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Abstract 
For communication-intensive parallel applications, the 
max imum degree of concurrency achievable i s  limited 
by the communication throughput made available by 
the network. In previous work [lo], we showed ex- 
perimentally that the performance of certain parallel 
applications running o n  a workstation network can be 
improved significantly if a congestion control protocol 
i s  used t o  enhance network performance. 

In this paper, we characterize and analyze the com- 
munication requirements of a large class of supercom- 
puting applications that fall  under the category of fixed- 
point problems, amenable t o  solution by parallel iter- 
ative methods. Thi s  results in a set of interface and 
architectural features su f ic ien t  f o r  the e f ic ien t  imple- 
mentation of the applications over a large-scale dis- 
tributed system. I n  particular, we propose a direct link 
between the application and network layer, supporting 
congestion control actions at both ends. This  in turn  
enhances the system's responsiveness t o  network con- 
gestion, improving performance. 

Measurements are given showing the eficacy of our 
scheme t o  support large-scale parallel computations. 

1 Introduction 
With the advent of high-speed networks linking to- 
gether an ever increasing number of high-performance 
workstations via local area (LAN) and wide area net- 
works (WAN), harnessing their collective computing 
power for parallel computations has become a viable 
goal. Supercomputing applications, the prime benifi- 
ciaries of such a venture, span a diverse spectrum of 
computational problems, ranging from partial differ- 
ential equations to global weather simulation models 
and molecular sequence analysis. The methods of at- 
tack are not always uniform, some requiring only local 
interaction among processing elements whereas others 
are inherently global in nature. 

'This research was supported in part by NSF under grants 
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A large subclass of such applications falls under 
the category of fixed point problems, a class that is 
amenable to parallel iterative methods, synchronous 
or asynchronous [2, 31. These include dynamic pro- 
gramming, systems of linear equations, network flow 
problems, genetic algorithms, and ordinary differential 
equations, just to name a few. This paper deals with 
the issue of how to map such applications to large-scale 
workstation clusters linked by local or wide area net- 
works. In particular, we concentrate on asynchronous 
iterative methods that admit non-blocking, unreliable 
communication that can can be exploited to yield fast 
convergence. 

Performance studies on LAN-based [5, 6, 161 and 
WAN-based systems [20] have shown the importance 
of controlling network delay for improving applica- 
tion performance. This is even more pronounced for 
parallel iterative algorithms since their communica- 
tion/computation ratio tends to be relatively high, 
leading to the flooding of network resources if not man- 
aged properly. Parallel iterative algorithms possess a 
uniform communication pattern (i .e.  , everyone needs 
to talk to everyone else with high frequency), and the 
single most important factor in determining the speed 
of convergence is the delay experienced by messages. 
For synchronous algorithms, it is obvious why this is 
so. For asynchronous algorithms that do not require 
waiting among processors, it is the outdatedness of the 
message itself which impedes convergence. That is, the 
longer the time-lag between the creation of a message 
and its reception at the destination, the less valuable 
it is in contributing to convergence. 

Congestion control in heterogenous, high-speed net- 
works is a difficult problem aggravated by the high 
propagation delay-bandwidth product and the differ- 
ent characteristics of multi-media traffic [l, 7, 8, 171. 
One of the advantages of asynchronous iterative al- 
gorithms is that they do not require reliable message 
transmission. Therefore, they need not have access to 
reserved, connection-oriented channels advocated for 
delay sensitive ATM traffic [21]. Instead they can use 
the variable bit rate channels subject to statistical mul- 
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tiplexing. As such, the actual service rate available to  
the application distributed across a LAN/WAN is a 
dynamically changing variable, very much like how it 
is today. The retransmission cost of this class of traffic 
remains negligible due to the tolerance of message loss. 

The positive effect of congestion control for solving 
systems of linear equations across an Ethernet LAN 
has been demonstrated in [lo]. In this paper, we for- 
malize and extend the results to an implementation- 
independent platform, applicable to both shared- 
memory and message passing distributed systems, We 
propose a generic design, represented as a set of pro- 
tocol requirements, sufficient for the efficient imple- 
mentation of parallel iterative algorithms. It is eas- 
ily incorporable into existing distributed computing 
environments. In the context of B-ISDN systems, 
several papers have addressed inefficiencies associated 
with the overhead incurred by current network proto- 
cols [9, 16, 181. One feature of our design, the condi- 
tional send (or c-send), establishes a direct link be- 
tween network layer congestion control and applica- 
tion layer send, by making information about the net- 
work state available to the application. This eliminates 
wasteful protocol stack overhead when the network is 
congested, improving the performance of the system. 

This paper is organized to mirror the structure of 
our proposed communication architecture. First, we 
give a brief overview of fixed-point problems, the class 
of applications that we aim to support. This is followed 
by an analysis of the communication costs associated 
with a generic parallel iterative algorithm that solves 
fixed-point problems. Next, we specify the problem of 
congestion, and show how a congestion control proto- 
col can operate the communication network near its 
capacity, thus increasing the range of useful applica- 
tion parallelism. Section 4.2 presents the collection of 
application interface and operating system design re- 
quirements whose confluence suffices for the efficient 
iterative solution of fixed point problems on worksta- 
tion networks. We end with a discussion of experimen- 
tal results supportive of our conclusions, and describe 
work in progress. 

2 Fixed-point problems 
Many problems in mathematics, science, and engineer- 
ing can be formulated as fixed-point problems. As an 
example, to solve the scalar equation f ( x )  = 0, it suf- 
fices to find the fixed point of F(x)  = x, where F = 
f(z) + x .  In general, F acts on a multi-dimensional 
space, say a"', with a suitable norm 11 . 11, and the 
problem can be formulated such that F has a unique 
fixed point t* to which F ( x )  converges in the limit 

under discrete iteration, 

z* = lim Ft ( z ) .  
t-w 

This is usually done by showing that F is a contraction 
mapping. Thus F is essentially a discrete dynamical 
system, and its iterative process can be expressed as 

z i ( t )  = Fi(xl(t - T,), z z ( t  - T;), . . . , t , ( t  - TA)) (1) 

for i = 1 , 2 ,  . . . , m, where xi  and Fi are the components 
of x and F ,  respectively. The T'S,  themselves function 
of time, are delay terms reflecting the communication 
delay imposed by the system evaluating F .  If, for all 
2,  

then equation (1) defines a synchronous iterative algo- 
rithm. Otherwise, it is said to define an asynchronous 
iterative algorithm for solving fixed-point problem F .  

The iteration of F behaves differently under syn- 
chronous and asynchronous methods. As with classical 
iteration methods such as Jacobi and Gauss-Seidel[14], 
convergence may not be guaranteed, and when both 
converge, the asynchronous iterative method often 
converges faster than the synchronous one. For a com- 
parative analysis of these two methods, see [2,3]. Nev- 
ertheless, a large class of problems have been proven 
to be amenable to solution by asynchronous iterative 
methods [3]. 

The importance of asynchronous methods lies in 
the elimination of the synchronization penalty which 
can be very high in large-scale implementations. This 
enables them to execute more iterations, resulting in 
faster convergence. It is not always the case that ex- 
ecuting more updates based on outdated information 
is beneficial to convergence, but under certain condi- 
tions, it can be shown that this is indeed the case [3]. 
The main drawback of asynchronous iterative methods 
over their synchronous counterpart lies in the increase 
in message transmission rate. For applications with 
high communication/computation ratios running on 
large-scale workstation clusters with shared network 
resources, this can overload the network, resulting in 
severe communication delays. Thus the goal lies in 
achieving as many iterations as possible without in- 
curring a high delay penalty. 

The fault-tolerance implied by equation (1) presents 
an additional degree of freedom in optimizing the net- 
work. This equation, with suitable assumptions on F 
and the 7 '8 ,  can be interpreted to mean that the loss 
of messages carrying updated values can be tolerated 
without violating the correctness of the computation. 
In section 4.1, we exploit this feature to maximize the 
advantages of congestion control. 

T,(t)  = Ti ( t )  = . . * = TA@), 
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To fix notation and have a reference point to fall 
back on, consider the problem of solving a system of 
linear equations Ax + b = 0, where A is an ( m  x m )  
matrix. An asynchronous iterative algorithm to solve 
the above equation is given by the fixed-point iteration 

i -  1 m 

With a suitable bound on the spectral radius of A ,  
this iteration can be shown to  converge when run asyn- 
chronously [2, 31. In the implementation, we use this 
particular example to demonstrate the efficacy of con- 
gestion control. 

3 Parallel asynchronous itera- 
t ive algorithms 

Let m represent the problem size (the actual problem 
size may be a function of m as in the linear equation 
example), and let n denote the number of nodes. A 
straightforward way to  partition a problem of m vari- 
ables over n nodes is to assign each node k = m / n  
variables. A generic parallel iterative algorithm can 
be described as follows. At each node i, 

Iterative fixed-point algorithm: 
repeat 
receive X I ,  2 2 ,  . . . , x m  
updat 8 
send 

x i . k ,  x i . k + l ,  . . . , Z i . k + k - l  

x j . k , x i . k + l , .  . . , X i . k + k - l  
until termination condition 

where send and receive are both asynchronous. 

time, is given by 
The total cost of an iteration, measured in units of 

C = Cr + C u  + C, 

where C, is the cost of receive, Cu is the cost of 
update, and C, is the cost send. The termination con- 
dition cost is ignored here. Let M be the total number 
of messages produced per iteration a t  each node. node. 
For any node i, its message generation rate X i  = M / C ,  
and the total message generation rate for the entire 
system is A = xi 

The costs, expressed as functions of m ,  n, depend 
on whether point-to-point or broadcast messages are 
employed. In the point-to-point case, 

C, oc nk = m ;  

= n i  (assuming fairness). 

M oc nk = m; C, oc nk = m. 

With broadcast, M and C, change to 
m m 
n n M o c k = - ;  C , o < k = - .  

M oc m / n  represents the most optimistic case, for ex- 
ample, when all the nodes are connected to a single 
Ethernet. For general routing networks, M will re- 
main proportional to m. For positive constants K1, 
Kz ,  and K 3 ,  we have 

1 
Kzn + K3 + nCu/m’  

and, Xi oc 
1 

K I  + C U / m  ’ X i  oc 

for the point-to-point and broadcast cases, respec- 
tively, 
Cu is a function of both the problem size m ,  and the 

number of nodes n.  For our purposes, it  suffices to no- 
tice that the least computation needed for an iteration 
at a single node must include inspecting the m values 
it receives. Therefore, C,, = R(m).  Note, n 5 m, and 
the finest granularity is achieved when n = m .  Hence, 
for the point-to-point case, 

C u l m =  Q(1) 3 X i  =O(1) j X = O ( n ) ,  

and for the broadcast case, 

From this analysis, we reach the following conclu- 
sions: 

One, in the point-to-point case, increasing the num- 
ber of nodes in the hope of speeding up the applica- 
tion in proportion to  1/n  also carries the potential of 
inflating the network load proportional to n. When 
X exceeds p-the network’s service rate-it triggers 
network congestion, resulting in severe message delays 
and slowing down the convergence of the algorithm. 
When mapping parallel algorithms onto distributed 
systems, we consider n to be large, hence we work in 
the realm of p < A. Adjusting X such that X NN p 
becomes a central goal. 

Two, other things being equal, broadcasting is supe- 
rior to point-to-point communication with respect to 
reducing the likelihood of network congestion. In the 
most optimistic situation when M oc mln,  increasing 
the number of workstations participating in the asyn- 
chronous iterative computation does not increase the 
input rate to  the network. The imbalance created by 
the broadcast mechanism on the receive cost forces the 
nodes to spend an increased fraction of their time pro- 
cessing incoming packets. 

Third, the time-complexity of the update cost 
Cu determines the communication/computation ra- 
tio, and directly influences the rate at which data is 
pumped to the network. 

In the limited context when the structural aspects 
are all favourably aligned, controlling communication 
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may not be a problem. Even then, the issue of 
minimizing the context-switch time between receive, 
send, and update processes by packing an adequate 
number of application messages into a single network 
packet looms as a potential variable to  be controlled. 

In the next section, we discuss the general case 
where congestion control is needed, the communica- 
tion artchitecture appropriate for it,  and measure- 
ments in support of our proposed architecture. As a 
side-effect, the congestion control procedure also car- 
ries the benefit of reducing excessive communication- 
induced context-switch cost, made possible by a posi- 
tive correlation of the latter with network contention. 

4 Controlling communication 
4.1 Congestion control 
For a fixed problem size m, given the trade-off be- 
tween higher parallelism and increase in communica- 
tion penalty for parallel iterative algorithms, is it pos- 
sible to have the best of both worlds? That is, increase 
n without paying a high communication penalty? 

The main penalties in the case of p < X stem .from 
queueing delays and network congestion, the latter de- 
fined as a decrease in effective throughput, i.e., a drop 
in p,  caused by tying up network resources in an unpro- 
ductive way [15, 191. This in turn aggravates queue- 
ing delays and triggers a positive feedback loop that 
worsens congestion. Congestion manifests itself in a 
decrease in CR, hence increasing A; and establishing a 
positive feedback loop. That is, 

congestion + p 1 + C, 1 3 A t $ congestion t 

A congestion control algorithm may be viewed as 
trying to achieve two things [17]: 

1. Rate matching, defined as A ( t )  M p( t ) ,  where A ( t )  
and p ( t )  are viewed as functions of time. 

2 .  Load matching, a sufficient condition for long-term 
rate matching, where load is defined as the num- 
ber of messages in transit. One way to model 
congestion is to  assume an optimal load, Q', as- 
sociated with a network, and view p = p(Q) as 
a unimodal function of Q, reaching its maximum 
service rate, p* = p(Q*), at Q'. So, the goal-is to 
keep Q M Q'. 

A distributed, end-to-end congestion control algo- 
rithm that captures the above aspects is Warp Con- 
trol [17], and it is used in our experiments. The ideal 
place for congestion control to reside is at the net- 
work layer in the ISO-OS1 reference model, and at the 

ATM adaptation layer (AAL) in the B-ISDN protocol 
model. This relieves communication-intenstive appli- 
cations from having to  worry about network issues. In 
the absence of operating system support for congestion 
control, implementation even at the applications layer 
can yield noticeable performance gains [lo]. We argue 
that the decision not to  send a message on a congested 
network should be made as high as possible in the sys- 
tem software architecture, i .e. ,  as close as possible to 
the point of an application's request to send. 

Under asynchronous, unreliable communication, 
congestion control throttles the arrival rate to the net- 
work by discarding excess traffic. In essence, this has 
the same effect as increasing the unit message cost 
C I M .  If, for example, messages produced from every 
other send are discarded due to heavy traffic, then 

since effective generation of accepted traffic is done 
only at every other call to send. Unless discarded m e s  
sages are ignored without any processing whatsoever, 
such messages incur an unnecessary overhead cost C,. 
To eliminate this cost, some operating system support 
is desirable. 

4.2 Design requirements 
We have argued that, to  harness the full power of 
speed-up for fixed-point problems solved by parallel 
iterative algorithms, we must apply congestion control 
to throttle the arrival rate to  the network. Further- 
more, such action should be taken at the earliest pos- 
sible time, before wasted message processing overhead 
is incurred. This section sets forth the architectural 
features that suffice for such control to  be affected, 
and specifies how they can be put together to achieve 
early discarding of messages without directly involv- 
ing the application. Note, it is not necessary for the 
receive and the send to occur once per iteration, and 
in bulk, as is shown in section 3; these features serve 
only to simplify our presentation. The four design fea- 
tures are: 

1. Asynchronous send and receive. That is, com- 
munication is non-blocking. 

2 .  Unreliable transmission. (E.g. ,  UDP.) 

3. Congestion control. It must be sophisticated 
enough to enable the network to  maintain a sus- 
tained service rate close to its effective capacity. 

4. Conditional send (c-send). In the same spirit as 
reducing the distance between application layer 
and communication layer [9]. 
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Traditional message passing systems often provide 
an asynchronous, unreliable communication interface, 
and recently shared memory systems have begun sup- 
porting similar behavior [ 111. 

We propose a new conditional send communication 
primitive which we call c-send. It is a send that has 
access to information about the network state, and if 
the network is congested, it degenerates into a null op- 
eration. In its simplest realization, let b be a Boolean 
variable that is true if the network is congested, and 
f a l s e ,  otherwise. Then c s e n d  is equivalent to the 
following macro: 

c-sendi? E if Tb then sendz.  

Supporting a data structure such as b may require 
involvement of the operating system. The effect of 
having c s e n d  is twofold. One, under heavy network 
traffic, by circumventing the overhead of having to go 
through the communication layers to reach congestion 
control, the otherwise wasted cost of C, is eliminated 
(replaced by a cost of O( 1 ) )  for calls that would have 
resulted in the discarding of their payload. Two, by 
effectively increasing CU/M and Cr/M, faster conver- 
gence and more efficient use of network bandwidth is 
achieved. 

5 Implementation and experi- 
ments 

In this section, we describe experiments of an im- 
plementation on a shared-memory environment called 
Mermera [ lo ,  111. All four design features (non- 
blocking s end/r ec e ive ,  unreliable transmission , con- 
gestion control, and conditional send) were incorpo- 
rated. The congestion algorithm employed is Warp 
Control [17] ,  and the application being tested was the 
linear equation solver described earlier. 

5.1 Mermera 
Mermera [ l l ]  is a software shared memory system that 
provides a general-purpose environment for parallel 
computing on workstation networks. Processes com- 
prising a parallel program reside on a specified group 
of nodes, and they communicate with each other via 
shared-memory read/write calls provided by Mermera. 
Several types of memory behavior are supported, one 
coherent (equivalent to sequential consistency) , and 
two non-coherent : Pipelined Random Access Mem- 
ory [13] ,  and Slow Memory [12] .  Mermera provides 
a read operation and three types of write operations: 
co-write, pram-write, and slow-write, the last of 

which is the one used by the linear equation solver 
during most of its computation. The slow-write and 
read operations capture the first two design require- 
ments: asynchronous send and receive,  and unreli- 
able transmission. 

There exist two versions of Mermera that incorpo- 
rate the beforementioned design features. The first 
version is built on top of version 2.2.5 of the Isis 
toolkit [4] of multicast protocols that support differ- 
ent message ordering properties. That version of Isis 
employs point-to-point messages for multicasting. The 
second version of Mermera was redesigned to replace 
Isis with a communication interface based on UDP. 
This was necessitated in part by the need to apply 
congestion control at  the lowest possible level, circum- 
venting the mechanisms employed by Isis itself. It also 
enabled us to exploit Ethernet’s hardware broadcast 
capability through UDP, thus reducing network con- 
tention. The data reported here is based on the first 
implementation using Isis, primarily because network 
contention can be made more severe due to the lack of 
broadcasting. 

5.2 Warp Control 
Warp Control [17] is a distributed, end-to-end con- 
gestion protocol that uses a time-stamp based scheme 
to throttle arrival rates for achieving optimal network 
utilization. Let N be the network characterized by 
two quantities, its service rate p and its load Q. Let 
AI, A z , . .  . , A, be the message generation rates (i.e. ar- 
rival rates) of the n nodes. Let p = Alp be the net- 
work’s utilization. The protocol itself, excluding the 
control, can be described as follows. Assume at  time 
t l ,  node j wants to send a packet mjj to node i .  At 
node j, 

Message encoding protocol (MEP): 

1 .  

2 .  

Let 
For 

Create a header containing i ,  j, and time 
stamped with t l .  Denote the latter operation by 
mi, .time-stamp := t l .  

Attach the header to the data section of mij and 
submit to network N .  

t z  be the time at  which mi, arrives at  node i .  
all k E { 1 , 2 , .  . ., n}\{i} ,  node i maintains a data 

structure hist[k]  containing two fields hist[k]. last-in 
and hist[k]. last-out.  In hist[k].Zast-in is recorded the 
time at which the last message from node k arrived at 
i ,  and hist[k].Zast-out records the time at  which it was 
sent out from k. At time t 2 ,  the following protocol is 
executed at  the receiving node i :  
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Message decoding protocol (MDP): 

1. w a r p  := ( t z  -h i s t l j ] . l a s t - in )  / ( m i j . t i m e - s t a m p -  
his t l j ]  . fast-out) .  

2 .  his t [ j ] . last- in := t2 .  

3 .  histl j] . last-out := mi, . t ime-stamp. 

It can be shown under certain assumptions on N that 
the quantity w a r p  as used in MDP approximates net- 
work utilization p [17] .  

Rate matching is achieved by the following control: 

- r ( 1  - warp), 
dXi 
dt 
- -  

where c is a parameter that governs the rate of change. 
This is called the rate adjustment protocol (RAP). 

I t  can be shown that the system is asymptotically 
stable reaching its maximum utilization p = 1, if 0 < 
e < k/?, where 7 is the average network delay, and 
k is a positive constant of no concern here. Thus, if 
the network delay is high, then the rate constant has 
to be small to keep the system stable. For a detailed 
analysis and treatment of other related issues such as 
load matching and fairness, see [17]. 

5.3 Experiments 
We conducted our measurements on a network of six 
dedicated Sun Sparc 1+ workstations and a server, 
connected by a private 10 Mbit Ethernet, and run- 
ning SunOS version 4.1.1. We ran NetMetrix ver- 
sion 3.10, on the server and one of the workstations, 
to generate background traffic in order to increase con- 
tention for the Ethernet’. Although the communica- 
tion/computation ratio of this application is relatively 
high, it was found that seven workstations were not 
enough to saturate the network. The remaining five 
workstations were dedicated to running the parallel 
linear equation solver on top of Mermera. 

We measured the completion time and the state of 
the network when solving a system of linear equations 
in 1000 variables ( i e . ,  m = 1000). Figure 1 illustrates 
the level of improvement, in overall application perfor- 
mance, achieved via dynamic control over static buffer- 
ing. The horizontal axis represents the buffer size for 
the case in which no congestion control is applied, and 
for the case in which only c s e n d  is used. For the 
case when Warp Control is activated, it represents the 
initial buffer size (equivalently, the initial value of A i ) .  

‘Congestion, in the context of a dedicated Ethernet LAN, 
corresponds to the collision rate on the network and buffer 
overflow. 

Warp Control is implemented by modifying the mes- 
sage submission mechanism to interpose a buffer b e  
tween Mermera and Isis that is flushed if and only if 
its size B > A,  Bmor. The quantity Ai is maintained as 
an “inverse” of Xi  by modifying it in inverse proportion 
to the right-hand-side of the above control law. Thus, 
the larger the value of A i ,  the smaller the message gen- 
eration rate, and vice versa. 

The csend primitive was implemented by provid- 
ing a direct link between congestion control and the 
Mermera “send” ( i e . ,  slow-write). All Slow Mem- 
ory writes by the user are treated as cxend’s, making 
this mechanism both high level and transparent to the 
application program. 

Figure 1: T i m e  to solve linear equations in 1000 vari- 
ables. Completion t ime improves dramatically when dy- 
namic congestion control is applied, in comparison to 
static buffering. 

We observe in figure 1 that conditional send en- 
ables the application to progress considerably faster 
on a congested network than it does otherwise, despite 
the crudity of our current binary implementation of 
c-send. However, further significant improvement is 
achieved by applying Warp at a lower level in conjunc- 
tion with csend.  Although not shown here, Warp 
Control, even without c-send, is almost as effective. 
Also note that control is critical at smaller buffer sizes, 
and as the static buffer size is increased, its detrimen- 
tal effect grows only slowly. We believe the sensitivity 
will be more pronounced in a workstation environment 
with many more nodes. 

Figures 2 and 3 offer insight into the network dy- 
namics, without (figure 2), and with (figure 3) c-send 
and warp control. The former shows how warp changes 
over time, represented indirectly via the message num- 
ber shown as the horizontal axis. A value of 10 for warp 
at a particular message number means that the corre- 
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Figure 2: Congestion in the absence of control. Warp versus message number when only the equation solver uses the 
network (left), contrasted with the case when high artificial background traffic contends for the network (right). Case 
shown is for a static buffer size o f  4 updates per message. 

sponding message took 10 times longer to arrive at its 
destination, than the previous message from the same 
sender. Similarly, a value of one means that there has 
been no change in message delay. Figure 2-right indi- 
cates the dramatic contention that takes place as a re- 
sult of injecting artificial background traffic to contend 
for the network with that generated by the application. 

Thus, figure 2-right shows the network to be ex- 
tremely congested before applying congestion control 
(figure 3-top), which squelches the wild fluctuations 
in delay. That warp's smoothness and closeness to a 
value of 1 causes a reduction in average message delay, 
is evidenced by the decrease in the total number of 
messages needed by the equation solver to complete: 
from 8250 down to 2103. Moreover, the effective net- 
work bandwidth in terms of the number of updates 
that are successfully transmitted (not shown) increases 
from 139 updates/sec to 571 updates/sec. 

Figure 3-bottom indirectly traces the changes in 
message generation rate effected by warp control. The 
graph gives the value of A ,  which is proportional to 
the message size, for consecutive messages transmit- 
ted through Isis. Assuming a constant update rate by 
the equation solver, A is inversely proportional to the 
message generation rate. Thus, a change in A from 0.2 
to 0.4, corresponds to the halving of the message gen- 
eration rate (with the caveat that the horizontal axis 
does not directly represent time, so the rate of change 
in the message generation rate cannot be correctly de- 
duced from the graph). 

6 Conclusion 
We have presented a framework for analyzing paral- 
lel asynchronous iterative algorithms for solving fixed- 
point problems, and its consequent system support 
requirements for efficient execution of such applicac 
tions across LAN/WAN workstation networks. Exper- 
imental data from a seven workstation network con- 
nected via a single Ethernet support the efficacy of 
our system environment for enhancing application per- 
formance under heavy network traffic. The potential 
benefit of network control, inclusive csend, can be ex- 
trapolated to large-scale workstation clusters involving 
hundreds of workstations where the need for control 
will be even more pronounced. 

We remark in passing that our conclusions, in an 
overall sense, apply to other applications that do not 
admit nonblocking interfaces and loss of messages. In 
this case, the issue of network control should be totally 
divorced from the application, leading to control in a 
system- wide sense. 
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