distributed Computing Systems, Paris, France,
June 1990.

PRAM: a scalable
shared memory. Technical Report CSTR-180-88,
Princeton Univ., Dept. of Computer Science, Sep.
1988.

[14] Melvin J. Maron. Numerical Analysis: A Practical
Approach. Macmillan, 1982.

[15] A. Mukherjee and J. Strikwerda. Analysis of dynamic
congestion control protocols - a Fokker-Planck approx-
imation. In Proc. ACM SIGCOMM '91, pages 159-
169, 1991.

[16] M. Parashar, S. Hariri, A. Mohamed, and G. Fox. A
requirement analysis for high performance distributed
computing over LAN's. In Proc. First International
Symp. on High-Performance Distributed Computing,
pages 142-151, 1992.

[17] Kihong Park. Warp control: a dynamically stable
congestion protocol and its analysis. Journal of High
Speed Networks, 2(4):373404, 1993.

[18] Thomas La Porta and Mischa Schwartz. Architec-
tures, features, and implementation of high-speed
transport protocols. IEEE Network Magazine, pages
14-22, May 1991.

[19] G. Ramamurthy and R. S. Dighe. Distributed source
control: a network access approach to integrated
broadband packet networks. In Proc. IEEE INFO-
COM '90, pages 896-907, 1990.

I201 Volker Strumpen. Parallel molecular sequence analy-
sis on workstations in the Internet. Technical Report
93.28, Department of Computer Science, University of
Zurich, 1993.

[21] Marek Wernik, Osama Aboul-Magd, and Henry
Gilbert. Traffic management for B-ISDN services.
IEEE Network, pages 10-19, September 1992.

[13] R.J. Lipton and J.S. Sandberg.

218

